Top
Back: is_composite
Forward: compose
FastBack:
FastForward:
Up: decomp_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.6.4 chebyshev

Procedure from library decomp.lib (see decomp_lib).

Usage:
chebyshev(n); n int, n >= 0
chebyshev(n,c); n int, n >= 0, c number, c!=0

Return:
poly, the [monic] nth Chebyshev polynomial of the first kind.
The polynomials are defined in the first variable, say x, of the basering.

Note:
The (generalized) Chebyshev polynomials of the first kind can be defined by the recursion: 1007#1007.

These polynomials commute by composition:

1008#1008.
For c=1, we obtain the standard (non monic) Chebyshev polynomials

1009#1009 which satisfy 1010#1010.
For c=2 (default), we obtain the monic Chebyshev polynomials 1011#1011

which satisfy the relation 1012#1012.
By default the monic Chebyshev polynomials are returned:

1013#1013chebyshev(n) and 1014#1014chebyshev(n,1).
It holds 1015#1015 and more generally

1016#1016
That is subst(chebyshev(n,c),var(1),c*var(1))= c*chebyshev(n,1).

If char(basering) = 2, then

1017#1017, and so on.

Example:
 
LIB "decomp.lib";
ring r = 0,x,lp;
// The monic Chebyshev polynomials
chebyshev(0);
==> 2
chebyshev(1);
==> x
chebyshev(2);
==> x2-2
chebyshev(3);
==> x3-3x
// These polynomials commute
compose(chebyshev(2),chebyshev(6)) ==
compose(chebyshev(6),chebyshev(2));
==> 1
// The standard Chebyshev polynomials
chebyshev(0,1);
==> 1
chebyshev(1,1);
==> x
chebyshev(2,1);
==> 2x2-1
chebyshev(3,1);
==> 4x3-3x
// -----------------------------------------------------------------------
// The relation for the various Chebyshev polynomials
5*chebyshev(3,1)==subst(chebyshev(3,5),x,5x);
==> 1
// -----------------------------------------------------------------------
// char 2 case
ring r2 = 2,x,dp;
chebyshev(2);
==> 1
chebyshev(3);
==> x


Top Back: is_composite Forward: compose FastBack: FastForward: Up: decomp_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.4.0, 2024, generated by texi2html.