## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = rlang::is_installed("zoo") ) ## ----------------------------------------------------------------------------- library(GDPuc) # Test with Venezuela -> iso3c = VEN my_gdp <- tibble::tibble( iso3c = c("VEN"), year = 2010:2014, value = 100:104 ) x <- convertGDP( gdp = my_gdp, unit_in = "constant 2005 Int$PPP", unit_out = "constant 2019 Int$PPP", return_cfs = TRUE ) x$result x$cfs ## ----------------------------------------------------------------------------- x <- convertGDP( gdp = my_gdp, unit_in = "constant 2005 Int$PPP", unit_out = "constant 2019 Int$PPP", replace_NAs = NA ) ## ----------------------------------------------------------------------------- my_gdp <- tibble::tibble( iso3c = "VEN", year = 2010:2014, value = 100:104 ) x <- convertGDP( gdp = my_gdp, unit_in = "constant 2005 Int$PPP", unit_out = "constant 2019 Int$PPP", replace_NAs = 0, return_cfs = TRUE ) x$result x$cfs ## ----------------------------------------------------------------------------- my_gdp <- tibble::tibble( iso3c = "VEN", year = 2010:2014, value = 100:104 ) x <- convertGDP( gdp = my_gdp, unit_in = "constant 2005 Int$PPP", unit_out = "constant 2019 Int$PPP", replace_NAs = "no_conversion", return_cfs = TRUE ) x$result x$cfs ## ----------------------------------------------------------------------------- my_gdp <- tibble::tibble( iso3c = "VEN", year = 2010:2014, value = 100:104 ) x <- convertGDP( gdp = my_gdp, unit_in = "constant 2005 Int$PPP", unit_out = "constant 2019 Int$PPP", replace_NAs = "linear", return_cfs = TRUE ) x$result x$cfs ## ----------------------------------------------------------------------------- my_gdp <- tibble::tibble( iso3c = "VEN", year = 2010:2014, value = 100:104 ) my_mapping_data_frame <- tibble::tibble( iso3c = c("VEN", "BRA", "ARG", "COL"), region = "LAM" ) x <- convertGDP( gdp = my_gdp, unit_in = "constant 2005 Int$PPP", unit_out = "constant 2019 Int$PPP", replace_NAs = "regional_average", with_regions = my_mapping_data_frame, return_cfs = TRUE ) x$result x$cfs # Compare the 2019 PPP with the 2005 PPP. They are not in the same order of magnitude. # Obviously, being a part of the same region, does not mean the currencies are of the same strength. ## ----------------------------------------------------------------------------- # Create an imaginary country XXX, and add it to the Latin America region my_gdp <- tibble::tibble( iso3c = c("VEN", "XXX"), year = 2010, value = 100 ) my_mapping_data_frame <- tibble::tibble( iso3c = c("VEN", "BRA", "ARG", "COL", "XXX"), region = "LAM" ) x <- convertGDP( gdp = my_gdp, unit_in = "constant 2005 Int$PPP", unit_out = "constant 2019 Int$PPP", replace_NAs = c("linear", 0), with_regions = my_mapping_data_frame, return_cfs = TRUE ) x$result x$cfs ## ----------------------------------------------------------------------------- # Venezuela is only missing conversion factors in 2019, AIA has no conversion factors at all. my_gdp <- tibble::tibble( iso3c = c("VEN", "AIA", "USA"), value = 100 ) x <- convertGDP( gdp = my_gdp, unit_in = "constant 2005 Int$PPP", unit_out = "constant 2019 Int$PPP", replace_NAs = "with_USA", return_cfs = TRUE ) x$result x$cfs