%% This is part of the OpTeX project, see http://petr.olsak.net/optex

% Math alignment examples inspired by https://www.ntg.nl/maps/34/06.pdf 

\fontfam[newcm]
\margins/1 a4 (2,2,2,2)cm
\hyperlinks\Blue\Blue

\refdecl{
   \def\Xpos#1#2#3{\sxdef{pos:#1}{{#2}{#3}\_currpage}}
}
\def\setpos[#1]{\openref\pdfsavepos
   \_ewref\Xpos{{#1}\unexpanded{{\the\pdflastxpos}{\the\pdflastypos}}}}

\def\posx [#1]{\_ea \posi   \romannumeral-`\.\trycs{pos:#1}{{0}{0}{0}{0}}sp}
\def\posy [#1]{\_ea \posii  \romannumeral-`\.\trycs{pos:#1}{{0}{0}{0}{0}}sp}
\def\pospg[#1]{\_ea \posiii \romannumeral-`\.\trycs{pos:#1}{{0}{0}{0}{0}}}

\def\posi   #1#2#3#4{#1}
\def\posii  #1#2#3#4{#2}
\def\posiii #1#2#3#4{#3}

\newcount\tomarginno
\def\toright#1{\_incr\tomarginno {\setpos[tr:\the\tomarginno]%
   \rlap{\kern-\posx[tr:\the\tomarginno]\kern\hoffset\kern\hsize\llap{#1}}}}
\def\toleft#1{\_incr\tomarginno {\setpos[tr:\the\tomarginno]%
   \rlap{\kern-\posx[tr:\the\tomarginno]\kern\hoffset\rlap{#1}}}}

\def\eqm{\toright\eqmark}

\def\\{\begingroup
   \_setverb \obeylines \scanlatex
}
\def\scanlatex#1//{\tt #1\endgroup \scanoptex}
\long\def\scanoptex#1$${\begingroup
   \_setverb \obeylines \scanoptexA
}
\ea\def\ea\scanoptexA\ea#\ea1\detokenize{$$}{\bigskip \tt
   \detokenize{$$}#1\detokenize{$$}\endgroup
   $$\catcode`\^^M=9 \scantextokens{#1}$$
   \bigskip
}

\tit Math alignment examples

The document \url{https://www.ntg.nl/maps/34/06.pdf} shows examples how to
do special math alignments in display mode in \ConTeXt/ (and in \LaTeX/ for
comparison). We present the same examples here. They are created in
\OpTeX/ and the \LaTeX/ source is shown for comparison.

Note that several examples here use the macro \code{\\eqm} for placing 
an equation mark. The macro is defined~by

\begtt
\def\eqm{\toright\eqmark}
\endtt
%
and the \code{\\toright} macro is defined in
\ulink[http://petr.olsak.net/optex/optex-tricks.html#torighteq]{\OpTeX/ trick 0028}
which is based on 
\ulink[http://petr.olsak.net/optex/optex-tricks.html#setpos]{\OpTeX/ trick 0020}.
I.e. the following macros are used here:

\begtt
\refdecl{
   \def\Xpos#1#2#3{\sxdef{pos:#1}{{#2}{#3}\_currpage}}
}
\def\setpos[#1]{\openref\pdfsavepos
   \_ewref\Xpos{{#1}\unexpanded{{\the\pdflastxpos}{\the\pdflastypos}}}}

\def\posx [#1]{\_ea \posi   \romannumeral-`\.\trycs{pos:#1}{{0}{0}{0}{0}}sp}
\def\posy [#1]{\_ea \posii  \romannumeral-`\.\trycs{pos:#1}{{0}{0}{0}{0}}sp}
\def\pospg[#1]{\_ea \posiii \romannumeral-`\.\trycs{pos:#1}{{0}{0}{0}{0}}}

\def\posi   #1#2#3#4{#1}
\def\posii  #1#2#3#4{#2}
\def\posiii #1#2#3#4{#3}

\newcount\tomarginno
\def\toright#1{\_incr\tomarginno {\setpos[tr:\the\tomarginno]%
   \rlap{\kern-\posx[tr:\the\tomarginno]\kern\hoffset\kern\hsize\llap{#1}}}}
\def\toleft#1{\_incr\tomarginno {\setpos[tr:\the\tomarginno]%
   \rlap{\kern-\posx[tr:\the\tomarginno]\kern\hoffset\rlap{#1}}}}
\endtt
%
and we have to run \TeX/ twice.

\notoc\nonum\sec Contents

\centerline{\vbox{\hsize=.5\hsize
\maketoc
}}

\vfil\break

\let\_firstnoindent=\relax
\mathsboff \catcode`\_=12 \everytable{\catcode`\_=11}

\sec Gather

\\
\begin{gather}
   v = u  + at,           \\
   d = ut + \frac12 at^2.
\end{gather}
//

$$
  \displaylines{
     v = u  + at,              \eqm \cr
     d = ut + {1\over2} at^2.  \eqm
  }  
$$

\sec Left gather

\\
\begin{align}
  & v = u + at,            \\
  & d = ut + \frac12 at^2.
\end{align}
//

$$
  \eqalignno{
     & v = u + at,               & \eqmark \cr
     & d = ut + {1\over2} at^2.  & \eqmark 
  }
$$

\sec Right gather

\\
\begin{align}
  v = u + at ,           & \\
  d = ut + \frac12 atˆ2. &
\end{align}
//

$$
  \eqalignno{
     v = u + at,               && \eqmark \cr
     d = ut + {1\over2} at^2.  && \eqmark 
  }  
$$

\sec Align

\\
\begin{align}
  v &= u + at,            \\
  d &= ut + \frac12 at^2.
\end{align}
//

$$
  \eqalignno{
    v &= u + at,               & \eqmark \cr
    d &= ut + {1\over2} at^2.  & \eqmark
  }
$$

\sec Split

\\
\begin{equation} \begin{split}
  (x+1)^8 ={} & x^8 + 8 x^7 + 28 x^6 + 56 x^5 + 70 x^4 \\
              & + 56 x^3 + 28 x^2 + 8 x + 1.
\end{split} \end{equation}
//

$$
  \eqalign{
       (x+1)^8 = {}& x^8 + 8 x^7 + 28 x^6 + 56 x^5 + 70 x^4 \cr
                   & + 56 x^3 + 28 x^2 + 8 x + 1.
  } \eqmark
$$

\sec Alignat

\\
\begin{alignat}{2}
  \nabla\cdot \mathbf  E &= \frac{\rho}{\varepsilon_0}, \qquad
& \nabla\times \mathbf E &= -\frac{\partial \mathbf B}{\partial t},\\
  \nabla\cdot \mathbf  B &= 0,
& \nabla\times \mathbf B &= \mu_0{\mathbf j}+\varepsilon_0\mu_0
                            \frac{\partial \mathbf E}{\partial t}.
\end{alignat}
//

$$
  \eqalign{
     \nabla\cdot {\bf E}     &= {\rho\over\varepsilon_0}, \qquad
     && \nabla\times {\bf E} &= -{\partial {\bf B}\over\partial t}, \eqm\cr
     \nabla\cdot {\bf B}     &= 0,
     && \nabla\times {\bf B} &= \mu_0{\bf j}+\varepsilon_0\mu_0
                                {\partial {\bf E}\over \partial t}. \eqm
  }
$$

\sec Flalign

\\
\begin{flalign*}
  \nabla\cdot \mathbf  E &= \frac{\rho}{\varepsilon_0},
& \nabla\times \mathbf E &= -\frac{\partial \mathbf B}{\partial t}.\\
  \nabla\cdot \mathbf  B &= 0,
& \nabla\times \mathbf B &= \mu_0{\mathbf j}+\varepsilon_0\mu_0
                              \frac{\partial \mathbf E}{\partial t}.
\end{flalign*}
//

$$
  \eqspace=10em
  \eqalign{
     \nabla\cdot {\bf E}     &= {\rho\over\varepsilon_0}, \qquad
     && \nabla\times {\bf E} &= -{\partial {\bf B}\over\partial t}, \cr
     \nabla\cdot {\bf B}     &= 0,
     && \nabla\times {\bf B} &= \mu_0{\bf j}+\varepsilon_0\mu_0
                                {\partial {\bf E}\over \partial t}.     
  }
$$

\sec Intertext

\\
\begin{align*}
  \cos 2\theta &= \cos^2 \theta + \sin^2 \theta \\
  \intertext{replace $\sin^2 \theta$ by $1 - \cos^2 \theta$}
  &= 2\cos^2 \theta - 1
\end{align*}
//

$$
  \eqalignno{
     \cos 2\theta &= \cos^2 \theta + \sin^2 \theta \cr
      \noalign{\hbox{replace $\sin^2 \theta$ by $1 - \cos^2 \theta$}}
                  &= 2\cos^2 \theta - 1
  }
$$

\sec Linear equations

\\
\begin{alignat}{5}
    x_1 & {} + {}& x_2    &{} + {}& 6x_3 &{} = {}& 170, \\
   3x_1 & {} - {}& 110x_2 &{} - {}& x_3   &{} = {}& 4,  \\
  14x_1 & {} + {}& 13x_2  &{} + {}& 10x_3 &{} = {}& 25.
\end{alignat}
//

$$
  \thistable{\tablinespace=0pt \tabiteml={${}}\tabitemr={{}$}
             \tabstrut={\lower1.5ex\vbox to3.5ex{}}}
  \table{3{rc}r}{
     x_1 &+&    x_2  &+&  6x_3  &=& 170, \eqm \cr
    3x_1 &-& 110x_2  &-&   x_3  &=& 4,   \eqm \cr
   14x_1 &+&  13x_2  &+& 10x_3  &=& 25.  \eqm
  }    
$$

\sec Matrix and Arrays

\\
\begin{equation*}
\setlength{\arraycolsep}{1em}
  \begin{array}{ccc}
    A   &   B & C \\
    AA  &  BB & CC \\
    AAA & BBB & CCC
  \end{array}
\end{equation*}
//

$$
  \matrix{
    A   &   B & C    \cr
    AA  &  BB & CC   \cr
    AAA & BBB & CCC
  }
$$

\\
\begin{equation*}
\setlength{\arraycolsep}{1em}
  \begin{array}{lcr}
    A   &   B & C \\
    AA  &  BB & CC \\
    AAA & BBB & CCC
  \end{array}
\end{equation*}
//

$$
  \thistable{\tabstrut{}\tabiteml={\kern.5em${}}\tabitemr={{}$\kern.5em}}
  \table{lcr}{
    A   &   B & C  \cr
    AA  &  BB & CC \cr
    AAA & BBB & CCC
  }
$$

\sec Pmatrix

\\
\begin{equation*}
  A = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}
\end{equation*}
//

$$
  \pmatrix {1\cr 2\cr 3}
$$

\sec Delarray package

\\
\begin{equation*}
  \begin{array}[b]({c}) 1 \\ 2 \\ 3 \end{array}
  \begin{array}[c]({c}) 1 \\ 2 \\ 3 \end{array}
  \begin{array}[t]({c}) 1 \\ 2 \\ 3 \end{array}
\end{equation*}
//

$$
  \def\mybox#1{\hbox{$\displaystyle{#1}$}}
  \raise3ex\mybox{\pmatrix {1\cr 2\cr 3}}
  \pmatrix {1\cr 2\cr 3}
  \lower3ex\mybox{\pmatrix {1\cr 2\cr 3}}
$$

\sec Cases

\\
\begin{equation*}
  |x| =
  \begin{cases}
     x, & \text{if $x \ge 0$;} \\
    -x, & \text{otherwise.}
  \end{cases}
\end{equation*}
//

$$
  |x| = \cases {  x & if $x \ge 0$; \cr
                 -x & otherwise }
$$

\\
\begin{equation*}
  f(x) =
  \begin{dcases}
    \int_0ˆx g(y)\,dy,    & \text{if $x \ge 0$;} \\
    \int_{-x}ˆ0 g(y)\,dy, & \text{otherwise.}
  \end{dcases}
\end{equation*}
//

$$
  \let\ds=\displaystyle
  f(x) = \cases { \ds \int_0^x g(y)\,dy,    & if $x \ge 0$; \cr \noalign{\medskip}
                  \ds \int_{-x}^0 g(y)\,dy, & otherwise. }
$$



\end