## ----Setup, include=TRUE, echo=FALSE------------------------------------------ knitr::opts_knit$set( concordance = TRUE ) knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----Data, include=TRUE, echo=TRUE, background='NA', highlight=FALSE---------- rm(list = ls()) library(BHSBVAR) set.seed(123) data(USLMData) y0 <- matrix(data = c(USLMData$Wage, USLMData$Employment), ncol = 2) y <- y0 - (matrix(data = 1, nrow = nrow(y0), ncol = ncol(y0)) %*% diag(x = colMeans(x = y0, na.rm = FALSE, dims = 1))) colnames(y) <- c("Wage", "Employment") ## ----Inputs, include = TRUE, echo = TRUE, background = 'NA', highlight = FALSE---- nlags <- 8 itr <- 200000 burn <- 0 thin <- 20 acc <- TRUE h <- 20 cri <- 0.95 ## ----pA, include = TRUE, echo = TRUE, background = 'NA', highlight = FALSE---- pA <- array(data = NA, dim = c(ncol(y), ncol(y), 8)) pA[, , 1] <- c(0, NA, 0, NA) pA[, , 2] <- c(1, NA, -1, NA) pA[, , 3] <- c(0.6, 1, -0.6, 1) pA[, , 4] <- c(0.6, NA, 0.6, NA) pA[, , 5] <- c(3, NA, 3, NA) pA[, , 6] <- c(NA, NA, NA, NA) pA[, , 7] <- c(NA, NA, 1, NA) pA[, , 8] <- c(2, NA, 2, NA) ## ----pP_pP_sig, include = TRUE, echo = TRUE, background = 'NA', highlight = FALSE---- pP <- matrix(data = 0, nrow = ((nlags * ncol(pA)) + 1), ncol = ncol(pA)) pP[1:nrow(pA), 1:ncol(pA)] <- diag(x = 1, nrow = nrow(pA), ncol = ncol(pA)) x1 <- matrix(data = NA, nrow = (nrow(y) - nlags), ncol = (ncol(y) * nlags)) for (k in 1:nlags) { x1[, (ncol(y) * (k - 1) + 1):(ncol(y) * k)] <- y[(nlags - k + 1):(nrow(y) - k),] } x1 <- cbind(x1, 1) colnames(x1) <- c(paste(rep(colnames(y), nlags), "_L", sort(rep(seq(from = 1, to = nlags, by = 1), times = ncol(y)), decreasing = FALSE), sep = ""), "cons") y1 <- y[(nlags + 1):nrow(y),] ee <- matrix(data = NA, nrow = nrow(y1), ncol = ncol(y1)) for (i in 1:ncol(y1)) { xx <- cbind(x1[, seq(from = i, to = (ncol(x1) - 1), by = ncol(y1))], 1) yy <- matrix(data = y1[, i], ncol = 1) phi <- solve(t(xx) %*% xx, t(xx) %*% yy) ee[, i] <- yy - (xx %*% phi) } somega <- (t(ee) %*% ee) / nrow(ee) lambda0 <- 0.2 lambda1 <- 1 lambda3 <- 100 v1 <- matrix(data = (1:nlags), nrow = nlags, ncol = 1) v1 <- v1^((-2) * lambda1) v2 <- matrix(data = diag(solve(diag(diag(somega)))), ncol = 1) v3 <- kronecker(v1, v2) v3 <- (lambda0^2) * rbind(v3, (lambda3^2)) v3 <- 1 / v3 pP_sig <- diag(x = c(v3), nrow = nrow(v3), ncol = nrow(v3)) ## ----pR_pR_sig_kappa1, include = TRUE, echo = TRUE, background = 'NA', highlight = FALSE---- pR_sig <- array(data = 0, dim = c(((nlags * ncol(y)) + 1), ((nlags * ncol(y)) + 1), ncol(y))) Ri <- cbind(kronecker(matrix(data = 1, nrow = 1, ncol = nlags), matrix(data = c(1, 0), nrow = 1)), 0) pR_sig[, , 2] <- (t(Ri) %*% Ri) / 0.1 kappa1 <- matrix(data = 2, nrow = 1, ncol = ncol(y)) ## ----model, include=TRUE, echo=TRUE, fig.keep='all', fig.show='asis', fig.width=7, fig.align='center', fig.asp=0.4, background='NA', highlight=FALSE, fig.cap="Line and Autocorrelation Diagnostic Plots of the Posterior Estimates"---- par(cex.axis = 0.8, cex.main = 1, font.main = 1, family = "serif", mfrow = c(2, 2), mar = c(2, 2.2, 2, 1), las = 1) results1 <- BH_SBVAR(y = y, nlags = nlags, pA = pA, pP = pP, pP_sig = pP_sig, pR_sig = pR_sig, kappa1 = kappa1, itr = itr, burn = burn, thin = thin, cri = cri) ## ----irf-plots, include=TRUE, echo=TRUE, fig.keep='all', fig.show='asis', fig.width=7, fig.align='center', fig.asp=0.4, background='NA', highlight=FALSE, fig.cap="Impulse Responses"---- irf <- IRF(results = results1, h = h, acc = acc, cri = cri) varnames <- colnames(USLMData)[2:3] shocknames <- c("Labor Demand","Labor Supply") par(cex.axis = 0.8, cex.main = 1, font.main = 1, family = "serif", mfrow = c(2, 2), mar = c(2, 2.2, 2, 1), las = 1) irf_results <- IRF_Plots(results = irf, varnames = varnames, shocknames = shocknames) ## ----fevd-plots, include=TRUE, echo=TRUE, fig.keep='all', fig.show='asis', fig.width=7, fig.align='center', fig.asp=0.4, background='NA', highlight=FALSE, fig.cap="Forecast Error Variance Decompositions"---- fevd <- FEVD(results = results1, h = h, acc = acc, cri = cri) varnames <- colnames(USLMData)[2:3] shocknames <- c("Labor Demand","Labor Supply") par(cex.axis = 0.8, cex.main = 1, font.main = 1, family = "serif", mfrow = c(2, 2), mar = c(2, 2.2, 2, 1), las = 1) fevd_results <- FEVD_Plots(results = fevd, varnames = varnames, shocknames = shocknames) ## ----hd-plots, include=TRUE, echo=TRUE, fig.keep='all', fig.show='asis', fig.width=7, fig.align='center', fig.asp=0.4, background='NA', highlight=FALSE, fig.cap="Historical Decompositions"---- hd <- HD(results = results1, cri = cri) varnames <- colnames(USLMData)[2:3] shocknames <- c("Labor Demand","Labor Supply") freq <- 4 start_date <- c(floor(USLMData[(nlags + 1), 1]), (floor(((USLMData[(nlags + 1), 1] %% 1) * freq)) + 1)) par(cex.axis = 0.8, cex.main = 1, font.main = 1, family = "serif", mfrow = c(2, 2), mar = c(2, 2.2, 2, 1), las = 1) hd_results <- HD_Plots(results = hd, varnames = varnames, shocknames = shocknames, freq = freq, start_date = start_date) ## ----dist-plots, include=TRUE, echo=TRUE, fig.keep='all', fig.show='asis', fig.width=7, fig.align='center', fig.asp=0.4, background='NA', highlight=FALSE, fig.cap="Posterior and Prior Distribution Plots"---- A_titles <- matrix(data = NA_character_, nrow = dim(pA)[1], ncol = dim(pA)[2]) A_titles[1, 1] <- "Wage Elasticity of Labor Demand" A_titles[1, 2] <- "Wage Elasticity of Labor Supply" par(cex.axis = 0.8, cex.main = 1, font.main = 1, family = "serif", mfrow = c(1, 2), mar = c(2, 2.2, 2, 1), las = 1) Dist_Plots(results = results1, A_titles = A_titles) ## ----Density1, eval = FALSE, include = TRUE, echo = TRUE, background = 'NA', highlight = FALSE---- # density <- # dt(x = ((a1 - p1) / sigma1), df = nu, ncp = 0, log = FALSE) / sigma1 ## ----Density2, eval = FALSE, include = TRUE, echo = TRUE, background = 'NA', highlight = FALSE---- # density <- # dt(x = ((a1 - p1) / sigma1), df = nu, ncp = lam1, log = FALSE) / sigma1 ## ----Density3, eval = FALSE, include = TRUE, echo = TRUE, background = 'NA', highlight = FALSE---- # density <- # dt(x = ((a1 - p1) / sigma1), df = nu, ncp = 0, log = FALSE) / # (sigma1 * # (1 - pt(q = ((-p1) / sigma1), df = nu, ncp = 0, lower.tail = TRUE, # log.p = FALSE))) ## ----Density5, eval = FALSE, include = TRUE, echo = TRUE, background = 'NA', highlight = FALSE---- # density <- dt(x = ((a1 - p1) / sigma1), df = nu, ncp = 0, log = FALSE) / # (sigma1 * pt(q = ((-p1) / sigma1), df = nu, ncp = 0, lower.tail = TRUE, # log.p = FALSE)) ## ----Density6, eval = FALSE, include = TRUE, echo = TRUE, background = 'NA', highlight = FALSE---- # density <- 0 # if (a1 >= 1) { # density <- exp( # ((sh2 - 1) * log((a1 - 1))) + # (((-1) * (sh2 + sh1)) * log((1 + (a1 - 1)))) - # log(beta(sh2, sh1)) # ) # } ## ----Density4, eval = FALSE, include = TRUE, echo = TRUE, background = 'NA', highlight = FALSE---- # density <- dbeta(x = a1, shape1 = sh1, shape2 = sh2, ncp = 0, log = FALSE)