
MBRTOWC(3) Programmer’s Reference Manual MBRTOWC(3)

NAME
mbrtowc − convert from multibyte to wide character encoding

SYNOPSIS
#include <wchar.h>

size_t mbrtowc(wchar_t * pwc, const char *s, size_t n, mbstate_t * ps);

Feature Test Macro Requirements for libmingwex:

__MSVCRT_VERSION__: since mingwrt-5.3, if this feature test macro is defined , with a value of at

least 0x0800, (corresponding to the symbolic constant, __MSCVR80_DLL, and thus declaring intent to

link with MSVCR80.DLL, or any later version of Microsoft's non-free runtime library, instead of with

MSVCRT.DLL), calls to mbrtowc() will be directed to the implementation thereof, within Microsoft's run-

time DLL.

_ISOC99_SOURCE, _ISOC11_SOURCE: since mingwrt-5.3.1, when linking with MSVCRT.DLL, or

when __MSVCRT_VERSION__ is either undefined , or is defined with any value which is less than

0x0800, (thus denying intent to link with MSVCR80.DLL, or any later non-free version of Microsoft's run-

time library), explicitly defining either of these feature test macros will cause any call to mbrtowc() to be

directed to the libmingwex implementation; if neither macro is defined, calls to mbrtowc() will be directed

to Microsoft's runtime implementation, if it is available, otherwise falling back to the libmingwex imple-

mentation.

Prior to mingwrt-5.3, none of the above feature test macros have any effect on mbrtowc(); all calls will be

directed to the libmingwex implementation.

DESCRIPTION
If s is a NULL pointer, the *pwc, and the n arguments are ignored, and the call to mbrtowc() function is in-

terpreted as if invoked as

mbrtowc(NULL, "", 1, ps);

Otherwise, if s is not a NULL pointer, the mbrtowc() function inspects the sequence of bytes, starting at s,

up to a maximum of n bytes, to determine the number of bytes required to complete the next multibyte

code point, commencing from the conversion state specified in *ps, (which is then updated). Then, if *pwc

is not a NULL pointer, and n or fewer bytes is sufficient to complete a single multibyte character, the single

wchar_t wide character conversion of that multibyte character is stored at *pwc.

The sequence of bytes, pointed to by s, is interpreted as a multibyte character sequence in the codeset

which is associated with the LC_CTYPE category of the active process locale.

If ps is specified as a NULL pointer, mbrtowc() will track conversion state using an internal mbstate_t ob-

ject reference, which is private within the mbrtowc() process address space; at process start-up, this inter-

nal mbstate_t object is initialized to represent the initial conversion state.

In the special case, where the conversion of a completed multibyte character must be represented as a

UTF-16LE surrogate pair, and *pwc is not a NULL pointer, only the high surrogate will be stored at

*pwc; please refer to the section CAVEATS AND BUGS, below, for advice on retrieval of the low surro-

gate.

RETURN VALUE
If the multibyte sequence, completed by n or fewer bytes, does not represent the NUL code point, then

mbrtowc() returns the number of bytes which are actually required to complete the sequence, (a number

between 1 and n, inclusive), and the conversion state, as specified in *ps, is reset to the initial state; if pwc

is not a NULL pointer, the wide character conversion of the completed multibyte character is stored at

*pwc.

On the other hand, if the completed multibyte sequence does represent the NUL code point, then

mbrtowc() returns zero, and the conversion state, as specified in *ps, is reset to the initial state; if pwc is

not a NULL pointer, the NUL wide character is stored at *pwc.

MinGW 15-Mar-2020 1

MBRTOWC(3) Programmer’s Reference Manual MBRTOWC(3)

If n is less than the effective MB_CUR_MAX for the active process locale, and n bytes is insufficient to

complete a multibyte character, then *ps is updated to represent a new partially completed encoding state,

(no wide character conversion is stored), and mbrtowc() returns (size_t)(−2). (If n is equal to, or greater

than MB_CUR_MAX, this return condition can arise, only if the multibyte encoding sequence includes re-

dundant shift states; since shift states are not used, this cannot occur in any MS-Windows multibyte charac-

ter set).

ERROR CONDITIONS
If the sequence of n or fewer bytes, pointed to by s, extends any pending encoding state recorded within

*ps, to at least MB_CUR_MAX bytes, and the resulting sequence does not represent a valid multibyte

character, then errno is set to EILSEQ, no wide character conversion is stored, and mbrtowc() returns

(size_t)(−1).

Conforming to POSIX.1, as an extension to ISO-C99, if, on entry to mbrtowc(), the conversion state repre-

sented by *ps is deemed to be invalid , errno is set to EINVAL, and mbrtowc() returns (size_t)(−1); the

conversion state may be deemed to be invalid if it contains any sequence of bytes which does not match a

valid initial sequence from a multibyte character representation within the currently active codeset, if it can

be interpreted as a complete multibyte character, without the addition of any further bytes from s, or if it

represents a surrogate pair conversion, resulting from a preceding call to mbrtowc(), from which the

low surrogate has yet to be retrieved, (and this is not the special case in which n is specified as zero, indi-

cating that this call is intended to retrieve that pending low surrogate).

CONFORMING TO
Except in respect of its extended provision for handling of surrogate pairs, and to the extent that it may be

affected by limitations of the underlying MS-Windows API, the libmingwex implementation of mbrtowc()

conforms generally to ISO-C99, POSIX.1-2001, and POSIX.1-2008; (prior to mingwrt−5.3, and in those

cases where calls may be delegated to a Microsoft runtime DLL implementation, this level of conformity

may not be achieved).

CAVEATS AND BUGS
Due to a documented limitation of Microsoft's setlocale() function implementation, it is not possible to di-

rectly select an active locale, in which the codeset is represented by any multibyte character sequence with

an effective MB_CUR_MAX of more than two bytes. Prior to mingwrt-5.3, this limitation precludes the

use of mbrtowc() to interpret any codeset with MB_CUR_MAX greater than two bytes, (such as UTF-8).

From mingwrt-5.3 onward, the MinGW.org implementation of mbrtowc() mitigates this limitation by as-

signment of the codeset from the LC_CTYPE environment variable, provided the system default has been

previously activated for the LC_CTYPE locale category; e.g. execution of:

#include <stdio.h>

#include <stdlib.h>

#include <locale.h>

#include <limits.h>

#include <wchar.h>

void print_conv(const char *mbs)

{

wchar_t wch;

size_t n = mbrtowc(&wch, mbs, MB_LEN_MAX, NULL);

if((int)(n) > 0) printf("%u bytes −> 0x%04X\n", n, wch);

else if(n == (size_t)(−1)) perror("mbrtowc");

}

int main()

{

setlocale(LC_CTYPE, "");

putenv("LC_CTYPE=en_GB.65001");

print_conv("\U0001d10b");

MinGW 15-Mar-2020 2

MBRTOWC(3) Programmer’s Reference Manual MBRTOWC(3)

print_conv("\u6c34");

return 0;

}

will interpret the string "\U0001d10b" as a four-byte UTF-8 encoding sequence, (which represents a single

Unicode code point), but will fail to interpret the following "\u6c34" sequence, (which also represents a

valid Unicode code point), and, (if stderr is redirected to stdout), will print the result as:

4 bytes −> 0xD834

mbrtowc: Invalid argument

This example illustrates a potentially irreconcilable deviation of any mbrtowc() implementation, on

MS-Windows, from the ISO-C99 standard: due to Microsoft's choice of UTF-16LE as the underlying rep-

resentation of the wchar_t data type, it is not possible to satisfy the requirement, implicit in the ISO-C99

specification for mbrtowc(), that it should be possible to return the complete representation of any single

representable Unicode code point as a single wchar_t value. In the case of this example, whereas the

4-byte UTF-8 representation of the "\U0001d10b" Unicode code point is complete, the 0xD834 wchar_t

representation, as returned by mbrtowc(), is not complete; it represents a UTF-16 high surrogate, which

must be paired with a corresponding low surrogate to complete it, and, since ISO-C99 requires that the

*pwc argument to mbrtowc() refers to sufficient storage space to accommodate only one wchar_t value, it

is not possible for mbrtowc() to safely return both the high surrogate, and its complementary low surro-

gate, in a single call. To mitigate this non-conformance, from mingwrt-5.3 onward, the MinGW implemen-

tation of mbrtowc() supports the following non-standard strategy for completion of any conversion which

requires return of a surrogate pair:

• Any translation unit, in which mbrtowc() is called, should:

a) explicitly define either the _ISOC99_SOURCE, or the _ISOC11_SOURCE feature test

macro, (with any arbitrary value, or even no value), before including any header file, and

b) include the <winnls.h> header file, in addition to the required <wchar.h> header.

• Following each call of mbrtowc(), which returns a wchar_t value with a converted byte count

greater than zero, test the returned wchar_t value, using the IS_HIGH_SURROGATE() macro.

• When the IS_HIGH_SURROGATE() macro call indicates that the returned wchar_t value does

represent a high surrogate, immediately call mbrtowc() again, passing the *ps state as returned by

the original call, together with the original multibyte sequence reference, but with an explicit scan

length limit, n, of zero, and an alternative wchar_t buffer reference pointer, for storage of the

low surrogate; on successful retrieval of this low surrogate, the additional converted byte count will

be returned as zero, and the pending *ps conversion state will have been cleared, (i.e. reset to the

initial state).

Thus, considering the preceding example, to support interpretation of surrogate pairs the example code

should be modified by insertion of:

#define _ISOC99_SOURCE

#include <winnls.h>

at the top of the source file, and reimplementation of the print_conv() function, to incorporate the

IS_HIGH_SURROGATE() test, and response:

void print_conv(const char *mbs)

{

wchar_t wch;

size_t n = mbrtowc(&wch, mbs, MB_LEN_MAX, NULL);

if((int)(n) > 0)

{

if(IS_HIGH_SURROGATE(wch)

{

wchar_t wcl;

mbrtowc(&wcl, mbs, 0, NULL);

MinGW 15-Mar-2020 3

MBRTOWC(3) Programmer’s Reference Manual MBRTOWC(3)

printf("%u bytes −> 0x%04X:0x%04X\n", n, wch, wcl);

}

else printf("%u bytes −> 0x%04X\n", n, wch);

}

else if(n == (size_t)(−1)) perror("mbrtowc");

}

With these changes in place, the output from the program becomes:

4 bytes −> 0xD834:0xDD0B

3 bytes −> 0x6C34

thus now correctly reporting the conversion of the surrogate pair, and then correctly interpreting the fol-

lowing 3-byte UTF-8 sequence.

Please be aware that the underlying MS-Windows API, which is used to interpret the multibyte sequence,

offers no readily accessible mechanism to discriminate between incomplete and invalid sequences; thus, if

n is less than the effective MB_CUR_MAX for the active codeset, this mbrtowc() implementation may re-

turn (size_t)(−2), indicating an incomplete sequence, even in cases where there are no additional bytes

which could be appended, to complete a valid encoding sequence.

SEE ALSO
mbsrtowcs(3)

AUTHOR
This manpage was written by Keith Marshall, <keith@users.osdn.me>, to document the mbrtowc() func-

tion as it has been implemented for the MinGW.org Project. It may be copied, modified and redistributed,

without restriction of copyright, provided this acknowledgement of contribution by the original author re-

mains unchanged.

MinGW 15-Mar-2020 4

