Contents
I
1 Initialization and test if pdfmanagement is active.
2 base package
3 Package options
4 Packages
4.1 a LastPagelabel,
5 Variables
6 Variants of 13 commands
7 Label and Reference commands
8 Setup label attributes
9 Commands to fill seq and prop
10 General tagging commands
11 Keys for tagpdfsetup
12 loading of engine/more dependent code
11
1 Commands

tagpdf — XTEX kernel code for PDF tagging®

Ulrike Fischer'

Released 2026-01-12

*This file describes v0.99x, last revised 2026-01-12.
TE-mail: fischer@troubleshooting-tex.de

11
11
12
13
13
15

16

18

18

mailto:fischer@troubleshooting-tex.de

I11

Description of log messages

2.1 \ShowTagging command
2.2 Messages in checks and commands L0
2.3 Messages from the ptagging code L.
2.4 Warning messages from the lua-code
2.5 Info messages from the lua-code
2.6 Debug mode messages and code L.
2.7 Messages e

Messages

3.1 Messages related to mec-chunks Lo
3.2 Messages related to structureso
3.3 Attributes.
3.4 Roles
3.5 Miscellaneous L

Retrieving data
PDF version check
User conditionals

Internal checks

7.1 checks for active tagging oL
7.2 Checks related to structures. L.
7.3 Checksrelated toroles.
7.4 Check related to me-chunks
7.5 Checks related to the state of MC on a page or in a split stream
7.6 Benchmarks

Setup commands

Commands related to mc-chunks
Commands related to structures
Debugging

Extension commands

5.1 Fakespace
5.2 Tagging of paragraphs
5.3 Header and footer
5.4 Link tagging L

Socket support
User commands and extensions of document commands

Setup and preamble commands

21
21
22
25
25
29

29
30
30

31
31
32
33
34
37
40

41
41
41
41
42

42
42
43
43
44

44
45

45

10
11
12

13

IV

VI

Commands for the mc-chunks
Commands for the structure
Socket support

Debugging

Commands to extend document commands

13.1 Document structure
13.2 Structure destinations
13.3 Fake space o . e
13.4 Parataggingo
13.5 Language support
13.6 Header and footer
13.7 Links e
13.8 Attaching css-files for derivation

Trees, pdfmanagement and finalization code

1.1 Check structure L
1.2 Catalog: MarkInfo and StructTreeRoot and OpenAction
1.3 Writing the IDtree
1.4 Writing structure elements oL oL
1.5 ParentTree e
1.6 Rolemap dictionary
1.7 Classmap dictionary o
1.8 Namespaces v v v it i e e e e
1.9 Finishing the structure 0oL
1.10 StructParents entry for Pageo,

Public Commands
Public keys

Marked content code — shared
3.1 Variables and counters

45
46
47
48

52
92
93
53
53
60
60
64
68

71

71
71
71
73
74
(0]
78
79
80
80
81

83
83
84

85
85
87
90

92

1 Marked content code — generic mode
1.1 Variables
1.2 Functions
1.3 Looking at MC marks in boxes
1.4 Keys.

VII

1 Marked content code — luamode code
1.1 Commands
1.2 Key definitions

VIII

1 Public Commands

2 Public keys
2.1 Keys for the structure commands . . .
2.2 Setupkeys

3 Variables
3.1 Variables used by the keys
3.2 Variables used by tagging code of basic elements

4 Commands
4.1 Initialization of the StructTreeRoot .
4.2 Adding the /IDkey
4.3 Filling in the tag info
4.4 Handlings kids
4.5 Output of the object
4.6 Commands for the parent-child checks

5 Keys

6 User commands

7 Attributes and attribute classes
7.1 Variables
7.2 Commands and keys

IX

1 Loading the lua

2 User commands to access data

3 Logging functions

92
92
93
96
103

105

105
106
111

114
114

115
115
117

117
120
121

121
121
123
123
124
129
133

137
145

154
155
155

159

159

163

164

4 Helper functions
4.1 Retrieve data functions
4.2 Functions to insert the pdf literals
5 Function for the real space chars
6 Function for the tagging
7 Parenttree
8 parent-child rules
9 Link annotations
X
1 Code related to roles and structure names
1.1 Variables
1.2 Namespaces.
1.3 Adding anew tag
1.3.1 pdf 1.7 and earlier
1.3.2 Thepdf20version.
1.4 Helper command to read the data from files
1.5 Reading the default data
1.6 Parent-child rules
1.6.1 Reading in the csv-files
1.6.2 Retrieving the parent-child rule
1.7 Key-val user interface
XI
1 Code for interword spaces
Index

166
166
169

171
175
180
182

185

186

186
186
189
190
192
193
195
197
198
199
201
207

210

210

214

The tagpdf main module
Part of the tagpdf package
Ulrike Fischer
Version 0.99x, released 2026-01-12

Part 1

\tag_suspend:n \tag_suspend:n {(label)}

\tag_resume:n \tag_resume:n {({label)}

\tag_stop:n \tag_stop:n {(label)} (deprecated)

\tag_start:n \tag_start:n {(label)} (deprecated)
We need commands to stop tagging in some places. They switches three local booleans
and also stop the counting of paragraphs. If they are nested an inner \tag_resume:n will
not restart tagging. (label) is only used in debugging messages to allow to follow the
nesting and to identify which code is disabling the tagging. The label is not expanded
so can be a single token, e.g. \caption. \tag_suspend:n and \tag_resume:n are the
13-layer variants of \SuspendTagging and \ResumeTagging and will be provided by the
kernel in the next release.

\tag_stop: deprecated These are variants of the above commands without the debuging level. They
\tag_start: are now deprecated and it is recommended to use the kernel command \SuspendTagging,

\tagstop \ResumeTagging, \tag_suspend:n and \tag_resume:n instead.
\tagstart

activate/spaces (setup key) activate/spaces activates the additional parsing needed for interword spaces. It re-
places the deprecated key interwordspace.

activate/mc (setup key) A key to activate the marked content code. It should be used only in special cases, e.g.
rate-mc (deprecated) (setup key) for debugging.

activate/tree (setup key) This key activates the code that finalize the various trees. It should be used only in
-e-tree (deprecated) (setup key) special cases, e.g. for debugging.

activate/struct (setup key) This key activates the code for structures. It should be used only in special cases, e.g.
-struct (deprecated) (setup key) for debugging.

activate/all (setup key) This is a meta key for the three previous keys and is normally what should be used to
1te-all (deprecated) (setup key) activate tagging.

activate/struct-dest (setup key) The key allows to suppress the creation of structure destinations

t-dest (deprecated) (setup key)
debug/log (setup key) The debug/log key takes currently the values none, v, vv, vvv, all. More details are

in tagpdf-checks.

activate/tagunmarked (setup key) This key allows to set if (in luamode) unmarked text should be marked up as artifact.
marked (deprecated) (setup key) The initial value is true.

activate/softhyphen (setup key) This key allows to activates automatic handling of hyphens inserted by hyphenation. It
only is used in luamode and replaces hyphens by U+00AD if the font supports this.

page/tabsorder (setup key) This sets the tabsorder on a page. The values are row, column, structure (default)
»sorder (deprecated) (setup key) or none. Currently this is set more or less globally. More finer control can be added if
needed.

tagstruct
tagstructobj
tagabspage
tagmcabs
tagmcid

These are attributes used by the label/ref system.

1 Initialization and test if pdfmanagement is active.

(ee=tag)
(xpackage)

s \ProvidesExplPackage {tagpdf} {2026-01-12} {0.99x}

S

31

32

33

{ LaTeX kernel code for PDF tagging }

\IfPDFManagementActiveF
{
\PackageError{tagpdf}

{
PDF~resource~management~is~no~active!\MessageBreak
tagpdf~will~no~work.

}

{

Activate~it~with \MessageBreak
\string\DocumentMetadata{<options>}\MessageBreak
before~\string\documentclass

}

}
(/package)

<*debug>
\ProvidesExplPackage {tagpdf-debug} {2026-01-12} {0.99x}
{ debug code for tagpdf }

2> \@ifpackageloaded{tagpdf}{}{\PackageWarning{tagpdf-debug}{tagpdf~not~loaded, ~quitting}\endinput}

< /debug> We map the internal module name “tag” to “tagpdf” in messages.

s (xpackage)

\prop_gput:Nnn \g_msg_module_name_prop { tag }{ tagpdf }
(/package)

Debug mode has its special mapping:
(xdebug)
\prop_gput:Nnn \g_msg_module_type_prop { tag / debug}t {}

s \prop_gput:Nnn \g_msg_module_name_prop { tag / debug }{tagpdf~DEBUG}

(/debug)
2 base package

To avoid to have to test everywhere if tagpdf has been loaded and is active, we define a
base package with dummy functions

(*base)
\ProvidesExplPackage {tagpdf-base} {2026-01-12} {0.99x}
{part of tagpdf - provide base, no-op versions of the user commands }

(/base)

\1__tag_tmpa_tl
\1__tag_tmpb_tl
\1__tag_tmpc_tl

1 tag tmp unused t1 \1__tag Ref tmpa tl
\1l__tag_get_tmpc_tl
\1__tag_get_parent_tmpa_tl
\1__tag_get_parent_tmpb_tl
\1__tag_get_parent_tmpc_tl
\1__tag_get_child_tmpa_tl
\1__tag_get_child_tmpb_tl
\1__tag_get_child_tmpc_tl
\1__tag_tmpa_str
\1__tag_tmpa_prop

\l +tagc tmpa seq

Q2

40

4

56

57

a

9

3 Package options

The boolean is kept for now for compatibility, can go in 2026.

(*package)

s \bool_new:N\g__tag_mode_lua_bool

\sys_if_engine_luatex:T {\bool_gset_true:N \g__tag_mode_lua_bool}
\DeclareOption {luamode} { }

\DeclareOption {genericmode}{ }

\ProcessOptions

4 Packages

To be on the safe side for now, load also the base definitions

\RequirePackage{tagpdf-base}
(/package)

The no-op version should behave a near enough to the real code as possible, so we define
a command which a special in the relevant backends:

> (xbase)

\cs_new_protected:Npn __tag_whatsits: {}
\AddToHook{begindocument}

{
\str_case:onF { \c_sys_backend_str }
{
{ luatex } { \cs_set_protected:Npn __tag_whatsits: {} }
{ dvisvgm } { \cs_set_protected:Npn __tag_whatsits: {} }
}
{

\cs_set_protected:Npn __tag_whatsits: {\tex_special:D {} }
}
}

(/base)

4.1 a LastPage label

With LaTeX 2025-06-01 we no longer need a special version as the label is now written
directly. To avoid problems with the xr package, we undefine the label command before
reading the aux-file.

(*package)
\AddToHook{begindocument/before}{\cs_undefine:N\r__tagtag@LastPage}

\AddToHook{enddocument/afterlastpage}
{\property_record:nn{@tag@lLastPage}{abspage,tagmcabs,tagstruct}}

5 Variables

A few temporary variables

61
62
63
64
65
66
67

68

\c__tag_property_mc_clist

\c_ tag property struct clist
80

81

\1__tag_loglevel_int

\g__tag_active_space_bool
\g__tag_active_mc_bool
\g__tag_active_tree_bool
\g__tag_active_struct_bool
\g__tag active struct dest bool

83
84

85

8

88

5 \seq_new:N

» \int_new:N

\tl_new:N \1__tag_tmpa_tl

\tl_new:N \1__tag_tmpb_tl

\tl_new:N \1__tag_tmpc_tl

\tl_new:N \1__tag_tmp_unused_tl
\tl_new:N \1__tag_Ref_tmpa_tl
\tl_new:N \1__tag_get_tmpc_tl
\tl_new:N \1__tag_get_parent_tmpa_tl
\tl_new:N \1__tag_get_parent_tmpb_tl
\tl_new:N \1__tag_get_parent_tmpc_tl
\tl_new:N \1__tag_get_child_tmpa_tl
\tl_new:N \1__tag_get_child_tmpb_tl
\tl_new:N \1__tag_get_child_tmpc_t1l
\str_new:N \1l__tag_tmpa_str
\prop_new:N \1__tag_tmpa_prop

\seq_new:N \1__tag_tmpa_seq
\1__tag_tmpb_seq
\1__tag_tmpa_clist
\1__tag_tmpa_int
\1__tag_tmpa_box
\1__tag_tmpb_box

\clist_new:N

\box_new:N
\box_new:N

(End of definition for \1__tag_tmpa_t1 and others.)

Attribute lists for the label command. We have a list for me-related labels, and one for
structures.

\clist_const:Nn \c__tag_property_mc_clist {tagabspage,tagmcabs,tagmcid}
\clist_const:Nn \c__tag_property_struct_clist {tagstruct,tagstructobj}

(End of definition for \c__tag_property_mc_clist and \c__tag_property_struct_clist.)

This integer hold the log-level and so allows to control the messages. TODO: a list which
log-level shows what is needed. The current behaviour is quite ad-hoc.

\int_new:N \1__tag_loglevel_int
(End of definition for \1__tag_loglevel_int.)

These booleans should help to control the global behaviour of tagpdf. Ideally it should
more or less do nothing if all are false. The space-boolean controls the interword space
code, the mc-boolean activates \tag_mc_begin:n, the tree-boolean activates writing the
finish code and the pdfmanagement related commands, the struct-boolean activates the
storing of the structure data. In a normal document all should be active, the split is only
there for debugging purpose. Structure destination will be activated automatically, but
with the boolean struct-dest-boolean one can suppress them. Also we assume currently
that they are set only at begin document. But if some control passing over groups are
needed they could be perhaps used in a document too. TODO: check if they are used
everywhere as needed and as wanted.

\bool_new:N \g__tag_active_space_bool

\bool_new:N \g__tag_active_mc_bool

\bool_new:N \g__tag_active_tree_bool

\bool_new:N \g__tag_active_struct_bool
\bool_new:N \g__tag_active_struct_dest_bool
\bool_gset_true:N \g__tag_active_struct_dest_bool

10

\1__tag_active_mc_bool
\1__tag_active_struct_bool
\1__tag_active_socket_bool

\g__tag_tagunmarked_bool

9%

\g__tag_softhyphen_bool

95

\g__tag_unique_cnt_int

96

97
98
99
100

101

103
104
105
106

10

(End of definition for \g__tag_active_space_bool and others.)

These booleans should help to control the local behaviour of tagpdf. In some cases it
could e.g. be necessary to stop tagging completely. As local booleans they respect groups.
TODO: check if they are used everywhere as needed and as wanted.

\bool_new:N \1__tag_active_mc_bool
\bool_set_true:N \1__tag_active_mc_bool
\bool_new:N \1__tag_active_struct_bool

> \bool_set_true:N \1__tag_active_struct_bool

\bool_new:N \1__tag_active_socket_bool

(End of definition for \1__tag_active_mc_bool, \1__tag_active_struct_bool, and \1__tag_active_-
socket_bool.)

This boolean controls if the code should try to automatically tag parts not in mc-chunk.
It is currently only used in luamode. It would be possible to used it in generic mode, but
this would create quite a lot empty artifact mc-chunks.

\bool_new:N \g__tag_tagunmarked_bool
(End of definition for \g__tag_tagunmarked_bool.)

This boolean controls if the code should try to automatically handle hyphens from hy-
phenation. It is currently only used in luamode.

\bool_new:N \g__tag_softhyphen_bool
(End of definition for \g__tag_softhyphen_bool.)

If tagpdf has to create unique names (e.g. for object names when embedding files) it can
use this integer to get an unique name. At every use it should be increased

\int_new:N \g__tag_unique_cnt_int

(End of definition for \g__tag_unique_cnt_int.)

6 Variants of 13 commands

\prg_generate_conditional_variant:Nnn \pdf_object_if_exist:n {e}{T,F,TF}
\cs_generate_variant:Nn \pdf_object_ref:n {e}

\cs_generate_variant:Nn \pdfannot_dict_put:nnn {nne}
\cs_generate_variant:Nn \pdffile_embed_stream:nnn {nee,oee}
\cs_generate_variant:Nn \prop_gput:Nnn {Nee,Nen} %#** unneeded

> \cs_generate_variant:Nn \prop_put:Nnn {Nee} %** unneeded

\cs_generate_variant:Nn \prop_item:Nn {No,Ne} %** unneeded
\cs_generate_variant:Nn \seq_set_split:Nnn{Nno}
\cs_generate_variant:Nn \str_set_convert:Nnnn {Nonn, Noon, Nnon }
\cs_generate_variant:Nn \clist_map_inline:nn {on}
\cs_generate_variant:Nn \pdffile_embed_file:nnn {eee}

7 Label and Reference commands

The code uses mostly the kernel properties but need a few local variants.

11

__tag_property_record:nn

108
109

110

__tag property ref lastpage:nn

119

120

tagstruct
tagstructobj
tagabspage
tagmcabs
tagmcid

The command to record a property while preserving the spaces similar to the standard
\label.

\cs_new_protected:Npn __tag_property_record:nn #1#2
{
\@bsphack
\property_record:nn{#1}{#2}
\@esphack
}

And a few variants

s \cs_generate_variant:Nn \property_ref:nnn {enn}

\cs_generate_variant:Nn \property_ref:nn {en}

7 \cs_generate_variant:Nn __tag_property_record:nn {en,eo}

(End of definition for __tag_property_record:nn.)

A command to retrieve the lastpage label, this will be adapted when there is a proper,
kernel lastpage label.

\cs_new:Npn __tag_property_ref_lastpage:nn #1 #2

{
\property_ref :nnn {@tag@LastPagel}{#1}{#2}
}

(End of definition for __tag_property_ref_lastpage:nn.)

8 Setup label attributes

This are attributes used by the label/ref system. With structures we store the structure
number tagstruct and the object reference tagstructobj. The second is needed to be
able to reference a structure which hasn’t been created yet. The alternative would be to
create the object in such cases, but then we would have to check the object existence all
the time.

With mec-chunks we store the absolute page number tagabspage, the absolute id
tagmcabc, and the id on the page tagmcid.

> \property_new:nnnn

{ tagstruct } { now }
{1} { \int_use:N \c@g__tag_struct_abs_int }
\property_new:nnnn { tagstructobj } { now } {}

\pdf_object_ref_indexed:nn { __tag/struct } { \c@g__tag_struct_abs_int }
}
\property_new:nnnn
{ tagabspage } { shipout }
{0} { \int_use:N \g_shipout_readonly_int }

> \property_new:nnnn { tagmcabs } { now }

{0} { \int_use:N \c@g__tag_MCID_abs_int }

12

135 \flag_new:n { __tag/mcid }
135 \property_new:nnnn {tagmcid } { shipout }
137 {0} { \flag_height:n { __tag/mcid } }

(End of definition for tagstruct and others. These functions are documented on page 8.)

9 Commands to fill seq and prop

With most engines these are simply copies of the expl3 commands, but luatex will over-
write them, to store the data also in lua tables.

__tag_prop_new:N
__tag_prop_new_linked:N

__tag_seq_new:Nw» \cs_set_eq:NN __tag_prop_new:N \prop_new:N
__tag_prop_gput : Nnn® \cs_set_eq:NN __tag_prop_new_linked:N \prop_new_linked:N
__tag_seq_gput_right :Nd" \cs_set_eq:NN __tag_seq_new:N \seq_new:N
__tag_seq_item:ch® \cs_set_eq:NN __tag_prop_gput:Nnn \prop_gput :Nnn

\cs_set_eq:NN __tag_seq_gput_right:Nn \seq_gput_right:Nn

. 143
t tem:
__tag_prop_item:cn \cs_set_eq:NN __tag_seq_gput_left:Nn \seq_gput_left:Nn

1
__tag_seq_show:N44
145

\cs_set_eq:NN __tag_seq_item:cn \seq_item:cn
__tag_prop_show:N% \cs_set_eq:NN __tag_prop_item:cn \prop_item:cn
1u7 \cs_set_eq:NN __tag_seq_show:N \seq_show:N
us \cs_set_eq:NN __tag_prop_show:N \prop_show:N
1o % cnx temporary needed for latex-lab-graphic code
150 \cs_generate_variant:Nn __tag_prop_gput:Nnn { Nen, Nee, Nne, Nno, cnn, cen, cne, cno, cnx}

151 \cs_generate_variant:Nn __tag_seq_gput_right:Nn { Ne , No, cn, ce }
152 \cs_generate_variant:Nn __tag_seq_gput_left:Nn { ce }

153 \cs_generate_variant:Nn __tag_prop_new:N { ¢
152 \cs_generate_variant:Nn __tag_seq_new:N {c
155 \cs_generate_variant:Nn __tag_seq_show:N { ¢
156 \cs_generate_variant:Nn __tag_prop_show:N { ¢
157 (/package)

e o

(End of definition for __tag_prop_new:N and others.)

10 General tagging commands

\tag_suspend:n We need commands to stop tagging in some places. They switch local booleans and also
\tag_resume:n stop the counting of paragraphs. The commands keep track of the nesting with a local
\tag_stop: counter. Tagging only is only restarted at the outer level, if the current level is 1. The
\tag_start: commands with argument allow to give a label. This is only used in debugging messages
\tag_stop:n to allow to follow the nesting. The label is not expand so can e.g. be a single command
\tag_start:n token.

When stop/start pairs are nested we do not want the inner start command to restart
tagging. To control this we use a local int: The stop command will increase it. The
starting will decrease it and only restart tagging, if it is zero. This will replace the label
version.

155 (*package | debug)
\1__tag_tag_stop_in# (package) \int_new:N \1__tag tag stop_int

13

160 \cs_set_protected:Npn \tag_stop:

161 {

> (debug) \msg_note:nne {tag / debug }{tag-suspend}{ \int_use:N \1__tag _tag_stop_int }
163 \int_incr:N \1__tag_tag_stop_int

164 \bool_set_false:N \1__tag_active_struct_bool

1

o

165 \bool_set_false:N \1__tag_active_mc_bool

166 \bool_set_false:N \1__tag_active_socket_bool
167 __tag_stop_para_ints:

168 }

160 \cs_set_protected:Npn \tag_start:

170 {

171 \int_if_zero:nF { \1__tag_tag_stop_int } { \int_decr:N \1__tag_tag_stop_int }
172 \int_if_zero:nT { \1__tag_tag_stop_int }

173 {

174 \bool_set_true:N \1__tag_active_struct_bool

175 \bool_set_true:N \1__tag_active_mc_bool

176 \bool_set_true:N \1__tag_active_socket_bool

177 __tag_start_para_ints:

178 3

179 (debug) \msg_note:nne {tag / debug }tag-resume}{ \int_use:N \1__tag_tag_stop_int }
180 }

151 \cs_set_eq:NN\tagstop\tag_stop:

12 \cs_set_eq:NN\tagstart\tag_start:

13 \cs_set_protected:Npn \tag_suspend:n #1

184 {

155 (debug) \msg_note:nnee {tag / debug }{tag-suspend}

156 (debug) { \int_use:N \1__tag_tag_stop_int }{\exp_not:n{#1}}
187 \int_incr:N \1__tag_tag_stop_int

188 \bool_set_false:N \1__tag_active_struct_bool

189 \bool_set_false:N \1__tag_active_mc_bool

190 \bool_set_false:N \1__tag_active_socket_bool

101 __tag_stop_para_ints:

192 }

103 \cs_set_eq:NN \tag_stop:n \tag_suspend:n
12 \cs_set_protected:Npn \tag_resume:n #1

05 o

19 \int_if_zero:nF { \1__tag_tag_stop_int } { \int_decr:N \1__tag_tag_stop_int }
107 \int_if_zero:nT { \1__tag_tag_stop_int }

198 {

199 \bool_set_true:N \1__tag_active_struct_bool

200 \bool_set_true:N \1__tag_active_mc_bool

201 \bool_set_true:N \1__tag_active_socket_bool

202 __tag_start_para_ints:

203 }

201 {debug) \msg_note:nnee {tag / debug }{tag-resume}

205 {debug) { \int_use:N \1__tag tag_stop_int }{\exp_not:n{#1}}
206 }

207 \cs_set_eq:NN \tag_start:n \tag_resume:n
206 {/package | debug)

209 (*base)

o \cs_new_protected:Npn \tag_stop:{}

1 \cs_new_protected:Npn \tag_start:{}

212 \cs_new_protected:Npn \tagstop{}

>

2

5

14

213 \cs_new_protected:Npn \tagstart{}
212 \cs_new_protected:Npn \tag_stop:n #1 {}
215 \cs_new_protected:Npn \tag_start:n #1 {}

Until the commands are provided by the kernel we provide them here too
216 \cs_set_eq:NN \tag_suspend:n \tag_stop:n
217 \cs_set_eq:NN \tag_resume:n \tag_start:n

218 (/base)

(End of definition for \tag_suspend:n and others. These functions are documented on page 7.)

11 Keys for tagpdfsetup
TODO: the log-levels must be sorted

activate/mc (setup key) Keys to (globally) activate tagging. activate/spaces activates the additional parsing
needed for interword spaces. It is defined in tagpdf-space. activate/struct-dest allows
to activate or suppress structure destinations.

activate/tree (setup key

(xpackage)

(

(
activate/struct (setup key
(
ctivate/struct-dest (

)

)

activate/all (setup key)
setup key)

20 \keys_define:nn { __tag / setup }

221 {

222 activate/mc .bool_gset:N = \g__tag_active_mc_bool,

203 activate/tree .bool_gset:N = \g__tag_active_tree_bool,

224 activate/struct .bool_gset:N = \g__tag_active_struct_bool,

25 activate/all .meta:n =

226 {activate/mc={#1},activate/tree={#1},activate/struct={#11}},

227 activate/all .default:n = true,

228 activate/struct-dest .bool_gset:N = \g__tag_active_struct_dest_bool,

old, deprecated names

229 activate-mc .bool_gset:N = \g__tag_active_mc_bool,

230 activate-tree .bool_gset:N = \g__tag_active_tree_bool,

231 activate-struct .bool_gset:N = \g__tag_active_struct_bool,

232 activate-all .meta:n =

233 {activate/mc={#1},activate/tree={#1},activate/struct={#11}},
234 activate-all .default:n = true,

235 no-struct-dest .bool_gset_inverse:N = \g__tag_active_struct_dest_bool,
debug/show (setup key) Subkeys/values are defined in various other places.

236 debug/show .choice:,
debug/log (setup key) The log takes currently the values none, v, vv, vvv, all. The description of the log

debug/uncompress (setup key) levels is in tagpdf-checks.
log (deprecated) (setup key)

mpress (deprecated) (setup key) debug/log .choice:,
238 debug/log / none .code:n = {\int_set:Nn \1__tag_loglevel_int { 0 }},
239 debug/log / v .code:n =
240 {

15

241 \int_set:Nn \1__tag_loglevel_int { 1 }
242 \cs_set_protected:Nn __tag_check_typeout_v:n { \iow_term:e {##1} }

243 },

244 debug/log / vv .code:n = {\int_set:Nn \1__tag_loglevel_int { 2 }},
245 debug/log / vvv .code:n = {\int_set:Nn \1__tag_loglevel_int { 3 }},
246 debug/log / all .code:n = {\int_set:Nn \1__tag_loglevel_int { 10 }},
247 debug/uncompress .code:n = { \pdf_uncompress: 1},

deprecated but still needed as the documentmetadata key argument uses it.

248 log .meta:n = {debug/log={#1}},
249 uncompress .code:n = { \pdf_uncompress: 1},

activate/tagunmarked (setup key) This key allows to set if (in luamode) unmarked text should be marked up as artifact.
marked (deprecated) (setup key) The initial value is true.

250 activate/tagunmarked .bool_gset:N = \g__tag_tagunmarked_bool,
activate/tagunmarked .initial:n = true,

N

deprecated name
252 tagunmarked .bool_gset:N = \g__tag_tagunmarked_bool,
activate/softhyphen (setup key) This key activates (in luamode) the handling of soft hyphens.

253 activate/softhyphen .bool_gset:N = \g__tag_softhyphen_bool,
254 activate/softhyphen .initial:n = true,

page/tabsorder (setup key) This sets the tabsorder on a page. The values are row, column, structure (default)
>sorder (deprecated) (setup key) or none. Currently this is set more or less globally. More finer control can be added if

needed.
255 page/tabsorder .choice:,
256 page/tabsorder / row .code:n =
257 \pdfmanagement_add:nnn { Page } {Tabs}{/R},
258 page/tabsorder / column .code:n =
259 \pdfmanagement_add:nnn { Page } {Tabs}{/C},
260 page/tabsorder / structure .code:n =
261 \pdfmanagement_add:nnn { Page } {Tabs}{/S},
262 page/tabsorder / none .code:n =
263 \pdfmanagement_remove:nn {Page} {Tabs},
264 page/tabsorder .initial:n = structure,

deprecated name
265 tabsorder .meta:n = {page/tabsorder={#1}},

266 }

12 loading of engine/more dependent code

67 \sys_if_engine_luatex:T

268 {

16

260 \file_input:n {tagpdf-luatex.def}
270 }
o1 {/package)

272 (*mcloading)

o713 \bool_if:NTF \g__tag_mode_lua_bool

274 {

275 \RequirePackage {tagpdf-mc-code-lua}
276 }

277 {

278 \RequirePackage {tagpdf-mc-code-genericl} %
279 }

250 (/mcloading)

281 (*debug)

222 \bool_if:NTF \g__tag_mode_lua_bool

283 {

284 \RequirePackage {tagpdf-debug-lual}

}
286 {
287 \RequirePackage {tagpdf-debug-generic} %
288 }
289 (/debug)

The tagpdf-checks module
Messages and check code
Part of the tagpdf package
Ulrike Fischer
Version 0.99x, released 2026-01-12

17

Part 11

1 Commands

\tag_if_active_p: * This command tests if tagging is active. It only gives true if all tagging has been activated,
\tag_if_active:TF x gp if tagging hasn’t been stopped locally.

\tag_get:n x \tag_get:n {(keyword)}

This is a generic command to retrieve data for the current structure or mc-chunk. Cur-
rently the only sensible values for the argument (keyword) are mc_tag, struct_tag,
struct_id and struct_num.

\tag_if_box_tagged_p:N * \tag_if_box_tagged:NTF (box) {(true code)} {(false code)}
\tag_if_box_tagged:NTF %

This tests if a box contains tagging commands. It relies currently on that the code,
that saved the box, correctly sets the command \1_tag_box_\int_use:N #1_tl1 to a
positive value. The LaTeX commands will do that automatically at some time but it is
in the responsibility of the user to ensure that when using low-level code. If the internal
command doesn’t exist the box is assumed to be untagged.

2 Description of log messages

2.1 \ShowTagging command

Argument type note
\ShowTaggingmec-data = num log+term lua-only
\ShowTaggingmec-current log+term
\ShowTaggingstruck-stack= [log|show] log or term+stop
\ShowTaggingdebug/structures = num log+termn debug mode only

2.2 Messages in checks and commands

command message action
\@@_check_structure_has_tag:n struct-missing-tag error
\@@_check_structure_tag:N role-unknown-tag warning
\@@_check_info_closing_struct:n struct-show-closing info
\@@_check_no_open_struct: struct-faulty-nesting error
\@@_check_struct_used:n struct-used-twice warning
\@@_check_add_tag_role:nn role-missing, role-tag, role-unknown warning, info (>0), warning
\@@_check_mc_if_nested:, mc-nested warning
\@@_check_mc_if_open: mc-not-open warning
\@@_check_mc_pushed_popped:nn mc-pushed, mc-popped info (2), info+seq_log (>2)
\@@_check_mc_tag:N mc-tag-missing, role-unknown-tag error (missing), warning (unknown).
\@@_check_mc_used:n mc-used-twice warning
\@@_check_show_MCID_by_page:
\tag_mc_use:n mc-label-unknown, mc-used-twice warning
\role_add_tag:nn new-tag info (>0)
sys-no-interwordspace warning
\@@_struct_write_obj:n struct-no-objnum error
\@@_struct_write_obj:n struct-orphan warning
\tag_struct_begin:n struct-faulty-nesting error
\@@_struct_insert_annot:nn struct-faulty-nesting error
tag_struct_use:n struct-label-unknown warning
attribute-class, attribute attr-unknown error
\@@_tree_fill_parenttree: tree-mcid-index-wrong warning TODO: should trigger a standard rerun m
in enddocument/info-hook para-hook-count-wrong error (warning?)

18

2.3 Messages from the ptagging code

A few messages are issued in generic mode from the code which reinserts missing
TMB/TME. This is currently done if log-level is larger than zero. TODO: reconsider
log-level and messages when this code settles down.

2.4 Warning messages from the lua-code

The messages are triggered if the log-level is at least equal to the number.
message log-level remark
WARN TAG-NOT-TAGGED: 1
WARN TAG-OPEN-MC: 1
WARN SHIPOUT-MC-OPEN: 1
WARN SHIPOUT-UPS: 0 shouldn’t happen
0
2

WARN TEX-MC-INSERT-MISSING: shouldn’t happen
WARN TEX-MC-INSERT-NO-KIDS: e.g. from empty hbox

2.5 Info messages from the lua-code

The messages are triggered if the log-level is at least equal to the number. TAG messages
are from the traversing function, TEX from code used in the tagpdf-mc module. PARENTREE
is the code building the parenttree.

message log-level remark
INFO SHIPOUT-INSERT-LAST-EMC 3 finish of shipout code
INFO SPACE-FUNCTION-FONT 3 interwordspace code
INFO TAG-ABSPAGE 3
INFO TAG-ARGS 4
INFO TAG-ENDHEAD 4
INFO TAG-ENDHEAD 4
INFO TAG-HEAD 3
INFO TAG-INSERT-ARTIFACT 3
INFO TAG-INSERT-BDC 3
INFO TAG-INSERT-EMC 3
INFO TAG-INSERT-TAG 3
4
4
4
3
4
3
3
2
4
4

INFO TAG-KERN-SUBTYPE

INFO TAG-MATH-SUBTYPE

INFO TAG-MC-COMPARE

INFO TAG-MC-INTO-PAGE

INFO TAG-NEW-MC-NODE

INFO TAG-NODE

INFO TAG-NO-HEAD

INFO TAG-NOT-TAGGED

INFO TAG-QUITTING-BOX

INFO TAG-STORE-MC-KID

INFO TAG-TRAVERSING-BOX 3

INFO TAG-USE-ACTUALTEXT 3

INFO TAG-USE-ALT 3
3
3

replaced by artifact

INFO TAG-USE-RAW
INFO TEX-MC-INSERT-KID

19

mc-nested
mc-tag-missing
mc-label-unknown
mc-used-twice
mc-not-open
mc-pushed
mc-popped
mc-current

struct-unknown
struct-no-objnum
struct-orphan
struct-faulty-nesting
struct-missing-tag
struct-used-twice
struct-label-unknown
struct-show-closing

tree-struct-still-open

tree-statistic

message log-level remark
INFO TEX-MC-INSERT-KID-TEST 4
INFO TEX-MC-INTO-STRUCT 3
INFO TEX-STORE-MC-DATA 3
INFO TEX-STORE-MC-KID 3
INFO PARENTTREE-CHUNKS 3
3
3
3
4

INFO PARENTTREE-NO-DATA

INFO PARENTTREE-NUM

INFO PARENTTREE-NUMENTRY

INFO PARENTTREE-STRUCT-0BJREF

2.6 Debug mode messages and code

If the package tagpdf-debug is loaded a number of commands are redefined and en-
hanced with additional commands which can be used to output debug messages or
collect statistics. The commands are present but do nothing if the log-level is zero.

command name action remark
\tag_mc_begin:n mec-begin-insert msg
mc-begin-ignore msg if inactive

2.7 Messages

Various messages related to mec-chunks. TODO document their meaning.

Various messages related to structure. Check the definition in the code for their meaning
and the arguments they take.

Message issued at the end of the compilation if there are (beside Root) other open struc-
tures on the stack.

Message issued at the end of the compilation showing the number of objects to write

20

show-struct These two messages are used in debug mode to show the current structures in the log
show-kids and terminal.

attr-unknown Message if an attribute i sunknown.

role-missing Messages related to role mapping.
role-unknown

role-unknown-tag
role-unknown-NS
role-tag

new-tag
role-parent-child-result
role-remapping

tree-mcid-index-wrong Used in the tree code, typically indicates the document must be rerun.

sys-no-interwordspace Message if an engine doesn’t support inter word spaces

para-hook-count-wrong Message if the number of begin paragraph and end paragraph differ. This normally means
faulty structure.

(ee=tag)
(xheader)
s \ProvidesExplPackage {tagpdf-checks-code} {2026-01-12} {0.99x}

{part of tagpdf - code related to checks, conditionals, debugging and messages}
(/header)

3 Messages

3.1 Messages related to mc-chunks

mc-nested This message is issue is a mc is opened before the previous has been closed. This is
not relevant for luamode, as the attributes don’t care about this. It is used in the
\@@_check_mc_if_nested: test.

o

(xpackage)
\msg_new:nnn { tag } {mc-nested} { nested-marked~content~found~-~mcid~#1 }

~

(End of definition for mc-nested. This function is documented on page 20.)
mc-tag-missing If the tag is missing
¢ \msg_new:nnn { tag } {mc-tag-missing} { MC-tag-missing;~#1l~used~instead~-~mcid~#2 }

(End of definition for mc-tag-missing. This function is documented on page 20.)

21

mc-label-unknown

mc-used-twice

mc-not-open

mc-pushed
mc-popped
14

15

mc-current

struct-unknown

struct-no-objnum

24

If the label of a mc that is used in another place is not known (yet) or has been undefined
as the mc was already used.

\msg_new:nnn { tag } {mc-label-unknown}
{ label~#1~unknown~or~has~been~already~used.\\
Either~rerun~or~remove~one~of~the~uses. }

(End of definition for mc-label-unknown. This function is documented on page 20.)

An mc-chunk can be inserted only in one structure. This indicates wrong coding and so
should at least give a warning.

\msg_new:nnn { tag } {mc-used-twice} { mc~#1l~has~been~already~used }
(End of definition for mc-used-twice. This function is documented on page 20.)
This is issued if a \tag_mc_end: is issued wrongly, wrong coding.
\msg_new:nnn { tag } {mc-not-open} { there~is~no~mc~to~end~at~#1 }
(End of definition for mc-not-open. This function is documented on page 20.)
Informational messages about mc-pushing.

\msg_new:nnn { tag } {mc-pushed} { #1~has~been~pushed~to~the~mc~stack}
\msg_new:nnn { tag } {mc-popped} { #1l~has~been~removed~from~the~mc~stack }

(End of definition for mc-pushed and mc-popped. These functions are documented on page 20.)
Informational messages about current mc state.

\msg_new:nnn { tag } {mc-current}
{ current~MC:~
\bool_if:NTF\g__tag_in_mc_bool
{abscnt=__tag_get_mc_abs_cnt:,~tag=\g__tag_mc_key_tag_tl}
{no~MC~open, ~current~abscnt=__tag_get_mc_abs_cnt:"}

}

(End of definition for mc-current. This function is documented on page 20.)

3.2 Messages related to structures

if for example a parent key value points to structure that doesn’t exist (yet)

\msg_new:nnn { tag } {struct-unknown}
{ structure~with~number~#1~doesn't~exist\\ #2 }

(End of definition for struct-unknown. This function is documented on page 20.)
Should not happen ...
\msg_new:nnn { tag } {struct-no-objnum} { objnum~missing~for~structure~#1 }

(End of definition for struct-no-objnum. This function is documented on page 20.)

22

struct-orphan

struct-faulty-nesting

struct-missing-tag

o

struct-used-twice

struct-label-unknown

struct-show-closing

P

41

struct-Ref-unknown

This indicates that there is a structure which has kids but no parent. This can happen
if a structure is stashed but then not used.

\msg_new:nnn { tag } {struct-orphan}
{
Structure~#1~has~#2~kids~but~no~parent.\\
It~is~turned~into~an~artifact.\\
Did~you~stashed~a~structure~and~then~didn't~use~it?
}

(End of definition for struct-orphan. This function is documented on page 20.)

This indicates that there is somewhere one \tag_struct_end: too much. This should
be normally an error.

\msg_new:nnn { tag }
{struct-faulty-nesting}
{ there~is~no~open~structure~on~the~stack }

(End of definition for struct-faulty-nesting. This function is documented on page 20.)
A structure must have a tag.
\msg_new:nnn { tag } {struct-missing-tag} { a~structure~must~have~a~tag! }

(End of definition for struct-missing-tag. This function is documented on page 20.)

\msg_new:nnn { tag } {struct-used-twice}
{ structure~with~label~#1~has~already~been~used}

(End of definition for struct-used-twice. This function is documented on page 20.)
label is unknown, typically needs a rerun.

\msg_new:nnn { tag } {struct-label-unknown}
{ structure~with~label~#1~is~unknown~rerun}

(End of definition for struct-label-unknown. This function is documented on page 20.)
Informational message shown if log-mode is high enough

\msg_new:nnn { tag } {struct-show-closing}
{ closing~structure~#1~tagged~\use:e{\prop_item:cn{g__tag_struct_#1_prop}{S}} }

(End of definition for struct-show-closing. This function is documented on page 20.)

This message is issued at the end, when the Ref keys are updated. TODO: in debug
mode it should report more info about the structure.

\msg_new:nnn { tag } {struct-Ref-unknown}
{

#1~has~no~related~structure.\\
/Ref~not~updated.

23

(End of definition for struct-Ref-unknown. This function is documented on page 77.)
tree-struct-still-open Message issued at the end if there are beside Root other open structures on the stack.

27 \msg_new:nnn { tag } {tree-struct-still-open}

48 {

49 There~are~still~open~structures~on~the~stack!\\

50 The~stack~contains~\seq_use:Nn\g__tag_struct_tag_stack_seq{,}.\\
51 The~structures~are~automatically~closed,\\

52 but~their~nesting~can~be~wrong.

53 }

(End of definition for tree-struct-still-open. This function is documented on page 20.)
tree-statistic Message issued at the end showing the estimated number of structures and MC-childs

52 \msg_new:nnn { tag } {tree-statistic}

55 {

56 Finalizing~the~tagging~structure:\\

57 Writing~out~\c_tilde_str

58 \int_use:N\c@g__tag_struct_abs_int\c_space_tl~structure~objects\\
59 with~\c_tilde_str

60 \int_use:N\c@g__tag_MCID_abs_int\c_space_t1'MC'~leaf~nodes.\\

61 Be~patient~if~there~are~lots~of~objects!

62 }

s {/package)
(End of definition for tree-statistic. This function is documented on page 20.)
The following messages are only needed in debug mode.

show-struct This two messages are used to show the current structures in the log and terminal.

show-kids
o1 {xdebug)
os \msg_new:nnn { tag/debug } { show-struct }

o {

67 A\

68 The~structure~#1~

69 \tl_if_empty:nTF {#2}

70 { is~empty \\>~ . }

71 { contains: #2 }

72 \\

IER

7 \msg_new:nnn { tag/debug } { show-kids }
75 {

76 The~structure~has~the~following~kids:
77 \tl_if_empty:nTF {#2}

78 { \\>~ NONE }

79 {#2

80 \\

81

82 }

ss (/debug)

(End of definition for show-struct and show-kids. These functions are documented on page 21.)

24

attr-unknown

85

role-missing
role-unknown
role-unknown-tag

role-unknown-NS®
88

89

role-parent-child-check

91

role-parent-child-result

92

93

role-struct-parent-child-forbidden

95

3.3 Attributes

Not much yet, as attributes aren’t used so much.

(xpackage)

\msg_new:nnn { tag } {attr-unknown} { attribute~#1~is~unknown}

(End of definition for attr-unknown. This function is documented on page 21.)

3.4 Roles

Warning message if either the tag or the role is missing

\msg_new:
\msg_new:
\msg_new:
\msg_new:

nnn
nnn
nnn
nnn

{ tag } {role-missing} { tag~#l1-~has~no~role~assigned 1}

{ tag } {role-unknown} { role~#1~is~not~known }

{ tag } {role-unknown-tag} { tag~#l~is~not~known }

{ tag } {role-unknown-NS} { \tl_if_empty:nTF{#1}{Empty~NS}NS~#1~is~not~known} }

(End of definition for role-missing and others. These functions are documented on page 21.)

This is an info message that inform which elements are checked, typically used to show
the original tags, not the rolemapped one.

\msg_new:nnn { tag } {role-parent-child-check}
{ Checking~Parent-Child~'#1'~-->~'#2"' }

(End of definition for role-parent-child-check. This function is documented on page 77.)

This is info and warning message about the containment rules between child and parent

tags.

\msg_new:nnn { tag } {role-parent-child-result}
{ Parent-Child~'#1'~-->~'#2'.\\Relation~is~#3~\msg_line_context:}

(End of definition for role-parent-child-result. This function is documented on page 21.)

The most important message is that the relation is not allowed between two structures.
Argument #1 is the parent structure number, #2 is the child structure number, #3
NS:tag info of the parent (TODO perhaps rolemapped), #4 NS:tag of the child. (TODO

)

\msg_new:nnn { tag } {role-struct-parent-child-forbidden}

{

Parent-Child~'#3'~—->~"#4"' \\

Relation~is~not~allowed! ~\msg_line_context:\\

struct~#1,~

\exp_last_unbraced:Ne\use_i:nn { \prop_item:cn{ g__tag_struct_#1_prop}{tag} }
\c_space_t1l-->\c_space_tl

struct~#2,~

\exp_last_unbraced:Ne\use_i:nn { \prop_item:cn{ g__tag_struct_#2_prop}{tag} }

}

(End of definition for role-struct-parent-child-forbidden. This function is documented on page 7?.)

25

role-MC-child-forbidden In case that MC is forbidden we use a special message. Argument #1 is the parent
structure number. #2 NS:tag of the parent,

104 \msg_new:nnn { tag } {role-MC-child-forbidden}

105 {

106 Parent-Child~'#2'~-->~'MC~(real~content)'.\\
107 Relation~is~not~allowed! ~\msg_line_context:\\
108 struct~#1,~

109 \exp_last_unbraced:Ne\use_i:nn { \prop_item:cn{ g__tag_struct_#1_prop}{tag} }
110 }

(End of definition for role-MC-child-forbidden. This function is documented on page 77.)

role-parent-child-forbidden The most important message is that the relation is not allowed. Argument #1 is the
parent structure number. #2 NS:tag of the parent, #3 NS:tag of the child.

111 \msg_new:nnn { tag } {role-parent-child-forbidden}

112 {

113 Parent-Child~'#2'~-->~'#3"'.\\

114 Relation~is~not~allowed! ~\msg_line_context:\\

115 struct~#1,~\prop_item:cn{ g__tag_struct_#1_prop}{S}
116 \c_space_tl

117 \str_if_eq:nnF{#3}{MC~(realcontent)}

118 {-->~struct~\int_eval:n {\c@g__tag_struct_abs_int}}
119 }

(End of definition for role-parent-child-forbidden. This function is documented on page 77.)
__tag check forbidden parent child:nnnn
120 \cs_new_protected:Npn __tag_check_forbidden_parent_child:nnnn #1#2#3#4

121 % #1 check number, #2 number of parent struct
122 % #3 parent info, #4 child info

s

124 \int_compare:nNnT {#1 } <0
125 {

126 \msg_warning:nneee

127 { tag }

128 {role-parent-child-forbidden}
129 { #2}

130 { #3 }

131 { #4 }

132 }

133}

12 \cs_generate_variant:Nn __tag_check_forbidden_parent_child:nnnn {nnee}

136 % new with structure numbers:

137 \cs_new_protected:Npn __tag_check_struct_forbidden_parent_child:nnn #1#2#3
138 % #1 check number,

130 % #2 number of parent struct

120 % #3 number of child struct

141 {

142 \int_compare:nNnT {#1 } <0

143 {

26

160
161
162

163

role-parent-child-unresolved

164
165
166
167

168

__tag check unresolved parent child:nnnn

169

\prop_get:cnN {g__tag_struct_#2_prop}t{parentrole}\1__tag_get_parent_tmpc_tl
\prop_get:cnN {g__tag_struct_#3_prop}{rolemap}\1__tag_get_child_tmpc_tl
\msg_warning:nneeee

{ tag }

{role-struct-parent-child-forbidden}

{#2}

{#3}

{

\exp_last_unbraced:No \use_ii:nn { \1__tag_get_parent_tmpc_tl }

\exp_last_unbraced:No \use_i:nn {\1__tag_get_parent_tmpc_tl }
}
{

\exp_last_unbraced:No \use_ii:nn { \1__tag_get_child_tmpc_tl }

\exp_last_unbraced:No \use_i:nn { \1__tag_get_child_tmpc_t1l }
}
}
}

\cs_generate_variant:Nn__tag_check_struct_forbidden_parent_child:nnn{onn}
(End of definition for __tag_check_forbidden_parent_child:nnnn.)

If a structure is stashed and then used later and its root is one of Part, Div or NonStruct,
then we can not check the parent-child rules. This would require to know all children.
In this case we only warn. resolved a Argument #1 is the parent structure number. #2
NS:tag of the parent, #3 NS:tag of the child.

\msg_new:nnn { tag } {role-parent-child-unresolved}
{
Structure~\int_eval:n {\c@g__tag_struct_abs_int}~was~moved~into~structure~#1.\\
Parent-Child~'#2'~-->~"'#3'~can~not~checked.
}

(End of definition for role-parent-child-unresolved. This function is documented on page ?7.)

\cs_new_protected:Npn __tag_check_unresolved_parent_child:nnnn #1#2#3#4
% #1 check number, #2 number of parent struct
% #3 parent info, #4 child info
{
\int_compare:nNnT { #1 } = {\c__tag_role_rule_checkparent_tl}
{
\msg_warning:nneee
{ tag }
{role-parent-child-unresolved}
{#2 %
{ #3 1%
{#4 3

(End of definition for __tag_check_unresolved_parent_child:nnnn.)

27

tag/check/parent-child Sockets used around the parent-child checks so that we can disable them.

tag/check/parent-child-end
153 \socket_new:nn{tag/check/parent-child}{1}

s \socket_new:nn{tag/check/parent-child-end}{0}
165 \socket_new_plug:nnn {tag/check/parent-child-end}{check}

186 {

187 \sys_if_engine_luatex:T

188 {

189 \lua_now:e

190 {

101 1ltx.__tag.func.check_parent_child_rules (2)
192 }

193 ¥

194 }

And a key to disable the check

105 \keys_define:nn { __tag / setup}

196 {

107 debug / parent-child-check .choice:,

108 debug / parent-child-check / on .code:n =

199 {

200 \socket_assign_plug:nn {tag/check/parent-child}{identity}
201 },

202 debug / parent-child-check / off .code:n=

203 {

204 \socket_assign_plug:nn {tag/check/parent-child}{noop}

205 \socket_assign_plug:nn {tag/check/parent-child-end}{noop}
206 },

207 debug / parent-child-check / atend .code:n=

208 {

209 \socket_assign_plug:nn {tag/check/parent-child}{noop}

210 \socket_assign_plug:nn {tag/check/parent-child-end}{check}
211 }

212 }

(End of definition for tag/check/parent-child and tag/check/parent-child-end. These functions are
documented on page 77.)

role-remapping This is info and warning message about role-remapping

213 \msg_new:nnn { tag } {role-remapping}
24 { remapping-~tag~to~#1 }

(End of definition for role-remapping. This function is documented on page 21.)
role-tag Info messages.

215 \msg_new:nnn { tag } {role-tag} { mapping-~tag~#1~to~role~#2 }
216 \msg_new:nnn { tag } {new-tag} adding~new~tag~#1 }
217 \msg_new:nnn { tag } {read-namespace} { reading-~namespace~definitions~tagpdf-ns-
#1.def }
215 \msg_new:nnn { tag } {namespace-missing}{ namespace~definitions~tagpdf-ns-#1.def~not~found }
210 \msg_new:nnn { tag } {namespace-unknown}{ namespace~#1~is~not~declared }

-~

(End of definition for role-tag and new-tag. These functions are documented on page 21.)

28

wrong-pdfversion

sys-no-interwordspace

228

229

__tag_check_typeout_v:n

230

para-hook-count-wrong

\tag_get:n

235

3.5 Miscellaneous

Used a begin document if the pdfversion has been changed after the reading.

\msg_new:nnn { tag } {wrong-pdfversion}
{
The~PDF~version~has~changed~after~the~loading~of~tagpdf~from~#1~to~#2.\\

The~structure~will~be~faulty.\\
Trying~to~revert~to~#1.
}
(End of definition for wrong-pdfversion. This function is documented on page 77.)

Used in the tree code, typically indicates the document must be rerun.

\msg_new:nnn { tag } {tree-mcid-index-wrong}
{something~is~wrong~with~the~mcid--rerun}

(End of definition for tree-mcid-index-wrong. This function is documented on page 21.)

Currently only pdflatex and lualatex have some support for real spaces.

\msg_new:nnn { tag } {sys-no-interwordspace}
{engine/output~mode~#1~doesn't~support~the~interword~spaces}

(End of definition for sys-no-interwordspace. This function is documented on page 21.)

A simple logging function. By default is gobbles its argument, but the log-keys sets it to
typeout.

\cs_set_eq:NN __tag_check_typeout_v:n \use_none:n
(End of definition for __tag_check_typeout_v:n.)

At the end of the document we check if the count of para-begin and para-end is identical.
If not we issue a warning: this is normally a coding error and and breaks the structure.

\msg_new:nnnn { tag } {para-hook-count-wrong}
{The~number~of ~automatic~begin~ (#1) ~and~end~ (#2) ~#3~para~hooks~differ!}

{This~quite~probably~a~coding~error~and~the~structure~will~be~wrong!}
(/package)

(End of definition for para-hook-count-wrong. This function is documented on page 21.)

4 Retrieving data

This retrieves some data. This is a generic command to retrieve data. Currently the only
sensible values for the argument are mc_tag, struct_tag and struct_num.

(base)\cs_new:Npn \tag_get:n #1 { \use:c {__tag_get_data_#1: } }

(End of definition for \tag_get:n. This function is documented on page 18.)

29

5 PDF version check

236 (kpackage)
237 \tl_const:Ne\c__tag_check_pdfversion_tl {\pdf_version:}
232 \AddToHook{begindocument/before}

239 {

240 \tl_if_eq:eeF{\c__tag_check_pdfversion_t1}{\pdf_version:}

241 {

212 \msg_error:nnee {tag}{wrong-pdfversion}{\c__tag_check_pdfversion_t1}{\pdf_version:}
243 \pdf_version_gset:e {\c__tag_check_pdfversion_tl1}

244 \pdf_object_unnamed_write:nn{dict}{}

245 }

246 }

27 (/package)

6 User conditionals

\tag_if_active_p: This tests if tagging is active. This allows packages to add conditional code. The test is
\tag_if_active:TF true if all booleans, the global and the two local one are true.

248 (*base)

20 \cs_if_exist:NF\tag_if_active:T

s0

251 \prg_new_conditional:Npnn \tag_if_active: { p , T , TF, F }
252 { \prg_return_false: }

253}

254 (/base)

255 (*package)
256 \prg_set_conditional:Npnn \tag_if_active: { p , T , TF, F }

257 {

258 \bool_lazy_all:nTF

259 {

260 {\g__tag_active_struct_bool}
261 {\g__tag_active_mc_bool}

262 {\g__tag_active_tree_bool}
263 {\1__tag_active_struct_bool}
264 {\1__tag_active_mc_bool}

265 }

266 {

267 \prg_return_true:

268 }

269 {

270 \prg_return_false:

271 }

272 }

273 (/package)

(End of definition for \tag_if_active:TF. This function is documented on page 18.)

\tag_if_box_tagged_p:N This tests if a box contains tagging commands. It relies on that the code that saved

\tag_if_box_tagged:NIF the box correctly set \1_tag_box_<box number>_tl to a positive value. The LaTeX
commands will do that automatically at some time but it is in the responsibility of the
user to ensure that when using low-level code. If the internal command doesn’t exist the
box is assumed to be untagged.

30

274 (*base)
275 \prg_new_conditional:Npnn \tag_if_box_tagged:N #1 {p,T,F,TF}

276 {

277 \tl_if_exist:cTF {1_tag_box_\int_use:N #1_t1}
278 {

279 \int_compare :nNnTF {0\tl_use:c{1l_tag_box_\int_use:N #1_t1}}>{0}
280 { \prg_return_true: }

281 { \prg_return_false: }

282

283 {

284 \prg_return_false:

285 % warning??

286 }

287 }

25 {/base)

(End of definition for \tag_if_box_tagged:NTF. This function is documented on page 18.)

7 Internal checks

These are checks used in various places in the code.

7.1 checks for active tagging

__tag_check_if_active_mc:TF This checks if mc are active.
__tag_check if active struct:TF
250 (*package)
200 \prg_new_conditional:Npnn __tag_check_if_active_mc: {T,F,TF}

291 {

202 \bool_lazy_and:nnTF { \g__tag_active_mc_bool } { \1__tag_active_mc_bool }
203 {

204 \prg_return_true:

295 }

296 {

207 \prg_return_false:

298 }

299 }

s0 \prg_new_conditional:Npnn __tag_check_if_active_struct: {T,F,TF}

301 {

302 \bool_lazy_and:nnTF { \g__tag_active_struct_bool } { \1__tag_active_struct_bool }
303 {

304 \prg_return_true:

305 }

306 {

307 \prg_return_false:

308 ¥

309 }

(End of definition for __tag_check_if_active_mc:TF and __tag_check_if_active_struct:TF.)

31

__tag_check _structure has tag:n

316

318

319

__tag_check_structure_tag:N

__tag check info closing struct:n

7.2 Checks related to structures

Structures must have a tag, so we check if the S entry is in the property. It is an error if
this is missing. The argument is a number. The tests for existence and type is split in
structures, as the tags are stored differently to the mc case.

\cs_new_protected:Npn __tag_check_structure_has_tag:n #1 %#1 struct num
{
\prop_get:cnNF

{ g__tag_struct_#1_prop }

{s}

\1__tag_tmp_unused_tl

{

\msg_error:nn { tag } {struct-missing-tag}

}

}

(End of definition for __tag_check_structure_has_tag:n.)

This checks if the name of the tag is known, either because it is a standard type or has
been rolemapped. This always used with commands, so the argument is N.

\cs_new_protected:Npn __tag_check_structure_tag:N #1

{
\prop_get:NoNF \g__tag_role_tags_NS_prop {#1}\1__tag_tmp_unused_tl
{
\msg_warning:nne { tag } {role-unknown-tag} {#1}
}
}

(End of definition for __tag_check_structure_tag:N.)

This info message is issued at a closing structure, the use should be guarded by log-level.

7 \cs_new_protected:Npn __tag_check_info_closing_struct:n #1 %#1 struct num

{
\int_compare:nNnT {\1__tag_loglevel_int} > { 0 }
{
\msg_info:nnn { tag } {struct-show-closing} {#1}
}
}

s \cs_generate_variant:Nn __tag_check_info_closing_struct:n {o,e}

(End of definition for __tag_check_info_closing_struct:n.)

This checks if there is an open structure. It should be used when trying to close a
structure. It errors if false.

\cs_new_protected:Npn __tag_check_no_open_struct:
{
\msg_error:nn { tag } {struct-faulty-nesting}
}

(End of definition for __tag_check_no_open_struct:.)

32

__tag_check_struct_used:n This checks if a stashed structure has already been used.

20 \cs_new_protected:Npn __tag_check_struct_used:n #1 %#1 label

341 {

342 \prop_get:cnNT

343 {g__tag_struct_\property_ref:enn{tagpdfstruct-#1}{tagstruct}{unknown}_prop}
344 {parentnum}

345 \1__tag_tmpa_tl

346 {

347 \msg_warning:nnn { tag } {struct-used-twice} {#1}

348 }

349 }

(End of definition for __tag_check_struct_used:n.)
7.3 Checks related to roles
__tag_check_add_tag_role:nn This check is used when defining a new role mapping.

;50 \cs_new_protected:Npn __tag_check_add_tag_role:nn #1 #2 J#1 tag, #2 role

351 {

352 \tl_if_empty:nTF {#2}

353 {

354 \msg_error:nnn { tag } {role-missing} {#1}

355 }

356 {

357 \prop_get:NnNTF \g__tag_role_tags_NS_prop {#2} \1__tag_tmpa_tl
358

359 \int_compare:nNnT {\1__tag_loglevel_int} > { 0 }
360 {

361 \msg_info:nnnn { tag } {role-tag} {#1} {#2}
362 }

363 }

364 {

365 \msg_error:nnn { tag } {role-unknown} {#2}

366 }

367 }

68 }

Similar with a namespace

360 \cs_new_protected:Npn __tag_check_add_tag_role:nnn #1 #2 #3 J#1 tag/NS, #2 role #3 namespace

370 {

371 \tl_if_empty:nTF {#2}

372 {

373 \msg_error:nnn { tag } {role-missing} {#1}

374 }

375 {

376 \prop_get:cnNTF { g__tag_role_NS_#3_prop } {#2} \1__tag_tmpa_tl
377

378 \int_compare:nNnT {\1__tag_loglevel_int} > { 0 }
379 {

380 \msg_info:nnnn { tag } {role-tag} {#1} {#2/#3}
381 T

33

__tag_check_mc_if_nested:
__tag_check_mc_if_open:

390
391
392
393
394
395

396

__tag check mc_pushed popped:nn

__tag_check_mc_tag:N

}
{

\msg_error:nnn { tag } {role-unknown} {#2/#3}
}

}

(End of definition for __tag_check_add_tag_role:nn.)

7.4 Check related to mc-chunks

Two tests if a mc is currently open. One for the true (for begin code), one for the false
part (for end code).

\cs_new_protected:Npn __tag_check_mc_if_nested:

{
__tag_mc_if_in:T
{
\msg_warning:nne { tag } {mc-nested} { __tag_get_mc_abs_cnt: }
}
}
\cs_new_protected:Npn __tag_check_mc_if_open:
{
__tag_mc_if_in:F
{
\msg_warning:nne { tag } {mc-not-open} { __tag_get_mc_abs_cnt: }
}
}

(End of definition for __tag_check_mc_if_nested: and __tag_check_mc_if_open:.)

This creates an information message if mc’s are pushed or popped. The first argument
is a word (pushed or popped), the second the tag name. With larger log-level the stack
is shown too.

\cs_new_protected:Npn __tag_check_mc_pushed_popped:nn #1 #2
{
\int_compare:nNnT
{ \1__tag_loglevel_int } ={ 2 }
{ \msg_info:nne {tagt{mc-#1}{#2} }
\int_compare:nNnT
{ \1__tag_loglevel_int } > { 2 }
{
\msg_info:nne {tagt{mc-#1}{#2}
\seq_log:N \g__tag_mc_stack_seq
}
}

(End of definition for __tag_check_mc_pushed_popped:nn.)

This checks if the mc has a (known) tag, if it is empty (e.g. if due to a call to the output
routine, see issue https://github.com/latex3/tagpdf/issues/111) then we fall back to the
structure name.

34

415 \cs_new_protected:Npn __tag_check_mc_tag:N #1 U#1 is var with a tag name in it

416 {

417 \tl_if_empty:NTF #1

418 {

419 \tl_set:No #1 { \g__tag_struct_tag_tl }

420 \msg_info:nnee { tag } {mc-tag-missing} { \g__tag_struct_tag_tl }{ __tag_get_mc_abs_cnt
421 ¥

422 {

423 \prop_get:NoNF \g__tag_role_tags_NS_prop {#1}\1__tag_tmp_unused_tl
424 {

425 \msg_warning:nne { tag } {role-unknown-tag} {#1}

426 }

427 T

428 }

(End of definition for __tag_check_mc_tag:N.)

\g_tag check mc used intarray This variable holds the list of used mc numbers. Everytime we store a mc-number we
__tag_check_init_mc_used: will add one the relevant array index If everything is right at the end there should be
only 1 until the max count of the mcid. 2 indicates that one mcid was used twice, 0 that
we lost one. In engines other than luatex the total number of all intarray entries are
restricted so we use only a rather small value of 65536, and we initialize the array only
at first used, guarded by the log-level. This check is probably only needed for debugging.

TODO does this really make sense to check? When can it happen??

20 \cs_new_protected:Npn __tag_check_init_mc_used:

430 {
431 \intarray_new:Nn \g__tag_check_mc_used_intarray { 65536 }
432 \cs_gset_eq:NN __tag_check_init_mc_used: \prg_do_nothing:
433 }

(End of definition for \g__tag_check_mc_used_intarray and __tag_check_init_mc_used:.)
__tag_check_mc_used:n This checks if a mc is used twice.

432 \cs_new_protected:Npn __tag_check_mc_used:n #1 ’#1 mcid abscnt

435 {

436 \int_compare:nNnT {\1__tag_loglevel_int} > { 2 }

437 {

438 __tag_check_init_mc_used:

439 \intarray_gset:Nnn \g__tag_check_mc_used_intarray

440 {#1}

441 { \intarray_item:Nn \g__tag_check_mc_used_intarray {#1} + 1 }
442 \int_compare:nNnT

443 {

444 \intarray_item:Nn \g__tag_check_mc_used_intarray {#1}
445 }

446 >

447 { 1 }

448 {

449 \msg_warning:nnn { tag } {mc-used-twice} {#1}

450 }

451 }

452 }

35

(End of definition for __tag_check_mc_used:n.)

_tag check show IlCID by page: Thhis allows to show the mc on a page. Currently unused.

453 \cs_new_protected:Npn __tag_check_show_MCID_by_page:

454 {

455 \tl_set:Ne \1__tag_tmpa_tl

456 {

457 __tag_property_ref_lastpage:nn
458 {abspage?}

459 {— 1}

460 }

461 \int_step_inline:nnnn {1}{1}

462 {

463 \1__tag_tmpa_t1l

464 }

465 {

466 \seq_clear:N \1__tag_tmpa_seq
467 \int_step_inline:nnnn

468 {1}

469 {1}

470 {

a1 __tag_property_ref_lastpage:nn
472 {tagmcabs}

473 {-1}

474 }

475 {

476 \int_compare:nT

477 {

478 \property_ref:enn

479 {mcid-####1}

480 {tagabspage}

481 {-1}

482 =

483 ##1

484 ¥

485 {

486 \seq_gput_right:Ne \1__tag_tmpa_seq
487 {

488 Page##1-####1-

489 \property_ref:enn
490 {mcid-####1}

491 {tagmcid}

492 {_ 1}

493 }

494 }

495 }

496 \seq_show:N \1__tag_tmpa_seq
497 3

498 }

(End of definition for __tag_check_show_MCID_by_page:.)

36

__tag_check_mc_in_galley_p:
__tag_check_mc_in_galley:TF

__tag check if mc tmb missing p:

__tag check if mc tmb missing:TF

o
S
&

506

508
509

510

512
513
514

515

__tag check if mc tme missing p:

__tag check if mc tme missing:TF

7.5 Checks related to the state of MC on a page or in a split
stream

The following checks are currently only usable in generic mode as they rely on the marks
defined in the mec-generic module. They are used to detect if a mc-chunk has been split
by a page break or similar and additional end/begin commands are needed.

At first we need a test to decide if \tag_mc_begin:n (tmb) and \tag_mc_end: (tme)
has been used at all on the current galley. As each command issues two slightly different
marks we can do it by comparing firstmarks and botmarks. The test assumes that
the marks have been already mapped into the sequence with \@@_mc_get_marks:. As
\seq_if_eq:NNTF doesn’t exist we use the tl-test.

\prg_new_conditional:Npnn __tag_check_if_mc_in_galley: { T,F,TF }
{
\tl_if_eq:NNTF \1__tag_mc_firstmarks_seq \1__tag_mc_botmarks_seq
{ \prg_return_false: }
{ \prg_return_true: }
}

(End of definition for __tag_check_mc_in_galley:TF.)

This checks if a extra top mark (“extra-tmb”) is needed. According to the analysis this
the case if the firstmarks start with e- or b+. Like above we assume that the marks
content is already in the seq’s.

\prg_new_conditional:Npnn __tag_check_if_mc_tmb_missing: { T,F,TF }
{
\bool_if :nTF
{
\str_if_eq_p:ee {\seq_item:Nn \1__tag_mc_firstmarks_seq {1}}{e-}
I
\str_if_eq_p:ee {\seq_item:Nn \1__tag_mc_firstmarks_seq {1}}{b+}

prg_return_true: }
prg_return_false: }

}

{\

{\
}

(End of definition for __tag_check_if_mc_tmb_missing:TF.)

This checks if a extra bottom mark (“extra-tme”) is needed. According to the analysis
this the case if the botmarks starts with b+. Like above we assume that the marks content
is already in the seq’s.

si6 \prg_new_conditional:Npnn __tag_check_if_mc_tme_missing: { T,F,TF }

{
\str_if_eq:eeTF {\seq_item:Nn \1__tag_mc_botmarks_seq {1}}{b+}
{ \prg_return_true: }
{ \prg_return_false: }
}

(End of definition for __tag_check_if_mc_tme_missing:TF.)

> (/package)

37

o

(*debug)

Code for tagpdf-debug. This will probably change over time. At first something for the
mc commands.

\msg_new:nnn { tag / debug } {mc-begin} { MC~begin~#1~with~options:~\tl_to_str:n{#2}~[\msg_line_

s \msg_new:nnn { tag / debug } {mc-end} { MC~end-~#1~[\msg_line_context:] }

\cs_new_protected:Npn __tag_debug_mc_begin_insert:n #1

{
\int_compare:nNnT { \1__tag_loglevel_int } > {0}
{
\msg_note:nnnn { tag / debug } {mc-begin} {inserted} { #1 }
¥
}
4 \cs_new_protected:Npn __tag_debug_mc_begin_ignore:n #1
{
\int_compare:nNnT { \1__tag_loglevel_int } > {0}
{
\msg_note:nnnn { tag / debug } {mc-begin } {ignored} { #1 }
}
}
\cs_new_protected:Npn __tag_debug_mc_end_insert:
{
\int_compare:nNnT { \1__tag_loglevel_int } > {0}
{
\msg_note:nnn { tag / debug } {mc-end} {inserted}
}
}
: \cs_new_protected:Npn __tag_debug_mc_end_ignore:
{
\int_compare:nNnT { \1__tag_loglevel_int } > {0}
{
\msg_note:nnn { tag / debug } {mc-end } {ignored}
¥
}

And now something for the structures

s \msg_new:nnn { tag / debug } {struct-begin}

{
Struct~\tag_get:n{struct_num}~begin~#1~with~options:~\tl_to_str:n{#2}~\\[\msg_line_context:]
}
\msg_new:nnn { tag / debug } {struct-end}

{
Struct~end~#1~[\msg_line_context:]
}
; \msg_new:nnn { tag / debug } {struct-end-wrong}
{
Struct~end~'#1'~doesn't~fit~start~'#2'~[\msg_line_context:]
}

\cs_new_protected:Npn __tag_debug_struct_begin_insert:n #1

{
\int_compare:nNnT { \1__tag_loglevel_int } > {0}

38

593

594

595

596

597

598

599

600

601

603

607

\msg_note:nnnn { tag / debug } {struct-begin} {inserted} { #1 }
\seq_log:N \g__tag_struct_tag_stack_seq

}
}
» \cs_new_protected:Npn __tag_debug_struct_begin_ignore:n #1
{
\int_compare:nNnT { \1__tag_loglevel_int } > {0}
{
\msg_note:nnnn { tag / debug } {struct-begin } {ignored} { #1 }
}
}
\cs_new_protected:Npn __tag_debug_struct_end_insert:
{
\int_compare:nNnT { \1__tag_loglevel_int } > {0}
{
\msg_note:nnn { tag / debug } {struct-end} {inserted}
\seq_log:N \g__tag_struct_tag_stack_seq
}
}
\cs_new_protected:Npn __tag_debug_struct_end_ignore:
{
\int_compare:nNnT { \1__tag_loglevel_int } > {0}
{
\msg_note:nnn { tag / debug } {struct-end } {ignored}
}
}
\cs_new_protected:Npn __tag_debug_struct_end_check:n #1
{
\int_compare:nNnT { \1__tag_loglevel_int } > {0}
{
\seq_get:NNT \g__tag_struct_tag_stack_seq \1__tag_tmpa_tl
{
\str_if_eq:eeF
{#1}
{\exp_last_unbraced:No \use_i:nn { \1__tag_tmpa_tl }}
{
\msg_warning:nnee { tag/debug }{ struct-end-wrong }
{#1}
{\exp_last_unbraced:No \use_i:nn { \1__tag_tmpa_tl }}
}
}
}
}

This tracks tag suspend and resume. The tag-suspend message should go before the int
is increased. The tag-resume message after the int is decreased.

\msg_new:nnn { tag / debug } {tag-suspend}
{
\int_if_zero:nTF
{#1}
{Tagging~suspended}
{Tagging~ (not) ~suspended~ (already~inactive) }\\
level:~#1~==>~\int_eval:n{#1+1}\tl_if_empty:nF{#2}{,~label:~#2}~[\msg_line_context:]

39

}
\msg_new:nnn { tag / debug } {tag-resume}
{
\int_if_zero:nTF
{#1}
{Tagging~resumed}
{Tagging~ (not) ~resumed}\\

level:~\int_eval:n{#1+1}~==>~#1\tl_if_empty:nF{#2}{, ~label:~#2}~[\msg_line_context:]

}

(/debug)

7.6 Benchmarks

It doesn’t make much sense to do benchmarks in debug mode or in combination with a
log-level as this would slow down the compilation. So we add simple commands that can
be activated if 13benchmark has been loaded. TODO: is a warning needed?

(*package)
\cs_new_protected:Npn __tag_check_benchmark_tic:{}
\cs_new_protected:Npn __tag_check_benchmark_toc:{}

;5 \cs_new_protected:Npn \tag_check_benchmark_on:

{
\cs_if_exist:NT \benchmark_tic:
{
\cs_set_eq:NN __tag_check_benchmark_tic: \benchmark_tic:
\cs_set_eq:NN __tag_check_benchmark_toc: \benchmark_toc:
}
}
s (/package)

The tagpdf-user module
Code related to XTEX2e user commands and document commands
Part of the tagpdf package

Ulrike Fischer

Version 0.99x, released 2026-01-12

40

Part 111

1 Setup commands

\tagpdfsetup \tagpdfsetup{(key val list)}

This is the main setup command to adapt the behaviour of tagpdf. It can be used in the
preamble and in the document (but not all keys make sense there).

activate (setup-key) And additional setup key which combine the other activate keys activate/mc, activate/tree,
activate/struct and additionally adds a document structure.

\tag_tool:n \tag_tool:n {(key val)}

w The tagging of basic document elements will require a variety of small commands to

configure and adapt the tagging. This command will collect them under a command
interface. The argument is one key-value like string. This is work in progress and both
syntax, known arguments and implementation can change!

2 Commands related to mc-chunks

\tagmcbegin \tagmcbegin{(key-val)}

\tagmcend \tagmcend

\tagmcuse \tagmcuse{(label)}
These are wrappers around \tag_mc_begin:n, \tag_mc_end: and \tag_mc_use:n. The
commands and their argument are documentated in the tagpdf-mc module. In difference
to the expl3 commands, \tagmcbegin issues also an \ignorespaces, and \tagmcend will
issue in horizontal mode an \unskip.

\tagmcifinTF \tagmcifinTF{(true code)}{(false code)}

This is a wrapper around \tag_mc_if_in:TF. and tests if an mc is open or not. It
is mostly of importance for pdflatex as lualatex doesn’t mind much if a mc tag is not
correctly closed. Unlike the expl3 command it is not expandable.

The command is probably not of much use and will perhaps disappear in future
versions. It normally makes more sense to push/pop an mec-chunk.

3 Commands related to structures

\tagstructbegin \tagstructbegin{(key-val)}
\tagstructend \tagstructend
\tagstructuse \tagstructuse{(label)}

These are direct wrappers around \tag_struct_begin:n, \tag_struct_end: and
\tag_struct_use:n. The commands and their argument are documented in the tagpdf-
struct module.

41

4 Debugging

\ShowTagging \ShowTagging{(key-val)}

mc-data

(show-key)

mc-current

(show-key)

mc-marks

(show-key)

struct-stack

(show-key)

debug/structures

(show-key)

This is a generic function to output various debugging helps. It not necessarily stops the
compilation. The keys and their function are described below.

mc-data = (number)

This key is (currently?) relevant for lua mode only. It shows the data of all mc-chunks
created so far. It is accurate only after shipout (and perhaps a second compilation), so
typically should be issued after a newpage. The value is a positive integer and sets the
first mc-shown. If no value is given, 1 is used and so all mc-chunks created so far are
shown.

mc-current

This key shows the number and the tag of the currently open mc-chunk. If no chunk is
open it shows only the state of the abs count. It works in all mode, but the output in
luamode looks different.

mc-marks = show|use

This key helps to debug the page marks. It should only be used at shipout in header or
footer.

struct-stack = log|show

This key shows the current structure stack. With log the info is only written to the
log-file, show stops the compilation and shows on the terminal. If no value is used, then
the default is show.

debug/structures = (structure number)

This key is available only if the tagpdf-debug package is loaded and shows all structures
starting with the one with the number given by the key.

5 Extension commands

The following commands and code parts are not core commands of tagpdf. They either
provide work-arounds for missing functionality elsewhere, or do a first step to apply
tagpdf commands to document commands.

The commands and keys should be view as experimental!

This part will be regularly revisited to check if the code should go to a better place
or can be improved and so can change easily.

5.1 Fake space

\pdffakespace (lua-only) This provides a lua-version of the \pdffakespace primitive of pdftex.

42

5.2 Tagging of paragraphs

This makes use of the paragraph hooks in LaTeX to automate the tagging of paragraph.
It requires sane paragraph nesting, faulty code, e.g. a missing \par at the end of a low-
level vbox can highly confuse the tagging. The tags should be carefully checked if this is
used.

para/tagging (setup-key)

para/tagging = true|false

paratagging-show (deprecated) debug/show=para

paratagging (deprecated)

debug/show=para0ff

\tagpdfparaOn
\tagpdfparaOff

\tagpdfsuppressmarks

The para/tagging key can be used in \tagpdfsetup and enable/disables tagging of
paragraphics. debug/show=para puts small colored numbers at the begin and end of a
paragraph. This is meant as a debugging help. The number are boxes and have a (tiny)
height, so they can affect typesetting.

These commands allow to enable/disable para tagging too and are a bit faster then
\tagpdfsetup. But I'm not sure if the names are good.

This command allows to suppress the creation of the marks. It takes an argument
which should normally be one of the mc-commands, puts a group around it and suppress
the marks creation in this group. This command should be used if the begin and end
command are at different boxing levels. E.g.

\@hangfrom
{
\tagstructbegin{tag=H1}),
\tagmcbegin {tag=H1}%
#2
}
{#3\tagpdfsuppressmarks{\tagmcend}\tagstructend}’

5.3 Header and footer

Header and footer are automatically tagged as artifact: They are surrounded by an
artifact-mc and inside tagging is stopped. If some real content is in the header and
footer, tagging must be restarted there explicitly. The behaviour can be changed with
the following key. The key accepts the values true (the default), false which disables
the header tagging code. This can be useful if the page style is empty (it then avoids
empty mc-chunks) or if the head and foot should be tagged in some special way. The
last value, pagination, is like true but additionally adds an artifact structure with an
pagination attribute.

page/exclude-header-footer (setup-key) page/exclude-header-footer = truel|false|pagination

43

\tag_socket_use:n
\tag_socket_use:nnn
\UseTaggingSocket

5.4 Link tagging

Links need a special structure and cross reference system. This is added through hooks
of the 13pdfannot module and will work automatically if tagging is activated.

Links should (probably) have an alternative text in the Contents key. It is unclear
which text this should be and how to get it. Currently the code simply adds the fix texts
url and ref. Another text can be added by changing the dictionary value:

\pdfannot_dict_put:nnn
{ link/GoTo }

{ Contents }

{ (ref) }

6 Socket support

\tag_socket_use:n {(socket name)}

\tag_socket_use:nn {(socket name)} {(socket argument)}

\tag_socket_use:nnn {(socket name)} {(socket argument)} {(socket argument)}
\tag_socket_use_expandable:n {(socket name)}

\UseTaggingSocket {(socket name)}

\UseTaggingSocket {(socket name)} {(socket argument)}

\UseTaggingSocket {(socket name)} {(socket argument)} {(socket argument)}

Given that we sometimes have to suspend tagging, it would be fairly inefficient
to put different plugs into these sockets whenever that happens. We therefore offer
\UseTaggingSocket which is like \UseSocket except that is expects a socket starting
with tagsupport/ but the socket name is specified without this prefix, i.e.,

\UseTaggingSocket{foo} — \UseSocket{tagsupport/foo}

Beside being slightly shorter, the big advantage is that this way we can change
\UseTaggingSocket to do nothing by switching a boolean instead of changing the plugs
of the tagging support sockets back and forth.

Usually, these sockets have (beside the default plug defined for every socket) one
additional plug defined and directly assigned. This plug is used when tagging is active.
There may be more plugs, e.g., tagging with special debugging or special behaviour
depending on the class or PDF version etc., but right now it is usually just on or off.

When tagging is suspended they all have the same predefined behaviour: The sockets
with zero arguments do nothing. The sockets with one argument gobble their argument.
The sockets with two arguments will drop their first argument and pass the second
unchanged.

It is possible to use the tagging support sockets with \UseSocket directly, but in
this case the socket remains active if e.g. \SuspendTagging is in force. There may be
reasons for doing that but in general we expect to always use \UseTaggingSocket.

For special cases like in some \halign contexts we need a fully expandable version
of the commend. For these cases, \UseExpandableTaggingSocket can be used. To allow
being expandable, it does not output any debugging information if \DebugSocketsOn is
in effect and therefore should be avoided whenever possible.

44

The L3 programming layer versions \tag_socket_use_expandable:n, \tag_-
socket_use:n, and \tag_socket_use:nn, \tag_socket_use:nnn are slightly more effi-
cient than \UseTaggingSocket because they do not have to determine how many argu-
ments the socket takes when disabling it.

7 User commands and extensions of document com-
mands

(ee=tag)

(xheader)

\ProvidesExplPackage {tagpdf-user} {2026-01-12} {0.99x}
{tagpdf - user commands}

s (/header)

A w N e

8 Setup and preamble commands
\tagpdfsetup

(base)\NewDocumentCommand \tagpdfsetup { m }{}
(xpackage)

¢ \RenewDocumentCommand \tagpdfsetup { m }

o {

10 \keys_set:nn { __tag / setup } { #1 }

11 }

1> (/package)

o

~

(End of definition for \tagpdfsetup. This function is documented on page 41.)

\tag_tool:n This is a first definition of the tool command. Currently it uses key-val, but this should
\tagtool be probably be flattened to speed it up.

(base)\cs_new_protected:Npn\tag_tool:n #1 {}
(base)\cs_set_eq:NN\tagtool\tag_tool:n

15 (xpackage)
\cs_set_protected:Npn\tag_tool:n #1

17 {

18 \tag_if_active:T { \keys_set:nn {tag / tool}{#1} }
19 }

20 \cs_set_eq:NN\tagtool\tag_tool:n

21 (/package)

(End of definition for \tag_tool:n and \tagtool. These functions are documented on page 41.)

9 Commands for the mc-chunks

\tagmcbegin
\tagmcend
\tagmcuse» (*base)
23 \NewDocumentCommand \tagmcbegin { m }
24 {
25 \tag_mc_begin:n {#1}

45

\tagmcifinTF

\tagstructbegin
\tagstructend
\tagstructuse

\NewDocumentCommand \tagmcend { }
{
\tag_mc_end:
}

\NewDocumentCommand \tagmcuse { m }
{
\tag_mc_use:n {#1}
}
(/base)

(End of definition for \tagmcbegin, \tagmcend, and \tagmcuse. These functions are documented on
page 41.)

This is a wrapper around \tag_mc_if_in: and tests if an mc is open or not. It is mostly
of importance for pdflatex as lualatex doesn’t mind much if a mc tag is not correctly
closed. Unlike the expl3 command it is not expandable.

(xpackage)
\NewDocumentCommand \tagmcifinTF { m m }
{
\tag_mc_if_in:TF { #1 } { #2 }
}
(/package)

(End of definition for \tagmcifinTF. This function is documented on page 41.)

10 Commands for the structure

These are structure related user commands. There are direct wrapper around the expl3
variants.

s (*base)

\NewDocumentCommand \tagstructbegin { m }
{
\tag_struct_begin:n {#1}
}

\NewDocumentCommand \tagstructend { 1}
{
\tag_struct_end:
}

\NewDocumentCommand \tagstructuse { m }
{
\tag_struct_use:n {#1}
}
(/base)

(End of definition for \tagstructbegin, \tagstructend, and \tagstructuse. These functions are
documented on page 41.)

46

11 Socket support

Until we can be sure that the kernel defines the commands we provide them before
redefining them: The expandable version will only work correctly after the 2024-11-01
release.

61 (xbase)

¢ \providecommand\tag_socket_use:n[1]{}

o3 \providecommand\tag_socket_use:nn[2]{}

¢ \providecommand\tag_socket_use:nnn[3]{#3}

o5 \providecommand\tag_socket_use_expandable:n[1]{}

o \providecommand\socket_use_expandable:nw [1] {

o7 \use:c { __socket_#1_plug_ \str_use:c { 1__socket_#1_plug_str } :w }
68

o \providecommand\UseTaggingSocket [1]{}

70 \providecommand\UseExpandableTaggingSocket [1]{}

7 {/base)

\tag_socket_use:n
\tag_socket_use:nn
\tag_socket_use:nnnn (xpackage)
\UseTaggingSocket" \cs_set_protected:Npn \tag_socket_use:n #1
\tag_socket_use_expandable:n’ {

\UseExpandableTaggingSocket” \bool_if:NT \1__tag_active_socket_bool
76 { \socket_use:n {tagsupport/#1} }

s \cs_set_protected:Npn \tag_socket_use:nn #1#2

79 {

80 \bool_if:NT \1__tag_active_socket_bool

81 { \socket_use:nn {tagsupport/#1} {#2} }
82 }

&s \cs_set_protected:Npn \tag_socket_use:nnn #1#2#3

84 {

85 \bool_if:NTF \1__tag_active_socket_bool

86 { \socket_use:nnn {tagsupport/#1} {#2} {#3} }
&7 { #3 %

\cs_set:Npn \tag_socket_use_expandable:n #1

90 {

01 \bool_if:NT \1__tag_active_socket_bool

9 { \socket_use_expandable:n {tagsupport/#1} }
93 }

o \cs_set_protected:Npn \UseTaggingSocket #1

95 {

9 \bool_if :NTF \1__tag_active_socket_bool

o7 { \socket_use:nw {tagsupport/#1} }

98 {

99 \int_case:nnF

100 { \int_use:c { c__socket_tagsupport/#1_args_int } }

47

101 {

102 0 \prg_do_nothing:
103 1 \use_none:n

104 2 \use_ii:nn

We do not expect tagging sockets with more than one or two arguments, so for now we
only provide those.

105 }

106 \ERRORusetaggingsocket

107 }

108 }

100 \cs_set:Npn \UseExpandableTaggingSocket #1

110 {

111 \bool_if :NTF \1__tag_active_socket_bool

112 { \socket_use_expandable:nw {tagsupport/#1} }
113 {

114 \int_case:nnF

115 { \int_use:c { c__socket_tagsupport/#1_args_int } }
116 {

17 0 \prg_do_nothing:

118 1 \use_none:n

119 2 \use_ii:nn

We do not expect tagging sockets with more than one or two arguments, so for now we
only provide those.

120 }

121 \ERRORusetaggingsocket
122 }

123 }

124 (/package)

(End of definition for \tag_socket_use:n and others. These functions are documented on page 44.)

12 Debugging

\ShowTagging This is a generic command for various show commands. It takes a keyval list, the various
keys are implemented below.

125 (*package)

126 \NewDocumentCommand\ShowTagging { m }
127 {

128 \keys_set:nn { __tag / show }{ #1}

130 3
(End of definition for \ShowTagging. This function is documented on page 42.)

mc-data (show-key) This key is (currently?) relevant for lua mode only. It shows the data of all mc-chunks
created so far. It is accurate only after shipout, so typically should be issued after a
newpage. With the optional argument the minimal number can be set.

48

151 \keys_define:nn { __tag / show }

132 {

133 mc-data .code:n =

134 {

135 \bool_if:NT \g__tag_mode_lua_bool

136 {

137 \lua_now:e{ltx.__tag.trace.show_all_mc_data(#1,__tag_get_mc_abs_cnt:,0)}
138 }

139 }

140 ,mc-data .default:n = 1

141 }

142
(End of definition for mc-data (show-key). This function is documented on page 42.)
mc-current (show-key) This shows some info about the current mc-chunk. It works in generic and lua-mode.

13 \keys_define:nn { __tag / show }
s { mc-current .code:n =

145 {

146 \bool_if:NTF \g__tag_mode_lua_bool

147 {

148 \int_compare :nNnTF

149 { -2147483647 }

150 =

151 {

152 \lua_now:e

153 {

154 tex.print

155 (\int_use:N\c_document_cctab,

156 tex.getattribute

157 (luatexbase.attributes.g__tag_mc_cnt_attr))
158 }

159 }

160 {

161 \lua_now:e

162 {

163 1ltx.__tag.trace.log

164 (

165 "mc-current: ~no~MC~open, ~current~abscnt
166 =__tag_get_mc_abs_cnt:"

167 ,0

168)

169 texio.write_nl("")

170 }

171 }

172 {

173 \lua_now:e

174 {

175 1tx.__tag.trace.log

176 (

177 "mc-current:~abscnt=__tag_get_mc_abs_cnt:=="
178 ..

179 tex.getattribute (luatexbase.attributes.g__tag_mc_cnt_attr)

49

181 "~=>tag="

183 tostring

184 (1tx.__tag.func.get_tag_from
185 (tex.getattribute
186 (luatexbase.attributes.g__tag_mc_type_attr)))

190 tex.getattribute

101 (luatexbase.attributes.g__tag_mc_type_attr)
192 ,0

193)

104 texio.write_nl("")

195 }

196 }

197 }

198 {

10 \msg_note:nn{ tag }{ mc-current }
200 }

201 }

202 }

(End of definition for mc-current (show-key). This function is documented on page 42.)

mc-marks (show-key) It maps the mc-marks into the sequences and then shows them. This allows to inspect the

first and last mc-Mark on a page. It should only be used in the shipout (header/footer).

203 \keys_define:nn { __tag / show }

204 {

205 mc-marks .choice: ,

206 mc-marks / show .code:n =

207 {

208 __tag_mc_get_marks:

209 __tag_check_if _mc_in_galley:TF

210 {

211 \iow_term:n {Marks~from~this~page:~}

212 }

213 {

214 \iow_term:n {Marks~from~a~previous~page:~}
215 }

216 \seq_show:N \1__tag_mc_firstmarks_seq

217 \seq_show:N \1__tag_mc_botmarks_seq

218 __tag_check_if_mc_tmb_missing:T

219 {

220 \iow_term:n {BDC~missing~on~this~page!}
221 }

202 __tag_check_if_mc_tme_missing:T

223 {

224 \iow_term:n {EMC~missing~on~this~page!}
225 ¥

226 } B

27 mc-marks / use .code:n =

50

__tag_mc_get_marks:

__tag_check_if _mc_in_galley:TF

{ Marks~from~this~page:~}

{ Marks~from~a~previous~page:~}

\seq_use:Nn \1__tag _mc_firstmarks_seq {,~}\quad
\seq_use:Nn \1__tag_mc_botmarks_seq {,~}\quad
__tag_check_if_mc_tmb_missing:T

{
BDC~missing~
}
__tag_check_if_mc_tme_missing:T
{
EMC~missing
}
},
mc-marks .default:n = show

}

(End of definition for mc-marks (show-key). This function is documented on page 42.)

s \keys_define:nn { __tag / show }

{
struct-stack .choice:
,struct-stack / log .code:n = \seq_log:N \g__tag_struct_tag_stack_seq
,struct-stack / show .code:n = \seq_show:N \g__tag_struct_tag_stack_seq
,struct-stack .default:n = show
}
(/package)

(End of definition for struct-stack (show-key). This function is documented on page 42.)

The following key is available only if the tagpdf-debug package is loaded and shows all
structures starting with the one with the number given by the key.

(*debug)

5 \keys_define:nn { __tag / show }

{
,debug/structures .code:n =
{
\int_step_inline:nnn{#1}{\c@g__tag_struct_abs_int}
{
\msg_term:nneeee

{ tag/debug } { show-struct }

{ ##1 }

{

\prop_map_function:cN
{g__tag_struct_debug_##1_prop}
\msg_show_item_unbraced:nn

}
{34{1?}

\msg_term:nneeee

o1

271 { tag/debug } { show-kids }

72 { ##1}

273 {

274 \seq_map_function:cN

275 {g__tag_struct_debug_kids_##1_seq}
276 \msg_show_item_unbraced:n

277 }

278 {r{}

279 }

280 i

281 ,debug/structures .default:n = 1
282 }
283 (/debug)

(End of definition for debug/structures (show-key). This function is documented on page 42.)

13 Commands to extend document commands

The following commands and code parts are not core commands of tagpdf. They either
provide work-arounds for missing functionality elsewhere, or do a first step to apply
tagpdf commands to document commands. This part should be regularly revisited to
check if the code should go to a better place or can be improved.

250 (xpackage)

13.1 Document structure

\g__tag_root_default_tl
activate (setup-key)

activate/socket (setup-key)s \tl_new:N\g__tag_root_default_tl
26 \tl_gset:Nn\g__tag_root_default_tl {Document}

255 \hook_gput_code:nnn{begindocument}{tagpdf}{\tagstructbegin{tag=\g__tag_root_default_tl1l}}
250 \hook_gput_code:nnn{tagpdf/finish/before}{tagpdf}{\tagstructend}

201 \keys_define:nn { __tag / setup}

202 {

203 activate/socket .bool_set:N = \1__tag_active_socket_bool,

204 activate .code:n =

295 {

296 \keys_set:nn { __tag / setup }

207 { activate/mc,activate/tree,activate/struct,activate/socket }
208 \tl_gset:Nn\g__tag_root_default_tl {#1}

299 },

300 activate .default:n = Document

00

(End of definition for \g__tag_root_default_t1, activate (setup-key), and activate/socket (setup-
key). These functions are documented on page 41.)

52

\pdffakespace

\1__tag_para_bool
\1__tag_para_flattened_bool
\1__tag_para_show_book
\g__tag_para_begin_in®23
\g__tag_para_end_int*
\g__tag_para_main_begin_int325
\g__tag_para_main_end_inﬁm
\g__tag_para_main_struct_téi
\1__tag_para_tag_default_t%29
\1__tag_para_tag_tl
\1l__tag_para_main_tag_tl
\1__tag_para_attr_class_tl
\1__tag para main attr class_tl

13.2 Structure destinations

Since TeXlive 2022 pdftex and luatex offer support for structure destinations and the
pdfmanagement has backend support for. We activate them if structures are actually
created. Structure destinations are actually PDF 2.0 only but they don’t harm in older
PDF and can improve html export.

\AddToHook{begindocument/before}
{
\bool_lazy_and:nnT

{ \g__tag_active_struct_dest_bool }

{ \g__tag_active_struct_bool }

{
\tl_set:Nn \1_pdf_current_structure_destination_tl

{ {__tag/struct}{\g__tag_struct_stack_current_tl }}

\pdf_activate_indexed_structure_destination:

}

13.3 Fake space

We need a luatex variant for \pdffakespace. This should probably go into the kernel at
some time. We also provide a no-op version for dvi mode

\bool_if:NT \g__tag_mode_lua_bool

{
\NewDocumentCommand\pdffakespace { }
{
__tag_fakespace:
}
}

\providecommand\pdffakespace{}

(End of definition for \pdffakespace. This function is documented on page 42.)

13.4 Paratagging

The following are some simple commands to enable/disable paratagging. Probably one
should add some checks if we are already in a paragraph.

At first some variables.

(/package)

(base)\bool_new:N \1__tag_para_flattened_bool
(base)\bool_new:N \1__tag_para_bool

(xpackage)

\int_new:N \g__tag_para_begin_int
\int_new:N \g__tag_para_end_int

\int_new:N \g__tag_para_main_begin_int
\int_new:N \g__tag_para_main_end_int

this will hold the structure number of the current text-unit.

53

346

347

348

__tag gincr para main begin int:

\

__tag_gincr_para_begin_int

__tag_gincr_para_end_int

__tag gincr para main end int:

349
350
351
352
353
354

355

358
359
360
361
362
363

364

__tag_start_para_ints:

__tag_stop_para_ints:

365

367

368

369

\tl_new:N \g__tag_para_main_struct_tl
\tl_gset:Nn \g__tag_para_main_struct_tl {1}
\tl_new:N \1__tag_para_tag_default_tl
\tl_new:N \1__tag_para_tag_tl
\tl_set:Nn \1__tag_para_tag_tl { \1__tag_para_tag_default_tl }
\tl_new:N \1l__tag_para_main_tag_tl
\IfFormatAtLeastTF{2025-11-01}
{
\tl_set:Nn \1__tag_para_tag_default_tl { \UseStructureName {para/textblockl} }
\tl_set:Nn \1__tag_para_main_tag_tl { \UseStructureName {para/semantic} }
}
{
\tl_set:Nn \1__tag_para_tag_default_tl { text }
\tl_set:Nn \1__tag_para_main_tag_tl {text-unit}
}

this is perhaps already defined by the block code
\tl_if_exist:NF \1__tag_para_attr_class_tl
{\tl_new:N \1__tag_para_attr_class_tl }
\tl_new:N \1__tag_para_main_attr_class_tl

(End of definition for \1__tag_para_bool and others.)

The global para counter should be set through commands so that \tag_stop: can stop
them.

\cs_new_protected:Npn __tag_gincr_para_main_begin_int:

{
\int_gincr:N \g__tag_para_main_begin_int
}
\cs_new_protected:Npn __tag_gincr_para_begin_int:
{
\int_gincr:N \g__tag_para_begin_int
}
\cs_new_protected:Npn __tag_gincr_para_main_end_int:
{
\int_gincr:N \g__tag_para_main_end_int
}
\cs_new_protected:Npn __tag_gincr_para_end_int:
{
\int_gincr:N \g__tag_para_end_int
}

(End of definition for __tag_gincr_para_main_begin_int: and others.)

\cs_new_protected:Npn __tag_start_para_ints:
{
\cs_set_protected:Npn __tag_gincr_para_main_begin_int:
{

\int_gincr:N \g__tag_para_main_begin_int

54

372

__tag para main store_struct:

392
393

394

395
396
397
398

399

para/tagging (setup-key)
para/tag (setup-key)
para/maintag (setup-key)
para/tagging (tool-key)
para/tag (tool-key)
para/maintag (tool-key)
para/flattened (tool-key)
unittag (deprecated)
para-flattened (deprecated)
paratagging (deprecated)
paratagging-show (deprecated)
paratag (deprecated)

}
\cs_set_protected:Npn __tag_gincr_para_begin_int:
{
\int_gincr:N \g__tag_para_begin_int
}
\cs_set_protected:Npn __tag_gincr_para_main_end_int:
{
\int_gincr:N \g__tag_para_main_end_int
}
\cs_set_protected:Npn __tag_gincr_para_end_int:
{
\int_gincr:N \g__tag_para_end_int
}
}
\cs_new_protected:Npn __tag_stop_para_ints:
{
\cs_set_eq:NN __tag_gincr_para_main_begin_int:\prg_do_nothing:
\cs_set_eq:NN __tag_gincr_para_begin_int: \prg_do_nothing:
\cs_set_eq:NN __tag_gincr_para_main_end_int: \prg_do_nothing:
\cs_set_eq:NN __tag_gincr_para_end_int: \prg_do_nothing:

(End of definition for __tag_start_para_ints: and __tag_stop_para_ints:.)

We want to be able to inspect the current para main structure, so we need a command
to store its structure number

\cs_new:Npn __tag_para_main_store_struct:
{
\tl_gset:Ne \g__tag_para_main_struct_tl {\int_use:N \c@g__tag_struct_abs_int }

}
(End of definition for __tag_para_main_store_struct:.)
temporary adaption for the block module:

\AddToHook{package/latex-lab-testphase-block/after}

{
\tl_if_exist:NT \1_tag_para_attr_class_tl
{
\tl_set:Nn \1__tag_para_attr_class_tl { \1_tag_para_attr_class_tl }
}
}

These keys enable/disable locally paratagging. Paragraphs are typically tagged with two
structure: A main structure around the whole paragraph, and inner structures around
the various chunks. Debugging can be activated locally with debug/show=para, this can
affect the typesetting as the small numbers are boxes and they have a (small) height.
Debugging can be deactivated with debug/show=para0ff The para/tag key sets the tag
used by the inner structure, para/maintag the tag of the outer structure, both can also
be changed with \tag_tool:n

55

202 \keys_define:nn { __tag / setup }

403 {

404 para/tagging .bool_set:N = \1__tag_para_bool,

405 debug/show/para .code:n = {\bool_set_true:N \1__tag_para_show_bool},
406 debug/show/para0ff .code:n = {\bool_set_false:N \1__tag_para_show_bool},
407 para/tag .tl_set:N = \1__tag_para_tag_t1,

408 para/maintag .tl_set:N = \1__tag_para_main_tag_tl,

409 para/flattened .bool_set:N = \1__tag_para_flattened_bool

410 }

411 \keys_define:nn { tag / tool}

412 {

413 para/tagging .bool_set:N = \1__tag_para_bool,

414 para/tag .tl_set:N = \1__tag_para_tag_t1,

415 para/maintag .tl_set:N = \1__tag_para_main_tag_tl,

416 para/flattened .bool_set:N = \1__tag_para_flattened_bool

417 }

the deprecated names

s1s \keys_define:nn { __tag / setup }

419 {

420 paratagging .bool_set:N = \1__tag_para_bool,

421 paratagging-show .bool_set:N = \1__tag_para_show_bool,
422 paratag .tl_set:N = \1__tag_para_tag_tl

24 \keys_define:nn { tag / tool}

425 {

426 para .bool_set:N = \1__tag_para_bool,

427 paratag .tl_set:N = \1__tag_para_tag_tl,

428 unittag .tl_set:N = \1__tag_para_main_tag_t1l,

429 para-flattened .bool_set:N = \1__tag_para_flattened_bool
430 }

(End of definition for para/tagging (setup-key) and others. These functions are documented on page
43.)

Helper command for debugging:

431 \cs_new_protected:Npn __tag_check_para_begin_show:nn #1 #2
422 %#l color, #2 prefix

433 {

434 \bool_if:NT \1__tag_para_show_bool

435 {

436 \tag_mc_begin:n{artifact}

437 \llap{\color_select:n{#1}\tiny#2\int_use:N\g__tag_para_begin_int\ }
438 \tag_mc_end:

439 3

440 }

2> \cs_new_protected:Npn __tag_check_para_end_show:nn #1 #2
w3 h#1 color, #2 prefix

444 {

415 \bool_if:NT \1__tag_para_show_bool
446 {

447 \tag_mc_begin:n{artifact}

56

478

\rlap{\color_select:n{#1}\tiny\ #2\int_use:N\g__tag_para_end_int}
\tag_mc_end:
}

The para/begin and para/end code. We have two variants here: a simpler one, which
must be used if the block code is not used (and so probably will disappear at some time)
and a more sophisticated one that must be used if the block code is used. It is possible
that we will need more variants, so we setup a socket so that the code can be easily
switched. This code moves into lttagging (2025/11), so we add a test for the transition.

\socket_if_exist:nF { tagsupport/para/begin }
{
\NewTaggingSocket {para/begin}{0}
\NewTaggingSocket {para/end}{0}

\NewTaggingSocketPlug{para/begin}{plain}

{
\bool_if:NT \1__tag_para_bool
{
\bool_if:NF \1__tag_para_flattened_bool
{
__tag_gincr_para_main_begin_int:
\tag_struct_begin:n
{
tag=\1__tag_para_main_tag_tl,
}
__tag_para_main_store_struct:
}
__tag_gincr_para_begin_int:
\tag_struct_begin:n {tag=\1__tag_para_tag_tl}
__tag_check_para_begin_show:nn {green}{}
\tag_mc_begin:n {}
}
}
\NewTaggingSocketPlug{para/begin}{block}
{
\bool_if:NT \1__tag_para_bool
{
\legacy_if:nF { @inlabel }

{
__tag_check_typeout_v:n
{==>~ @endpe = \legacy_if:nTF { @endpe }{true}{false} \on@line }
\legacy_if:nF { Qendpe }
{
\bool_if:NF \1__tag_para_flattened_bool
{
__tag_gincr_para_main_begin_int:
\tag_struct_begin:n
{
tag=\1__tag_para_main_tag_tl,
attribute-class=\1__tag_para_main_attr_class_tl,
}

__tag_para_main_store_struct:

57

496 }

497 __tag_gincr_para_begin_int:

498 __tag_check_typeout_v:n {==>~increment~ P \on@line }
499 \tag_struct_begin:n

500 {

501 tag=\1__tag_para_tag_tl

502 ,attribute-class=\1__tag_para_attr_class_tl

503 }

504 __tag_check_para_begin_show:nn {green}{\PARALABEL}
505 \tag_mc_begin:n {}

506 }

507 }

508 }

there was no real difference between the original and in the block variant, only a debug
message. We therefore define only a plain variant.

509 \NewTaggingSocketPlug {para/end}{plain}

510

511 \bool_if:NT \1__tag_para_bool

512 {

513 __tag_gincr_para_end_int:

514 __tag_check_typeout_v:n {==>~increment~ /P \on®@line }
515 \tag_mc_end:

516 __tag_check_para_end_show:nn {red}{}
517 \tag_struct_end:

518 \bool_if:NF \1__tag_para_flattened_bool
519 {

520 __tag_gincr_para_main_end_int:

521 \tag_struct_end:

522 }

523 }

524 }

525 }

By default we assign the plain plug:

s26 \AssignTaggingSocketPlug { para/begin}{plain}
s27 \AssignTaggingSocketPlug { para/end}{plain}

And use the sockets in the hooks. Once tagging sockets exist, this can be adapted.

526 \AddToHook{para/begin}{ \tag_socket_use:n { para/begin } }
520 \AddToHook{para/end} { \tag_socket_use:n { para/end } }

If the block code is loaded we must ensure that it doesn’t overwrite the hook again.
And we must reassign the para/begin plug. This can go once the block code no longer
tries to adapt the hooks.

\AddToHook{package/latex-lab-testphase-block/after}

o

531 {

532 \RemoveFromHook{para/begin} [tagpdf]

533 \RemoveFromHook{para/end} [latex-lab-testphase-block]
534 \AddToHook{para/begin} [tagpdf]

535 {

58

536 \socket_use:n { tagsupport/para/begin }

537 }

s35. \AddToHook{para/end} [tagpdf]

539 {

540 \socket_use:n { tagsupport/para/end }

541 }

s> \socket_assign_plug:nn { tagsupport/para/begin}{block}
543 }

544

We check the para count at the end. If tagging is not active it is not a error, but we
issue a warning as it perhaps indicates that the testphase code didn’t guard everything
correctly.

5155 \AddToHook{enddocument/info}

546 {
547 \tag_if_active:F
548 {
549 \msg_redirect_name:nnn { tag } { para-hook-count-wrong } { warning }
550 }
551 \int_compare:nNnF {\g__tag_para_main_begin_int}={\g__tag_para_main_end_int}
552 {
553 \msg_error:nneee
554 {tag}
555 {para-hook-count-wrong}
556 {\int_use:N\g__tag_para_main_begin_int}
557 {\int_use:N\g__tag_para_main_end_int}
558 {text-unit}
559 }
560 \int_compare:nNnF {\g__tag_para_begin_int}={\g__tag_para_end_int}
561 {
562 \msg_error:nneee
563 {tag}
564 {para-hook-count-wrong}
565 {\int_use:N\g__tag_para_begin_int}
566 {\int_use:N\g__tag_para_end_int}
567 {text}
568 }
569 }
< /package>

\tagpdfparaOn This two command switch para mode on and off. \tagpdfsetup could be used too but
\tagpdfparaOff is longer. An alternative is \tag_tool:n{para/tagging=false}

70 (base) \newcommand\tagpdfparaOn {}

571 {base) \newcommand\tagpdfparaOff{}

(xpackage)

573 \renewcommand\tagpdfparaOn {\bool_set_true:N \1__tag_para_bool}
571 \renewcommand\tagpdfparaOff{\bool_set_false:N \1__tag_para_bool}

o

-
N

(End of definition for \tagpdfparaOn and \tagpdfparaOff. These functions are documented on page
43.)

59

\tagpdfsuppressmarks

test/lang (setup-key)

<
%
o)

586

587

589

590

591

592

593

594

This command allows to suppress the creation of the marks. It takes an argument
which should normally be one of the mc-commands, puts a group around it and suppress
the marks creation in this group. This command should be used if the begin and end
command are at different boxing levels. E.g.

\G@hangfrom
{
\tagstructbegin{tag=H1}/,
\tagmcbegin {tag=H1}%
#2
}
{#3\tagpdfsuppressmarks{\tagmcend}\tagstructend}y,

5 \NewDocumentCommand\tagpdfsuppressmarks{m}

{{\use:c{__tag_mc_disable_marks:} #1}}

(End of definition for \tagpdfsuppressmarks. This function is documented on page 43.)

13.5 Language support

With the following key the lang variable is set. All structures in the current group will
then set this lang variable.

\keys_define:nn { __tag / setup }
{
text / lang .tl_set:N = \1__tag_struct_lang tl
}

(End of definition for test/lang (setup-key). This function is documented on page 77.)

13.6 Header and footer

Header and footer should normally be tagged as artifacts. The following code requires
the new hooks. For now we allow to disable this function, but probably the code should
always there at the end. TODO check if Pagination should be changeable.

\cs_new_protected:Npn__tag_hook_kernel_before_head:{}
\cs_new_protected:Npn__tag_hook_kernel_after_head:{}
\cs_new_protected:Npn__tag_hook_kernel_before_foot:{}
\cs_new_protected:Npn__tag_hook_kernel_after_foot:{}

This can go once the new OR is active (June 2025)

\AddToHook{begindocument}
{
\cs_if_exist:NT \@kernel@before@head
{
\tl_put_right:Nn \@kernel@before@head {__tag_hook_kernel_before_head:}
\tl_put_left:Nn \@kernel@after@head {__tag_hook_kernel_after_head:}
\tl_put_right:Nn \@kernel@before@foot {__tag_hook_kernel_before_foot:}
\tl_put_left:Nn \@kernel@after@foot {__tag_hook_kernel_after_foot:}

60

We use the page sockets.

505 \NewTaggingSocketPlug{build/page/header}{tagpdf}

596 {

597 __tag_hook_kernel_before_head:
598 #2

599 __tag_hook_kernel_after_head:
600 }

601
602 \AssignTaggingSocketPlug{build/page/header}{tagpdf}
c0s \NewTaggingSocketPlug{build/page/footer}{tagpdf}

604 {

605 __tag_hook_kernel_before_foot:
606 #2

607 __tag_hook_kernel_after_foot:
608 }

c00 \AssignTaggingSocketPlug{build/page/footer}{tagpdf}

610 \bool_new:N \g__tag_saved_in_mc_bool
611 \cs_new_protected:Npn __tag_exclude_headfoot_begin:

612 {

613 \bool_set_false:N \1__tag_para_bool

614 \bool_if:NTF \g__tag_mode_lua_bool

615 ‘[

616 \tag_mc_end_push:

617 }

618 ‘[

619 \bool_gset_eq:NN \g__tag_saved_in_mc_bool \g__tag_in_mc_bool
620 \bool_gset_false:N \g__tag_in_mc_bool

621 }

622 \tag_mc_begin:n {artifact}

623 \tag_suspend:n{headfoot}

624 }

o5 \cs_new_protected:Npn __tag_exclude_headfoot_end:
66 {

627 \tag_resume:n{headfoot}

628 \tag_mc_end:

629 \bool_if:NTF \g__tag_mode_lua_bool

630 ‘[

631 \tag_mc_begin_pop:n{}

632 }

633 {

634 \bool_gset_eq:NN \g__tag_in_mc_bool\g__tag_saved_in_mc_bool
635 }

636 }

This version allows to use an Artifact structure

637 __tag_attr_new_entry:nn {__tag/attr/pagination}{/0/Artifact/Type/Pagination}
63 \cs_new_protected:Npn __tag_exclude_struct_headfoot_begin:n #1
639 ‘[

640 \bool_set_false:N \1__tag_para_bool
641 \bool_if:NTF \g__tag_mode_lua_bool
642 {

643 \tag_mc_end_push:

61

644

}
645 {

646 \bool_gset_eq:NN \g__tag_saved_in_mc_bool \g__tag_in_mc_bool
647 \bool_gset_false:N \g__tag_in_mc_bool

648 }

649 \tag_struct_begin:n{tag=Artifact,attribute-class=__tag/attr/#1}
650 \tag_mc_begin:n {artifact=#1}

651 \tag_suspend:n{headfoot}

652 }

653

e+ \cs_new_protected:Npn __tag_exclude_struct_headfoot_end:

655 {

656 \tag_resume:n{headfoot}

657 \tag_mc_end:

658 \tag_struct_end:

659 \bool_if:NTF \g__tag_mode_lua_bool

660 {

661 \tag_mc_begin_pop:n{}

662 }

663 {

664 \bool_gset_eq:NN \g__tag_in_mc_bool\g__tag_saved_in_mc_bool
665 }

666 }

And now the keys

page/exclude-header-footer (setup-key)
exclude-header-footer (deprecated)
e7 \keys_define:nn { __tag / setup }

668 {

669 page/exclude-header-footer .choice:,

670 page/exclude-header-footer / true .code:n =

671 {

672 \cs_set_eq:NN __tag_hook_kernel_before_head: __tag_exclude_headfoot_begin:

673 \cs_set_eq:NN __tag_hook_kernel_before_foot: __tag_exclude_headfoot_begin:

674 \cs_set_eq:NN __tag_hook_kernel_after_head: __tag_exclude_headfoot_end:

675 \cs_set_eq:NN __tag_hook_kernel_after_foot: __tag_exclude_headfoot_end:

676 1,

677 page/exclude-header-footer / pagination .code:n =

678 {

679 \cs_set:Nn __tag_hook_kernel_before_head: { __tag exclude_struct_headfoot_begin:n {pagi
680 \cs_set:Nn __tag_hook_kernel_before_foot: { __tag_exclude_struct_headfoot_begin:n {pag:
681 \cs_set_eq:NN __tag_hook_kernel_after_head: __tag_exclude_struct_headfoot_end:
682 \cs_set_eq:NN __tag_hook_kernel_after_foot: __tag_exclude_struct_headfoot_end:
683 } 5

684 page/exclude-header-footer / false .code:n =

685 {

686 \cs_set_eq:NN __tag_hook_kernel_before_head: \prg_do_nothing:

687 \cs_set_eq:NN __tag_hook_kernel_before_foot: \prg_do_nothing:

688 \cs_set_eq:NN __tag_hook_kernel_after_head: \prg_do_nothing:

689 \cs_set_eq:NN __tag_hook_kernel_after_foot: \prg_do_nothing:

690 1,

691 page/exclude-header-footer .default:n = true,
692 page/exclude-header-footer .initial:n = true,

62

deprecated name

693 exclude-header-footer .meta:n = { page/exclude-header-footer = {#1} }

694 }

(End of definition for page/exclude-header-footer (setup-key) and exclude-header-footer (deprecated).
These functions are documented on page 43.)

A special, experimental tagged version, which only works with fancyhdr or similar
that uses parbox

605 \AtBeginDocument

696 {

697 \socket_if_exist:nT{tagsupport/parbox/before}

698 {

699 \NewTaggingSocketPlug{parbox/before}{tag/footer}
700 {

701 \tag_struct_begin:n{tag=Span}

702 \tag_mc_begin:n{}

703 }

704

705 \NewTaggingSocketPlug{parbox/after}{tag/footer}
706 {

707 \tag_mc_end:

708 \tag_struct_end:

709 }

710 }

711 }

713 \cs_new_protected:Npn __tag_headfoot_tagged_begin:n #1
14 {

715 \AdssignTaggingSocketPlug{parbox/before}{tag/footer}
716 \AssignTaggingSocketPlug{parbox/after}{tag/footer}

717 \bool_set_false:N \1__tag_para_bool

718 \bool_if:NTF \g__tag_mode_lua_bool

719 {

720 \tag_mc_end_push:

721 }

722 {

723 \bool_gset_eq:NN \g__tag_saved_in_mc_bool \g__tag_in_mc_bool
724 \bool_gset_rfalse:N \g__tag_in_mc_bool

725 }

726 \tag_struct_begin:n{tag=Artifact,attribute-class=__tag/attr/#1,parent=\tag_get:n{current_Sec
727 }

728

720 \cs_new_protected:Npn __tag_headfoot_tagged_end:

730 {

731 \tag_struct_end:

732 \bool_if:NTF \g__tag_mode_lua_bool

733 {

734 \tag_mc_begin_pop:n{}

735 }

736 {

737 \bool_gset_eq:NN \g__tag_in_mc_bool\g__tag_saved_in_mc_bool
738 }

63

759

760

761

762

763

764

765

766

767

768

769

}
\keys_define:nn { __tag / setup }

{
page/tag-header-footer .code:n =
\cs_set:Nn __tag_hook_kernel_before_head: { __tag_headfoot_tagged_begin:n {pagination}}
\cs_set:Nn __tag_hook_kernel_before_foot: { __tag headfoot_tagged_begin:n {pagination}}
\cs_set_eq:NN __tag_hook_kernel_after_head: __tag_headfoot_tagged_end:
\cs_set_eq:NN __tag_hook_kernel_after_foot: __tag_headfoot_tagged_end:
}
}

13.7 Links

We need to close and reopen mc-chunks around links. We handle URI, GoTo (internal)
links, GoToR, Launch and Named links. Links should have an alternative text in the
Contents key; this is added for normal links by the generic hyperref driver. With luatex
we make use of the lualinksplit package to get OBJR of all annotations into the Link
structure, so the hook code should not contain the command to insert the OBJR into
the structure.

At first we provide some commands that will be in the next LaTeX release (11/2025)

\AddToHookNext{class/before}

{
\cs_if_exist:NF \UseStructureName
{
\cs_new:Npn\UseStructureName#1
{
\cs:w 1__tag _name_#1_tI\cs_end:
}
}
\cs_if_exist:NF \1__tag_name_link_t1l
{
\tl_new:N \1__tag name_link_tl
\tl_set:Nn \1__tag _name_link_t1l{Link}
}
}

Tagging sockets for links

\socket_if_exist:nF {tagsupport/link/before}
{
\NewTaggingSocket{link/before}{1}
\NewTaggingSocket{link/after}{1}
}
\NewTaggingSocketPlug{link/before}{kernel}

\mode_leave_vertical:
\tag_mc_end_push:
\tag_struct_begin:n { tag=\UseStructureName{link} }
\tag_mc_begin:n {}
#1
}

s \AssignTaggingSocketPlug{link/before}{kernel}

64

779

70 \NewTaggingSocketPlug{link/after}{kernel}

781 '[

782 #1

783 \tag_mc_ end:

784 \tag_struct_end:

785 \tag_mc_begin_pop:n{}
786 }

757 \AssignTaggingSocketPlug{link/after}{kernel}
788

789

700 \bool_lazy_and:nnTF

71 { \sys_if_engine_luatex_p: }

700 {

703 \tl_if_empty_p:e

794 {

795 \lua_now:e

796 { if~ luatexbase.in_callback('pre_shipout_filter', 'linksplit')~
797 then~else~tex.print('1')~end
798 }

799 }

s0 F

01 {

802 \hook_gput_code:nnn

803 {pdfannot/link/URI/before}

804 {tagpdf}

805 {

806 \UseTaggingSocket{link/before}{}
807 }

808

809 \hook_gput_code:nnn

810 {pdfannot/link/URI/after}

811 {tagpdf}

812 {

813 \UseTaggingSocket{link/after}{}
814 }

815

816 \hook_gput_code:nnn

817 {pdfannot/link/GoTo/before}

818 {tagpdf}

819 {

820 \UseTaggingSocket{link/before}{}
821 }

823 \hook_gput_code:nnn

824 {pdfannot/link/GoTo/after}

825 {tagpdf}

826 {

827 \UseTaggingSocket{link/after}{}
828 }

829

830 \hook_gput_code:nnn
831 {pdfannot/link/GoToR/before}
832 {tagpdf}

65

833

834

835

836

837

838

839

848

849

850

851

852

853

860

861

862

863

864

865

866

867

878

879

880

881

882

883

884

{
\UseTaggingSocket{link/before}
}

\hook_gput_code :nnn
{pdfannot/link/GoToR/after}
{tagpdf}

{
\UseTaggingSocket{link/after}{}
}

\hook_gput_code :nnn
{pdfannot/link/Launch/before}
{tagpdf}

{
\UseTaggingSocket{link/before}{}
}

\hook_gput_code:nnn
{pdfannot/link/Launch/after}
{tagpdf}

{
\UseTaggingSocket{link/after}{}
}

\hook_gput_code:nnn
{pdfannot/link/Named/before}
{tagpdf}

{
\UseTaggingSocket{link/before}{}
}

\hook_gput_code:nnn
{pdfannot/link/Named/after}
{tagpdf}

{
\UseTaggingSocket{link/after}{}
}

\hook_gput_code:nnn
{pdfannot/link/URI/before}
{tagpdf}

{
\UseTaggingSocket{link/before}
{
\pdfannot_dict_put:nne
{ link/URI }
{ StructParent }
{ \tag_struct_parent_int: }
}
}

\hook_gput_code:nnn
{pdfannot/link/URI/after}
{tagpdf}

66

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

929

930

931

932

933

934

935

936

937

938

939

940

{

}

\UseTaggingSocket{link/after}

{

}

\tag_struct_insert_annot:ee
{\pdfannot_link_ref_last:}{\tag_struct_parent_int:}

\hook_gput_code:nnn
{pdfannot/link/GoTo/before}
{tagpdf}

{

}

\UseTaggingSocket{link/before}

}

\pdfannot_dict_put:nne
{ link/GoTo }
{ StructParent }
{ \tag_struct_parent_int: }

\hook_gput_code:nnn
{pdfannot/link/GoTo/after}
{tagpdf}

{

}

\UseTaggingSocket{link/after}

}

\tag_struct_insert_annot:ee
{\pdfannot_link_ref_last:}{\tag_struct_parent_int:}

\hook_gput_code:nnn
{pdfannot/link/GoToR/before}
{tagpdf}

{

}

\UseTaggingSocket{link/beforel}

{

}

\pdfannot_dict_put:nne
{ 1ink/GoToR }
{ StructParent }
{ \tag_struct_parent_int: }

\hook_gput_code:nnn
{pdfannot/link/GoToR/after}
{tagpdf}

{

\UseTaggingSocket{link/after}

{

}

\tag_struct_insert_annot:ee
{\pdfannot_link_ref_last:}{\tag_struct_parent_int:}

67

943 \hook_gput_code:nnn

944 {pdfannot/link/Named/before}

945 {tagpdf}

946 {

947 \UseTaggingSocket{link/before}
948 {

949 \pdfannot_dict_put:nne

950 { link/Named }

951 { StructParent }

952 { \tag_struct_parent_int: }
953 F

954 }

955

956 \hook_gput_code:nnn

057 {pdfannot/link/Named/after}

958 {tagpdf}

959 {

960 \UseTaggingSocket{link/after}
961 '(

962 \tag_struct_insert_annot:ee
963 {\pdfannot_link_ref_last:}{\tag_struct_parent_int:}
964 }

965 }

966 \hook_gput_code:nnn

967 {pdfannot/link/Launch/before}

968 {tagpdf}

969 {

970 \UseTaggingSocket{link/before}
971 {

972 \pdfannot_dict_put:nne

073 { link/Launch }

974 { StructParent }

975 { \tag_struct_parent_int: }
976 }

977 }

978

979 \hook_gput_code:nnn

980 {pdfannot/link/Launch/after}

981 {tagpdf}

982 {

983 \UseTaggingSocket{link/after}
984 {

985 \tag_struct_insert_annot:ee

986 {\pdfannot_link_ref_last:}{\tag_struct_parent_int:}
987 }

988 }

989 }

13.8 Attaching css-files for derivation

Derivation to html (https://pdfa.org/wp-content /uploads/2019/06/Deriving_ HTML_ -
from_PDF.pdf, implemented by, e.g., ngpdf) can be improved by attaching CSS style

68

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

definitions in associated files with relationship supplement to the Catalog!.
Such CSS style definitions can be given in two ways:

e In files with the extension .css. Such files should contain only CSS style definitions.

ngpdf will store these files and include them with an <1ink rel=stylesheet href=...

in the head of the html.

e In files with the extension .html. Such files should contain CSS style definitions
inside one (or more) <style>...</style> html tags. The content of these files are
copied by ngpdf directly into the head of the derived html.

By default (if tagging is active) tagpdf embeds now such CSS style definitions. Cur-
rently the list of files is rather short and consists of two files (with extension .html and
<style>...</style> html tags) which are provided by the tagpdf package:

o latex-align-css.html which improves the styling of amsmath alignments tagged with
MathML.

o latex-list-css.html which improves the style of list environments.

It is possible to suppress the embedding of these files by setting the \tagpdfsetup
key attach-css to false, attach-css=true or attach-css reverts this again.

For developers, \tagpdfsetup some keys to manipulate the list exist: With css-
list={filel,file2} the list can be overwritten. css-1list= clears the list (and so sup-
presses the embedding too). To remove a file from the list, use css-list-remove=file,
e.g. css-list-remove=latex-list-css.html. To add your own file use css-list-
add=my-fancy-align-css.html. It is also possible to attach a .css-file in this way.

These keys do not affect files added directly with root-supplemental-file or catalog-
supplemental-file.

The files in this list are attached at the end of the compilation but you shouldn’t
rely on a specific order of the embedding in the html.

We want to avoid to embed files twice, so we use a prop.

\prop_new:N \g__tag_css_prop
\prop_gset_from_keyval:Nn \g__tag_css_prop
{
latex-list-css.html=true,
latex-align-css.html=true

}

\bool_new:N \g__tag_css_bool
\bool_gset_true:N \g__tag_css_bool

The files for the catalog must be added before the catalog is pushed.

\tl_gput_left:Nn \g__kernel_pdfmanagement_end_run_code_tl
{\bool_lazy_and:nnT { \g__tag_css_bool } \tag_if_active_p: }
{\prop_map_ inline:Nn \g__tag_css_prop
¢ \keys_set:nn { __tag / setup }{ catalog-supplemental-file= {#1} }

IPreviously they suggested the StructTreeRoot, but this is not compatible with pdf/A-3

69

1007 F

1008 }

1009 }

1010

w011 \keys_define:nn { __tag / setup }

1012 {

1013 attach-css .bool_gset:N = \g__tag_css_bool,

1014 css-list .code:n =

1015 {

1016 \tl_if_empty:nTF{#1}

1017 {\prop_gclear:N \g__tag_css_prop }

1018 {\prop_gput:Nnn \g__tag_css_prop { #1 }true}}

1019 },

1020 css-list-add .code:n = { \prop_gput:Nnn \g__tag_css_prop { #1 }true} },
1021 css-list-remove .code:n = { \prop_gremove:Nn \g__tag css_prop { #1 } },
1022 }

< /package> The tagpdf-tree module
Commands trees and main dictionaries
Part of the tagpdf package

Ulrike Fischer

Version 0.99x, released 2026-01-12

70

__tag_tree_final_checks:

1

3

5

6

Part IV

(ee=tag)

(xheader)

\ProvidesExplPackage {tagpdf-tree-code} {2026-01-12} {0.99x}

{part of tagpdf - code related to writing trees and dictionaries to the pdf}
(/header)

1 Trees, pdfmanagement and finalization code

The code to finish the structure is in a hook. This will perhaps at the end be a kernel
hook. TODO check right place for the code The pdfmanagement code is the kernel hook
after shipout/lastpage so all code affecting it should be before. Objects can be written
later, at least in pdf mode.

(xpackage)
7 \hook_gput_code:nnn{begindocument }{tagpdf}
{
\bool_if:NT \g__tag_active_tree_bool
{
\sys_if_output_pdf:TF
{
\AddToHook{enddocument/end} { __tag finish_structure: }
}
{
\AddToHook{shipout/lastpage} { __tag_finish_structure: }
}
}
}

29

1.1 Check structure

\cs_new_protected:Npn __tag_tree_final_checks:

{
\int_compare:nNnF {\seq_count:N\g__tag_struct_stack_seql={1}
{
\msg_warning:nn {tag}{tree-struct-still-open}
\int_step_inline:nnn{2}{\seq_count:N\g__tag_struct_stack_seq}
{\tag_struct_end:}
}
\socket_use:n { tag/check/parent-child-end }
\msg_note:nn {tag}{tree-statistic}
}

(End of definition for __tag_tree_final_checks:.)

1.2 Catalog: MarkInfo and StructTreeRoot and OpenAction

The StructTreeRoot and the MarkInfo entry must be added to the catalog. If there is
an OpenAction entry we must update it, so that it contains also a structure destination.
We do it late so that we can win, but before the pdfmanagement hook.

71

__tag/struct/1 This is the object for the root object, the StructTreeRoot
31 \pdf_object_new_indexed:nn { __tag/struct }{ 1 }
(End of definition for __tag/struct/1.)

\g tag tree openaction struct t1 We need a variable that indicates which structure is wanted in the OpenAction. By
default we use 2 (the Document structure).

22 \tl_new:N \g__tag_tree_openaction_struct_tl
33 \tl_gset:Nn \g__tag tree_openaction_struct_tl { 2 }

(End of definition for \g__tag_tree_openaction_struct_tl.)

viewer/startstructure (setup-key) We also need an option to setup the start structure. So we setup a key which sets the
variable to the current structure. This still requires hyperref to do most of the job, this
should perhaps be changed.

32 \keys_define:nn { __tag / setup }

5 {

36 viewer/startstructure .code:n =

37 {

38 \tl_gset:Ne \g__tag_tree_openaction_struct_tl {#1}

39 }

40 ,viewer/startstructure .default:n = { \int_use:N \c@g__tag_struct_abs_int }
41 }

(End of definition for viewer/startstructure (setup-key). This function is documented on page 77.)

The OpenAction should only be updated if it is there. So we inspect the Catalog-prop:

2 \cs_new_protected:Npn __tag_tree_update_openaction:

43 {

4 \prop_get:cnNT

4 { __kernel_pdfdict_name:n { g__pdf_Core/Catalog } }
46 {OpenAction}

a7 \1__tag_tmpa_tl

48 {

we only do something if the OpenAction is an array (as set by hyperref) in other cases
we hope that the author knows what they did.

49 \tl_if_head_eq_charcode:eNT { \tl_trim_spaces:o { \1__tag tmpa_tl } } [%]

50 {

51 \seq_set_split:Nno\l__tag_tmpa_seq {/} {\1__tag_tmpa_t1}

52 \pdfmanagement_add:nne {Catalog} { OpenAction }

53 {

54 <<

55 /S/GoTo \c_space_tl

56 /D~\1__tag_tmpa_tl\c_space_tl

57 /SD~[\pdf_object_ref_indexed:nn{__tag/struct}{\g__tag_tree_openaction_struct_t]

there should be always a /Fit etc in the array but better play safe here ...

72

58 \int_compare:nNnTF{ \seq_count:N \1__tag_tmpa_seq } > {1}

59 { /\seq_item:Nn\1l__tag tmpa_seq{2} }

60 {17}

61 >>

62 }

63 }

64 }

65 }

¢ \hook_gput_code:nnn{shipout/lastpage}{tagpdf}

67 {

68 \bool_if:NT \g__tag_active_tree_bool

69 {

70 \pdfmanagement_add:nnn { Catalog / MarkInfo } { Marked } { true }
71 \pdfmanagement_add:nne

72 { Catalog }

73 { StructTreeRoot }

74 { \pdf_object_ref_indexed:nn { __tag/struct } { 1 } }
75 __tag_tree_update_openaction:

76 }

77 }

1.3 Writing the IDtree

The ID are currently quite simple: every structure has an ID build from the prefix ID
together with the structure number padded with enough zeros to that we get directly an
lexical order. We ship them out in bundles At first a seq to hold the references for the
kids

\g__tag_tree_id_pad_int

7z \int_new:N\g__tag_tree_id_pad_int

&

(End of definition for \g__tag_tree_id_pad_int.)
Now we get the needed padding

70 \cs_generate_variant:Nn \tl_count:n {e}
\hook_gput_code:nnn{begindocument}{tagpdf}

s 1

82 \int_gset:Nn\g__tag_tree_id_pad_int

83 {\tl_count:e { __tag_property_ref_lastpage:nn{tagstruct}{1000}}+1}
s}

This is the main code to write the tree it basically splits the existing structure numbers
in chunks of length 50 TODO consider is 50 is a good length.

s \cs_new_protected:Npn __tag_tree_write_idtree:

g7 {

88 \tl_clear:N \1__tag_tmpa_t1l

89 \tl_clear:N \1__tag_tmpb_tl

% \int_zero:N \1__tag_tmpa_int

o1 \int_step_inline:nnn {2} {\cOg__tag_struct_abs_int}
92 {

73

93 \int_incr:N\1__tag_tmpa_int

9 \tl_put_right:Ne \1__tag_tmpa_t1l

95 {

9% __tag_struct_get_id:n{##1}~\pdf_object_ref_indexed:nn {__tag/struct}{##1}~
97 }

98 \int_compare:nNnF {\1__tag_tmpa_int}<{50} 7,

99 {

100 \pdf_object_unnamed_write:ne {dict}

101 { /Limits~[__tag_struct_get_id:n{##1-\1__tag_tmpa_int+1}~__tag_struct_get_id:n{4
102 /Names~[\1__tag_tmpa_t1]

103 }

104 \tl_put_right:Ne\l__tag_tmpb_tl {\pdf_object_ref_last:\c_space_tl}
105 \int_zero:N \1__tag_tmpa_int

106 \tl_clear:N \1__tag_tmpa_tl

107 }

108 }

109 \tl_if_empty:NF \1__tag_tmpa_tl

110 {

111 \pdf_object_unnamed_write:ne {dict}

112 {

113 /Limits~

114 [__tag_struct_get_id:n{\c@g__tag_struct_abs_int-\1__tag_tmpa_int+1}~
115 __tag_struct_get_id:n{\c@g__tag_struct_abs_int}]

116 /Names~[\1__tag_tmpa_t1]

117 }

118 \tl_put_right:Ne\l__tag_tmpb_tl {\pdf_object_ref_last:}

119 }

120 \pdf_object_unnamed_write:ne {dict}{/Kids~[\1__tag_tmpb_t1]}

121 __tag_prop_gput:cne

122 { g__tag_struct_1_prop }

123 { IDTree }

124 { \pdf_object_ref_last: }

125 }

1.4 Writing structure elements
The following commands are needed to write out the structure.

\tag tree write structtreeroot: This writes out the root object.

126 \cs_new_protected:Npn __tag_tree_write_structtreeroot:

127 {

128 __tag_prop_gput:cne

120 { g__tag struct_1_prop }

130 { ParentTree }

131 { \pdf_object_ref:n { __tag/tree/parenttree } }
132 __tag_prop_gput:cne

133 { g__tag_struct_1_prop }

134 { RoleMap }

135 { \pdf_object_ref:n { __tag/tree/rolemap } }

136 __tag _struct_£fill_kid_key:n { 1 }

137 \prop_gremove:cn { g__tag_struct_1_prop } {S}

138 __tag_struct_get_dict_content:nN { 1 } \1__tag_tmpa_tl
139 \pdf_object_write_indexed:nnne

74

__tag/tree/parenttree

\c@g__tag_parenttree_obj_int

{ __tag/struct } { 1 }

{dict}
{

\1__tag tmpa_tl
}

Better put S back, see https://github.com/latex3/tagging-project/issues/86

\prop_gput:cnn { g__tag struct_1_prop } {S} /StructTreeRoot }
}

(End of definition for __tag_tree_write_structtreeroot:.)
This writes out the other struct elems, the absolute number is in the counter.

\cs_new_protected:Npn __tag_tree_write_structelements:

{
\int_step_inline:nnnn {2}{1}{\cOg__tag_struct_abs_int}
{
__tag_struct_write_obj:n { ##1 }
}
}

(End of definition for __tag_tree_write_structelements:.)

1.5 ParentTree
The object which will hold the parenttree

\pdf_object_new:n { __tag/tree/parenttree }
(End of definition for __tag/tree/parenttree.)

The ParentTree maps numbers to objects or (if the number represents a page) to arrays of
objects. The numbers refer to two distinct types of entries: page streams and real objects
like annotations. The numbers must be distinct and ordered. So we rely on abspage for
the pages and put the real objects at the end. We use a counter to have a chance to get
the correct number if code is processed twice.

This is a counter for the real objects. It starts at the absolute last page value. It relies
on 13ref.

55 \int_new:N \c@g__tag_parenttree_obj_int

\hook_gput_code:nnn{begindocument }{tagpdf}

{
\int_gset:Nn
\c@g__tag_parenttree_obj_int
{ __tag_property_ref_ lastpage:nn{abspage}{100} }
}

(End of definition for \c@g__tag_parenttree_obj_int.)

We store the number/object references in a tl-var. If more structure is needed one could
switch to a seq.

0]

\g__tag_parenttree_objr_tl
12 \t1l_new:N \g__tag_parenttree_objr_tl
(End of definition for \g__tag_parenttree_objr_tl.)

\ tag parenttree add objr:mn This command stores a StructParent number and a objref into the tl var. This is only
for objects like annotations, pages are handled elsewhere.

163 \cs_new_protected:Npn __tag_parenttree_add_objr:nn #1 #2 }#1 StructParent number, #2 objref

164 {

165 \tl_gput_right:Ne \g__tag _parenttree_objr_tl
166 {

167 #1 \c_space_tl #2 ~°J

168 }

169 }

(End of definition for __tag_parenttree_add_objr:nn.)
\l tag parenttree content t1 A tl-var which will get the page related parenttree content.
170 \t1_new:N \1__tag _parenttree_content_tl
(End of definition for \1__tag_parenttree_content_tl.)

__tag_tree_fill_parenttree: This is the main command to assemble the page related entries of the parent tree. It
wanders through the pages and the mcid numbers and collects all mcid of one page.

171 \cs_new_protected:Npn __tag_tree_parenttree_rerun_msg: {}
172 \cs_new_protected:Npn __tag_tree_fill_parenttree:

173 {

174 \int_step_inline:nnnn{1}{1}{__tag_property_ref_lastpage:nn{abspage}{-1}} Jnot quite clear 1
175 { Jpage ##1

176 \prop_clear:N \1__tag_tmpa_prop

177 \int_step_inline:nnnn{1}{1}{__tag_property_ref_lastpage:nn{tagmcabs}{-1}}
178 {

179 Jmcid####l

180 \int_compare:nT

181 {\property_ref:enn{mcid-####1}{tagabspage}{-1}=##1} Jmcid is on current page
182 { yes

183 \prop_get :NnNT

184 \g__tag_mc_parenttree_prop

185 {####1}

186 \1__tag_tmpa_tl

187 {

188 \prop_put :Nee

189 \1__tag_tmpa_prop

190 {\property_ref:enn{mcid-####1}{tagmcid}{-1}}

191 {\1__tag_tmpa_tl}

192 }

193 }

194 }

195 \tl_put_right:Ne\l__tag_parenttree_content_tl

196 {

76

197

198

199

200

201

202

203

205

206

207

208

209

210

216

217

218

219

220

}

}

\int_eval:n {##1-1}\c_space_t1l
[\c_space_t1 %]

\int_step_inline:nnnn J####1
{0}
{1}
{ \prop_count:N \1__tag_tmpa_prop -1 }

{

}

\prop_get:NnNTF \1__tag_tmpa_prop {####1} \1__tag_tmpa_tl

%

}
{

}

page#l1:mcid##1:\1__tag_tmpa_tl :content
\tl_put_right:Ne \1__tag_parenttree_content_tl

{
\prop_if_exist:cTF { g__tag struct_ \1__tag_tmpa_tl _prop }
{
\pdf_object_ref_indexed:nn { __tag/struct }{ \1__tag tmpa_tl }
}
{
null
}
\c_space_t1
}

\cs_set_protected:Npn __tag_tree_parenttree_rerun_msg:
{
\msg_warning:nn { tag } {tree-mcid-index-wrong}

}

\tl_put_right:Nn
\1__tag_parenttree_content_tl

{5l

}

]j-~J

(End of definition for __tag_tree_fill_parenttree:.)

This is a special variant for luatex. lua mode must/can do it differently.

\cs_new_protected:Npn __tag_tree_lua_fill_parenttree:

{

\tl_set:Nn \1__tag_parenttree_content_tl

{

\lua_now:e

{

1tx.
(

)

__tag.func.output_parenttree

\int_use:N\g_shipout_readonly_int

7

__tag_tree_write parenttree:

259
260

261

__tag/tree/rolemap

262

__tag_tree_write_rolemap:

(End of definition for __tag_tree_lua_fill_parenttree:.)

This combines the two parts and writes out the object. TODO should the check for lua
be moved into the backend code?

\cs_new_protected:Npn __tag_tree_write_parenttree:

{

}

\bool_if:NTF \g__tag_mode_lua_bool
{
__tag _tree_lua_fill_parenttree:
}
{
__tag tree_fill_parenttree:
}

__tag_tree_parenttree_rerun_msg:
\tl_put_right:No \1__tag_parenttree_content_tl { \g__tag _parenttree_objr_tl }
\pdf_object_write:nne { __tag/tree/parenttree }{dict}
{
/Nums\c_space_tl [\1__tag_parenttree_content_t1]
}

(End of definition for __tag_tree_write_parenttree:.)

1.6 Rolemap dictionary

The Rolemap dictionary describes relations between new tags and standard types. The
main part here is handled in the role module, here we only define the command which
writes it to the PDF.

At first we reserve again an object. Rolemap is also used in PDF 2.0 as a fallback.

\pdf_object_new:n { __tag/tree/rolemap }

(End of definition for __tag/tree/rolemap.)

This writes out the rolemap, basically it simply pushes out the dictionary which has been
filled in the role module.

263 \cs_new_protected:Npn __tag_tree_write_rolemap:

264

265

266

267

268

269

{

\bool_if:NT \g__tag_role_add_mathml_bool

{
\prop_map_inline:Nn \g__tag_role_NS_mathml_prop
{
\prop_gput:Nnn \g__tag_role_rolemap_prop {##1}{Span}
}
}

\prop_map_inline:Nn\g__tag_role_rolemap_prop

\tl_if_eq:nnF {##1}{##2}
{
\pdfdict_gput:nne {g__tag_role/RoleMap_dict}

{##1}

78

278 {\pdf_name_from_unicode_e:n{##2}}

279 }

280 }

281 \pdf_object_write:nne { __tag/tree/rolemap }{dict}
282 {

283 \pdfdict_use:n{g__tag_role/RoleMap_dict}

284 }

285 }

(End of definition for __tag_tree_write_rolemap:.)

1.7 Classmap dictionary

Classmap and attributes are setup in the struct module, here is only the code to write it
out. It should only done if values have been used.

__tag_tree_write_classmap:
286 \cs_new_protected:Npn __tag_tree_write_classmap:
287 {
288 \tl_clear:N \1__tag_tmpa_tl

We process the older sec for compatibility with the table code. TODO: check if still

needed
289 \seq_map_inline:Nn \g__tag_attr_class_used_seq
290 {
201 \prop_gput:Nnn \g__tag_attr_class_used_prop {##1}{}
292 }
293 \prop_map_inline:Nn \g__tag_attr_class_used_prop
294 ‘[
205 \prop_get:NnNT \g__tag_attr_entries_prop {##1} \1__tag_tmpb_tl
296 {
207 \tl_put_right:Ne \1__tag_tmpa_t1l
298 {
299 ##1\c_space_tl
300 <<
301 \1__tag_tmpb_t1l
302 >>
303 \iow_newline:
304 }
305 }
306 }
307 \tl_if_empty:NF
308 \1__tag_tmpa_t1l
309 {
310 \pdf_object_new:n { __tag/tree/classmap }
311 \pdf_object_write:nne
312 { __tag/tree/classmap }
313 {dict}
314 { \1__tag_tmpa_t1 }
315 __tag_prop_gput:cne
316 { g__tag_struct_1_prop }
317 { ClassMap }

79

318 { \pdf_object_ref:n { __tag/tree/classmap } }
319 }
320 }

(End of definition for __tag_tree_write_classmap:.)

1.8 Namespaces

Namespaces are handle in the role module, here is the code to write them out. Names-
paces are only relevant for pdf2.0.

__tag/tree/namespaces
321 \pdf_object_new:n { __tag/tree/namespaces }
(End of definition for __tag/tree/namespaces.)
__tag_tree_write namespaces:

322 \cs_new_protected:Npn __tag_tree_write_namespaces:

323 {

324 \pdf_version_compare:NnF < {2.0}

325 {

326 \prop_map_inline:Nn \g__tag_role_NS_prop

32

328 \pdfdict_if_empty:nF {g__tag_role/RoleMapNS_##1_dict}
329 {

330 \pdf_object_write:nne {__tag/RoleMapNS/##1}{dict}
331 {

332 \pdfdict_use:n {g__tag _role/RoleMapNS_##1_dict}
333 }

334 \pdfdict_gput:nne{g__tag_role/Namespace_##1_dict}
335 {RoleMapNS}{\pdf_object_ref:n {__tag/RoleMapNS/##1}}
336 }

337 \pdf_object_write:nne{tag/NS/##1}{dict}

338 {

339 \pdfdict_use:n {g__tag_role/Namespace_##1_dict}
340 }

341 }

342 \pdf_object_write:nne {__tag/tree/namespaces}{array}

343 {

344 \prop_map_tokens:Nn \g__tag_role_NS_prop{\use_ii:nn}
345 }

346 }

347 }

(End of definition for __tag_tree_write_namespaces:.)

1.9 Finishing the structure

This assembles the various parts. TODO (when tabular are done or if someone requests
it): IDTree

__tag_finish_structure:

80

360

361

362

363

364

365

366

367

368

369

370

384

&

85

3

&

6

388

389

390

391

392

393

: \hook_new:n {tagpdf/finish/before}

\cs_new_protected:Npn __tag_finish_structure:

{

\bool_if:NT\g__tag_active_tree_bool

{

}
}

\hook_use:n {tagpdf/finish/beforel}

__tag_tree_final_checks:

\iow_term:n{Package~tagpdf~Info:

__tag_check_benchmark_tic:
__tag_tree_write_parenttree:
__tag_check_benchmark_toc:

\iow_term:n{Package~tagpdf~Info:

__tag_check_benchmark_tic:
__tag tree_write_idtree:
__tag_check_benchmark_toc:

\iow_term:n{Package~tagpdf~Info:

__tag_check_benchmark_tic:
__tag_tree_write_rolemap:
__tag_check_benchmark_toc:

\iow_term:n{Package~tagpdf~Info:

__tag_check_benchmark_tic:
__tag_tree_write_classmap:
__tag_check_benchmark_toc:

\iow_term:n{Package~tagpdf~Info:

__tag_check_benchmark_tic:
__tag_tree_write_namespaces:
__tag_check_benchmark_toc:

\iow_term:n{Package~tagpdf~Info:

__tag_check_benchmark_tic:

~writing~ParentTree}

~writing~IDTree}

~writing~RoleMap}

~writing~ClassMap}

~writing~NameSpaces}

~writing~StructElems}

__tag _tree_write_structelements: /this is rather slow!!

__tag_check_benchmark_toc:
\iow_term:n{Package~tagpdf~Info
__tag_check_benchmark_tic:

:~writing~Root}

__tag_tree_write_structtreeroot:

__tag_check_benchmark_toc:

(/package)

(End of definition for __tag_finish_structure:.)

1.10 StructParents entry for Page

(xpackage)
ss7 \hook_gput_code:nnn{begindocument}{tagpdf}

{

\bool_if:NT\g__tag_active_tree_bool

{

We need to add to the Page resources the StructParents entry, this is simply the absolute
page number.

\hook_gput_code:nnn{shipout/before} { tagpdf/structparents }

{

\pdfmanagement_add:nne

81

394 { Page }

305 { StructParents }

396 { \int_eval:n { \g_shipout_readonly_int} }
397 }

30, }

399 }

w00 {/package)

The tagpdf-mc-shared module
Code related to Marked Content (me-chunks), code shared by all modes
Part of the tagpdf package

Ulrike Fischer

Version 0.99x, released 2026-01-12

82

\tag_mc_begin:n
\tag_mc_end:

\tag_mc_use:n

Part V

1 Public Commands

\tag_mc_begin:n {(key-values)}

\tag_mc_end:

These commands insert the end code of the marked content. They don’t end a group and
in generic mode it doesn’t matter if they are in another group as the starting commands.
In generic mode both commands check if they are correctly nested and issue a warning
if not.

\tag_mc_use:n {(label)}

These command allow to record a marked content that was stashed away before into the
current structure. A marked content can be used only once — the command will issue a
warning if an mc is use a second time.

\tag_mc_artifact_group_begin:n \tag_mc_artifact_group_begin:n {(name)}

\tag_mc_artifact_group_end:

\tag_mc_artifact_group_end:

New: 2019-11-20

\tag_mc_end_push:
\tag_mc_begin_pop:n

New: 2021-04-22

\tag_mc_if_in_p: =
\tag_mc_if_in:TF *

\tag_mc_reset_box:N *

New: 2023-06-11

This command pair creates a group with an artifact marker at the begin and the end.
Inside the group the tagging commands are disabled. It allows to mark a complete
region as artifact without having to worry about user commands with tagging commands.
(name) should be a value allowed also for the artifact key. It pushes and pops mc-chunks
at the begin and end. TODO: document is in tagpdf.tex

\tag_mc_end_push:
\tag_mc_begin_pop:n {(key-values)}

If there is an open mc chunk, \tag_mc_end_push: ends it and pushes its tag of the
(global) stack. If there is no open chunk, it puts —1 on the stack (for debugging) \tag_-
mc_begin_pop:n removes a value from the stack. If it is different from —1 it opens a tag
with it. The reopened mc chunk looses info like the alt text for now.

\tag_mc_if_in:TF {(true code)} {(false code)}

Determines if a mc-chunk is open.

\tag_mc_reset_box:N (box)

This resets in lua mode the mc attributes to the one currently in use. It does nothing in
generic mode.

83

\tag_mc_add_missing_to_stream:Nn \tag_mc_add_missing_to_stream:Nn (box) {(stream name)}

New: 2024-11-18

This command is only needed in generic mode, in lua mode it gobbles its arguments.
In generic mode it adds MC literals to the stream that are missing because of page
breaks. The first argument is the box with the stream, the second a string representing
the stream. Predeclared are the names main, footnote and multicol. If more streams
should be handle the underlying interface must be enabled with \tag_mc_new_stream:n
The command is only for packages doing deep manipulations of the output routine!
Example of use are in the multicol package and in tagpdf itself.

\tag_mc_new_stream:n \tag_mc_new_stream:n {(stream name)}

New: 2024-11-18 This declares the interface needed to handle a new stream with \tag_mc_add_missing_ -
to_stream:Nn. Predeclared are the names main, footnote and multicol.

2 Public keys

The following keys can be used with \tag_mc_begin:n, \tagmcbegin, \tag_mc_begin_pop:n,

tag (mc-key) This key is required, unless artifact is used. The value is a tag like P or H1 without a
slash at the begin, this is added by the code. It is possible to setup new tags. The value
of the key is expanded, so it can be a command. The expansion is passed unchanged
to the PDF, so it should with a starting slash give a valid PDF name (some ascii with
numbers like H4 is fine).

artifact (mc-key) This will setup the marked content as an artifact. The key should be used for content
that should be ignored. The key can take one of the values pagination, layout, page,
background and notype (this is the default).

raw (mc-key) This key allows to add more entries to the properties dictionary. The value must be
correct, low-level PDF. E.g. raw=/A1t (Hello) will insert an alternative Text.

alt (mc-key) This key inserts an /ALt value in the property dictionary of the BDC operator. The value
is handled as verbatim string, commands are not expanded. The value will be expanded
first once. If it is empty, nothing will happen.

actualtext (mc-key) This key inserts an /ActualText value in the property dictionary of the BDC operator.
The value is handled as verbatim string, commands are not expanded. The value will be
expanded first once. If it is empty, nothing will happen.

label (mc-key) This key sets a label by which one can call the marked content later in another structure
(if it has been stashed with the stash key). Internally the label name will start with
tagpdf-.

84

stash (mc-key) This “stashes” an mec-chunk: it is not inserted into the current structure. It should be
normally be used along with a label to be able to use the mc-chunk in another place.
The code is split into three parts: code shared by all engines, code specific to luamode
and code not used by luamode.

3 Marked content code — shared

(eo=tag)

(xheader)

\ProvidesExplPackage {tagpdf-mc-code-shared} {2026-01-12} {0.99x}
{part of tagpdf - code related to marking chunks -

5 code shared by generic and luamode }

(/header)

AW N

o

3.1 Variables and counters

MC chunks must be counted. I use a latex counter for the absolute count, so that it is

added to \c1@@ckpt and restored e.g. in tabulars and align. \int_new:N \c@g_0@_MCID_abs_int
and \tl_put_right:Nn\cl@@ckpt{\@elt{g_0@_MCID_abs_int}} would work too, but

as the name is not expl3 then too, why bother? The absolute counter can be used to

label and to check if the page counter needs a reset.

g__tag_MCID_abs_int

~

(xbase)
\newcounter { g__tag_MCID_abs_int }

©

(End of definition for g__tag_MCID_abs_int.)

__tag_get_data_mc_counter: This command allows \tag_get:n to get the current state of the mc counter with the
keyword mc_counter. By comparing the numbers it can be used to check the number of
structure commands in a piece of code.

o \cs_new:Npn __tag_get_data_mc_counter:

0w {

11 \int_use:N \c@g__tag MCID_abs_int
12 }

13 (/base)

(End of definition for __tag_get_data_mc_counter:.)

__tag_get_mc_abs_cnt: A (expandable) function to get the current value of the cnt. TODO: duplicate of the
previous one, this should be cleaned up.

(*shared)
\cs_new:Npn __tag_get_mc_abs_cnt: { \int_use:N \cQ@g__tag_MCID_abs_int }

~
N

o)

(End of definition for __tag_get_mc_abs_cnt:.)
\g__tag_in_mc_bool This booleans record if a mc is open, to test nesting.

16 \bool_new:N \g__tag_in_mc_bool

85

\g__tag_mc_parenttree_prop

\g__tag_mc_parenttree_prop

\1__tag _mc_artifact_type_tl

\1__tag_mc_key_stash_bool
\1__tag_mc_artifact_bool
20

21

\1__tag_mc_lang_tl

N
N

\1__tag_mc_key_tag_tl

\g__tag_mc_key_tag_tl

\1__tag_mc_key_label_tl
\1__tag_mc_key_properties_tl2s

(End of definition for \g__tag_in_mc_bool.)

For every chunk we need to know the structure it is in, to record this in the parent tree.
We store this in a property.

key: absolute number of the mc (tagmcabs)

value: the structure number the mc is in

__tag_prop_new_linked:N \g__tag_mc_parenttree_prop
(End of definition for \g__tag_mc_parenttree_prop.)

Some commands (e.g. links) want to close a previous mc and reopen it after they did
their work. For this we create a stack:

\seq_new:N \g__tag_mc_stack_seq

(End of definition for \g__tag_mc_parenttree_prop.)

Artifacts can have various types like Pagination or Layout. This stored in this variable.
\tl_new:N \1__tag_mc_artifact_type_tl

(End of definition for \1__tag_mc_artifact_type_tl.)

This booleans store the stash and artifact status of the mc-chunk.

\bool_new:N \1__tag _mc_key_stash_bool
\bool_new:N \1__tag _mc_artifact_bool

(End of definition for \1__tag_mc_key_stash_bool and \1__tag _mc_artifact_bool.)

a variable to set a Lang on the mc. This is not conforming to the spec! But it seems to
work in acrobat.

\tl_new:N \1__tag_mc_lang_tl
(End of definition for \1__tag_mc_lang_t1.)

Variables used by the keys. \1_@@_mc_key_properties_tl will collect a number of
values. TODO: should this be a pdfdict now?

\tl_new:N \1__tag mc_key_tag tl
\tl_new:N \g__tag_mc_key_tag_tl
\tl_new:N \1__tag_mc_key_label_t1l
\tl_new:N \1__tag_mc_key_properties_tl

(End of definition for \1__tag_mc_key_tag_tl and others.)

86

__tag_mc_handle_mc_label:e

__tag_mc_set_label_used:n

\tag_mc_use:n

29

30

36

37

38

39

40

3.2 Functions

The commands labels a mec-chunk. It is used if the user explicitly labels the mc-chunk
with the label key. The argument is the value provided by the user. It stores the
attributes

tagabspage: the absolute page, \g_shipout_readonly_int,

tagmcabs: the absolute mc-counter \c@g_@@_MCID_abs_int. The reference command is
based on 13ref.

\cs_new:Npn __tag mc_handle_mc_label:e #1
{
__tag_property_record:en{tagpdf-#1}{tagabspage, tagmcabs}
}

(End of definition for __tag_mc_handle_mc_label:e.)

Unlike with structures we can’t check if a labeled mc has been used by looking at the P
key, so we use a dedicated csname for the test

\cs_new_protected:Npn __tag_mc_set_label_used:n #1 }#1 labelname
{
\tl_new:c { g__tag_mc_label_\tl_to_str:n{#1}_used_tl }
}
(/shared)

(End of definition for __tag_mc_set_label_used:n.)

These command allow to record a marked content that was stashed away before into the
current structure. A marked content can be used only once — the command will issue a
warning if an mc is use a second time. The argument is a label name set with the label
key.

TODO: is testing for struct the right test?

(base)\cs_new_protected:Npn \tag_mc_use:n #1 { __tag_whatsits: }
(xshared)
\cs_set_protected:Npn \tag mc_use:n #1 J#1: label name
{
__tag_check_if_active_struct:T
{
\tl_set:Ne \1__tag_tmpa_tl { \property_ref:nnn{tagpdf-#1}{tagmcabs}{} }
\tl_if_empty:NTF\1__tag_tmpa_tl
{
\msg_warning:nnn {tag} {mc-label-unknown} {#1}

}
{
\cs_if_free:cTF { g__tag_mc_label_\tl_to_str:n{#1}_used_tl }
{
__tag_mc_handle_stash:e { \1__tag_tmpa_tl }
__tag _mc_set_label_used:n {#1}
}
{
\msg_warning:nnn {tagt{mc-used-twice}{#1}
}

87

57 }
58}
s0 {/shared)

(End of definition for \tag_mc_use:n. This function is documented on page 83.)

\tag mc_artifact group begin:n This opens an artifact of the type given in the argument, and then stops all tagging. It
\tag_mc_artifact_group_end: creates a group. It pushes and pops mc-chunks at the begin and end.

(base) \cs_new_protected:Npn \tag_mc_artifact_group_begin:n #1 {}

o1 (base)\cs_new_protected:Npn \tag_mc_artifact_group_end:{}
(xshared)

63 \cs_set_protected:Npn \tag mc_artifact_group_begin:n #1

64 {

65 \tag_mc_end_push:

e \tag_mc_begin:n {artifact=#1}

o7 \group_begin:

6s \tag_suspend:n{artifact-group}

60}

71 \cs_set_protected:Npn \tag_mc_artifact_group_end:
72 {

72 \tag_resume:n{artifact-group}

72 \group_end:

75 \tag_mc_end:

76 \tag_mc_begin_pop:n{}

77 }

78 (/shared)

(End of definition for \tag_mc_artifact_group_begin:n and \tag_mc_artifact_group_end:. These
functions are documented on page 83.)

\tag_mc_reset_box:N This allows to reset the mc-attributes in box. On base and generic mode it should do
nothing.

7o (base)\cs_new_protected:Npn \tag_mc_reset_box:N #1 {}
(End of definition for \tag_mc_reset_box:N. This function is documented on page 83.)

\tag_mc_end_push:
\tag_mc_begin_pop:n
(base)\cs_new_protected:Npn \tag_mc_end_push: {}
s (base)\cs_new_protected:Npn \tag_mc_begin_pop:n #1 {}
82 (*shared)
s \cs_set_protected:Npn \tag_mc_end_push:

)
S

o

84 {

85 __tag_check_if_active_mc:T

86 {

87 __tag mc_if_in:TF

88 {

89 \seq_gpush:Ne \g__tag mc_stack_seq { \tag_get:n {mc_tag} }
9 __tag_check_mc_pushed_popped:nn

o1 { pushed }

88

92 { \tag_get:n {mc_tag} }

93 \tag_mc_end:

04 F

95 {

9% \seq_gpush:Nn \g__tag mc_stack_seq {-1}

97 __tag_check_mc_pushed_popped:nn { pushed }{-1}
o }

99 }

100 }

101

102 \cs_set_protected:Npn \tag_mc_begin_pop:n #1

103 {

104 __tag_check_if_active_mc:T

105 {

106 \seq_gpop:NNTF \g__tag_mc_stack_seq \1__tag_tmpa_t1
107 {

108 \tl_if_eq:NnTF \1__tag_tmpa_tl {-1}

109 {

110 __tag_check_mc_pushed_popped:nn {popped}{-1}
111 }

112 {

113 __tag_check_mc_pushed_popped:nn {popped}{\1__tag_tmpa_t1l}
114 \tag_mc_begin:n {tag=\1__tag_tmpa_t1,#1}

115 }

116 }

117 {

118 __tag_check_mc_pushed_popped:nn {popped}{empty~stack,~nothing}
119 }

120 }

121 }

(End of definition for \tag_mc_end_push: and \tag_mc_begin_pop:n. These functions are documented
on page 83.)

tag mc check parent child:n This checks if an MC can be used in a structure.

N
N

\cs_new_protected:Npn __tag_mc_check_parent_child:n #1
% #1 structure number of parent

124 {

~
I}

This records if logging is on

125 \int_compare:nNnT {\1__tag_loglevel_int} > { 0 }

126 {

127 \prop_get:cnN{g__tag_struct_#1_prop}{tagr\l__tag get_parent_tmpa_tl
128 \msg_note:nnee

129 { tag }

130 { role-parent-child-check }

131 {

132 \quark_if_no_value:NTF \1__tag_get_parent_tmpa_tl
133 {77}

134 {

135 \exp_last_unbraced:No\use_ii:nn

136 { \1__tag_get_parent_tmpa_tl }

89

\exp_last_unbraced:No\use_i:nn
{ \1__tag_get_parent_tmpa_tl }
}
}
{
MC~(real~content)
}
}
__tag_struct_get_role:nnNN
{#1}
{rolemap}
\1__tag_get_parent_tmpa_tl
\1__tag_get_parent_tmpb_tl
__tag_role_check_parent_child:ooooN
{ \1__tag_get_parent_tmpa_tl }
{ \1__tag get_parent_tmpb_tl }
{MC})
{ 7
\1__tag_parent_child_check_t1

if the return value is 7 we have to check against the parentrole field. TODO ruby and
warichu use 7 too, that should be changed!

\int_compare:nNnT {\1__tag parent_child_check_t1l} = { \c__tag role_rule_checkparent_tl }
{
__tag_struct_get_role:nnlNN
{#1}
{parentrole}
\1__tag_get_parent_tmpa_t1l
\1__tag_get_parent_tmpb_tl
__tag_role_check_parent_child:ooooN
{ \1__tag_get_parent_tmpa_tl }
{ \1__tag_get_parent_tmpb_tl }
{MC}}
{ 7
\1__tag_parent_child_check_tl
}
__tag_check_forbidden_parent_child:nnee

{\1__tag_parent_child_check_t1}

{#1}
{
\1__tag_get_parent_tmpb_tl : \1__tag_get_parent_tmpa_tl
}
{
MC~(real content)
}

}

\cs_generate_variant:Nn __tag_mc_check_parent_child:n {o}

(End of definition for __tag_mc_check_parent_child:n.)

3.3 Keys

This are the keys where the code can be shared between the modes.

90

the two internal artifact keys are use to define the public artifact. For now we add
support for the subtypes Header and Footer. Watermark,PageNum, LineNum,Redac-
tion,Bates will be added if some use case emerges. If some use case for /BBox and
/Attached emerges, it will be perhaps necessary to adapt the code.

stash (mc-key)
__artifact-bool
__artifact-type

182

183 {

184 stash .bool_set:N = \1__tag_mc_key_stash_bool,
185 __artifact-bool .bool_set:N = \1__tag _mc_artifact_bool,
186 __artifact-type .choice:,

187 __artifact-type / pagination .code:n =

188 {

189 \tl_set:Nn \1__tag mc_artifact_type_tl { Pagination }

190 +,

191 __artifact-type / pagination/header .code:n =

192 {

103 \tl_set:Nn \1__tag mc_artifact_type_tl { Pagination/Subtype/Header }
194 } 5

195 __artifact-type / pagination/footer .code:n =

196 {

197 \tl_set:Nn \1__tag _mc_artifact_type_tl { Pagination/Subtype/Footer }
198 } 5

199 __artifact-type / layout .code:n =

200 {

201 \tl_set:Nn \1__tag _mc_artifact_type_tl { Layout }

202 +,

203 __artifact-type / page .code:n =

204 {

205 \tl_set:Nn \1__tag mc_artifact_type_tl { Page }

206 })

207 __artifact-type / background .code:n =

208 {

209 \tl_set:Nn \1__tag mc_artifact_type_tl { Background }

210 } 5

211 __artifact-type / notype .code:n =

212 {

213 \tl_set:Nn \1__tag mc_artifact_type_tl {}

214 +,

215 __artifact-type / .code:n =

216 {

017 \tl_set:Nn \1__tag mc_artifact_type_tl {}

218 31,

219 3

\keys_define:nn { __tag / mc }

(End of definition for stash (mc-key)

umented on page 85.)

(/shared)

PR

The tagpdf-mc-generic module
Code related to Marked Content (mc-chunks), generic mode

Part of the tagpdf package

Ulrike Fischer

Version 0.99x, released 2026-01-12

91

artifact-bool, and __artifact-type. This function is doc-

N

o

~

©

10

\1__tag_mc_ref_abspage_tl

\1__tag_mc_tmpa_tl

12

\g__tag_mc_marks

\g__tag_mc_main_marks_seq
\g_ tag nc_footnote mark

\g__tag mc_multicol marks seq

\tag_mc_new_stream:n

Part V1

1 Marked content code — generic mode

(ee=tag)
(*generic)
\ProvidesExplPackage {tagpdf-mc-code-generic} {2026-01-12} {0.99x}
{part of tagpdf - code related to marking chunks - generic mode}

(/generic)
(xdebug)
\ProvidesExplPackage {tagpdf-debug-generic} {2026-01-12} {0.99x}
{part of tagpdf - debugging code related to marking chunks - generic model}

(/debug)

1.1 Variables
(xgeneric)
We need a ref-label system to ensure that the MCID cnt restarts at 0 on a new page This

will be used to store the tagabspage attribute retrieved from a label.

\tl_new:N \1__tag_mc_ref_abspage_t1l
(End of definition for \1__tag_mc_ref_abspage_t1.)

temporary variable

\tl_new:N \1__tag_mc_tmpa_tl
(End of definition for \1__tag_mc_tmpa_t1.)

a marks register to keep track of the mc’s at page breaks and a sequence to keep track
of the data for the continuation extra-tmb. We probably will need to track mc-marks in
more than one stream, so the seq contains the name of the stream.

\newmarks \g__tag_mc_marks

(End of definition for \g__tag_mc_marks.)

Each stream has an associated global seq variable holding the bottom marks from the/a
previous chunk in the stream. We provide three by default: main, footnote and multicol.
TODO: perhaps an interface for more streams will be needed.

\seq_new:N \g__tag_mc_main_marks_seq

\seq_new:N \g__tag _mc_footnote_marks_seq

\seq_new:N \g__tag _mc_multicol_marks_seq

(End of definition for \g__tag_mc_main_marks_seq, \g__tag_mc_footnote_marks_seq, and \g__tag_-
mc_multicol_marks_seq.)

\cs_new_protected:Npn

{

\tag_mc_new_stream:n #1

\seq_new:c { g__tag _mc_multicol_#1_seq }
}

92

(End of definition for \tag_mc_new_stream:n. This function is documented on page 84.)

\1__tag mc_firstmarks_seq The marks content contains a number of data which we will have to access and compare,
\1__tag_mc_botmarks_seq so we will store it locally in two sequences. topmarks is unusable in LaTeX so we ignore
it.
21 \seq_new:N \1__tag mc_firstmarks_seq
22 \seq_new:N \1__tag_mc_botmarks_seq

(End of definition for \1__tag_mc_firstmarks_seq and \1__tag_mc_botmarks_seq.)

1.2 Functions

__tag_mc_begin_marks:nn Generic mode need to set marks for the page break and split stream handling. We always

__tag nc_artifact begin narks:n set two marks to be able to detect the case when no mark is on a page/galley. MC-begin
__tag mc_end marks: commands will set (b,-,data) and (b,+,data), MC-end commands will set (e,-,data) and
(e,+,data).
25 \cs_new_protected:Npn __tag_mc_begin_marks:nn #1 #2 }#1 tag, #2 label
24 {
25 \tex_marks:D \g__tag_mc_marks
26 {
27 b-, Jfirst of begin pair
28 \int_use:N\c@g__tag_MCID_abs_int, jmc-num
29 \g__tag_struct_stack_current_tl, Jstructure num
30 #1, Jtag
31 \bool_if:NT \1__tag_mc_key_stash_bool{stash}, J, stash info
32 #2, Jlabel
33 }
34 \tex_marks:D \g__tag_mc_marks
35 {
36 b+, 7 second of begin pair
37 \int_use:N\c@g__tag_MCID_abs_int, jmc-num
38 \g__tag_struct_stack_current_tl, Jstructure num
39 #1, %tag
0 \bool_if:NT \1__tag_mc_key_stash_bool{stash}, J, stash info
41 #2, Jlabel
42 }
s F

4 \cs_generate_variant:Nn __tag_mc_begin_marks:nn {oo}
45 \cs_new_protected:Npn __tag_mc_artifact_begin_marks:n #1 J#1 type

6 1

47 \tex_marks:D \g__tag_mc_marks

48 {

49 b-, /first of begin pair

50 \int_use:N\cQ@g__tag_MCID_abs_int, jmc-num
51 -1, Jstructure num

52 #1 Jtype

53 3

54 \tex_marks:D \g__tag_mc_marks

55 {

56 b+, Jfirst of begin pair

57 \int_use:N\c@g__tag_MCID_abs_int, jmc-num
58 -1, Jstructure num

59 #1 JType

93

__tag_mc_disable_marks:

__tag_mc_get_marks:

__tag_mc_store:nnn

79

80

81

o
5

83

84

85

87

88

90

91

92

9.

<

}
\cs_new_protected:Npn __tag_mc_end_marks:
{
\tex_marks:D \g__tag_mc_marks
{
e-, Jfirst of end pair
\int_use:N\c@g__tag_MCID_abs_int, jmc-num
\g__tag_struct_stack_current_tl, Jstructure num
}
\tex_marks:D \g__tag_mc_marks
{
e+,)second of end pair
\int_use:N\c@g__tag_MCID_abs_int, jmc-num
\g__tag_struct_stack_current_tl, Jstructure num
}
}

(End of definition for __tag_mc_begin_marks:nn, __tag_mc_artifact_begin_marks:n, and __tag_-
mc_end_marks:.)

This disables the marks. They can’t be reenabled, so it should only be used in groups.

\cs_new_protected:Npn __tag_mc_disable_marks:

{
\cs_set_eq:NN __tag_mc_begin_marks:nn \use_none:nn
\cs_set_eq:NN __tag_mc_artifact_begin_marks:n \use_none:n
\cs_set_eq:NN __tag_mc_end_marks: \prg_do_nothing:

}

(End of definition for __tag_mc_disable_marks:.)

This stores the current content of the marks in the sequences. It naturally should only
be used in places where it makes sense.

\cs_new_protected:Npn __tag_mc_get_marks:

{
\exp_args:NNe
\seq_set_from_clist:Nn \1__tag_mc_firstmarks_seq
{ \tex_firstmarks:D \g__tag_mc_marks }
\exp_args:NNe
\seq_set_from_clist:Nn \1__tag_mc_botmarks_seq
{ \tex_botmarks:D \g__tag_mc_marks }
}

(End of definition for __tag_mc_get_marks:.)

This inserts the me-chunk (mc-num) into the structure struct-num after the (mc-prev).
The structure must already exist. The additional mcid dictionary is stored in a property.
The item is retrieved when the kid entry is built. We test if there is already an addition
and append if needed.

\cs_new_protected:Npn __tag_mc_store:nnn #1 #2 #3 Jj#1 mc-prev, #2 mc-num #3 structure-
num

94

94 {

95 %\prop_show:N \g__tag_struct_cont_mc_prop

9% \prop_get :NnNTF \g__tag_struct_cont_mc_prop {#1} \1__tag_tmpa_tl

97 {

98 \prop_gput:Nne \g__tag_struct_cont_mc_prop {#1}{ \1__tag tmpa_tl __tag_struct_mcid_dict
99 }

100 {
101 \prop_gput:Nne \g__tag_struct_cont_mc_prop {#1}{ __tag_struct_mcid_dict:n {#2}}
102

103 \prop_gput :Nee \g__tag_mc_parenttree_prop
104 {#2}

105 {#3}

106 }

107 \cs_generate_variant:Nn __tag _mc_store:nnn {eee}
(End of definition for __tag_mc_store:nnn.)

__tag_mc_insert_extra_tmb:n These two functions should be used in the output routine at the place where a mc-literal

__tag mc_insert_extra_tme:n could be missing due to a page break or some other split. They check (with the help
of the marks) if a extra-tmb or extra-tme is needed. The tmb command stores also the
mc into the structure, the tme has to store the data for a following extra-tmb. The
argument takes a stream name like main or footnote to allow different handling there.
The content of the marks must be stored before (with \@@_mc_get_marks: or manually)
into \1_@@_mc_firstmarks_seq and \1_0@_mc_botmarks_seq so that the tests can use
them.

s \cs_new_protected:Npn __tag _mc_insert_extra_tmb:n #1), #1 stream: e.g. main or footnote

109 {

110 __tag_check_typeout_v:n {=>~ first~ \seq_use:Nn \1__tag mc_firstmarks_seq {,~}}
111 __tag_check_typeout_v:n {=>~ bot~ \seq_use:Nn \1__tag mc_botmarks_seq {,~}}
112 __tag_check_if_mc_tmb_missing:TF

113 {

114 __tag_check_typeout_v:n {=>~ TMB~ ~ missing~ --~ inserted}

115 ftest if artifact

116 \int_compare:nNnTF { \seq_item:cn { g__tag mc_#1_marks_seq } {3} } = {-1}
117 {

118 \tl_set:Ne \1__tag_tmpa_tl { \seq_item:cn { g__tag mc_#1_marks_seq } {4} }
119 __tag_mc_handle_artifact:N \1__tag_tmpa_tl

120 }

121 {

122 \exp_args:Ne

123 __tag_mc_bdc_mcid:n

124 {

125 \seq_item:cn { g__tag _mc_#1_marks_seq } {4}

126 }

127 \str_if_eq:eeTF

128 '(

129 \seq_item:cn { g__tag mc_#1_marks_seq } {5}

130 }

131 {}

132 {

133 %store

134 __tag _mc_store:eee

135 {

95

136 \seq_item:cn { g__tag mc_#1_marks_seq } {2}

137 }

138 { \int_eval:n{\c@g__tag MCID_abs_int} }

139 {

140 \seq_item:cn { g__tag mc_#1_marks_seq } {3}
141 }

142 }

143 {

144 /istashed -> warning!!

145 }

146 }

147 }

148 {

149 __tag_check_typeout_v:n {=>~ TMB~ not~ missing}

150 }

151 }

152

153 \cs_new_protected:Npn __tag_mc_insert_extra_tme:n #1), #1 stream, eg. main or footnote
s

155 __tag_check_if_mc_tme_missing:TF

156 {

157 __tag_check_typeout_v:n {=>~ TME~ ~ missing~ --~ inserted}
158 __tag_mc_emc:

150 \seq_gset_eq:cN

160 { g__tag_mc_#1_marks_seq }

161 \1__tag_mc_botmarks_seq

162 }

163 {

164 __tag_check_typeout_v:n {=>~ TME~ not~ missing}

165 }

166 F

(End of definition for __tag_mc_insert_extra_tmb:n and __tag_mc_insert_extra_tme:n.)

1.3 Looking at MC marks in boxes

__tag_add_missing _mcs:Nn Assumptions:

o test for tagging active outside;

« mark retrieval also outside.

This takes a box register as its first argument (or the register number in a count register,
as used by multicol). It adds an extra tmb at the top of the box if necessary and similarly
an extra tme at the end. This is done by adding hboxes in a way that the positioning
and the baseline of the given box is not altered. The result is written back to the box.

The second argument is the stream this box belongs to und is currently either main for
the main galley, footnote for footnote note text, or multicol for boxes produced for
columns in that environment. Other streams may follow over time.

167 \cs_new_protected:Npn__tag_add_missing_mcs:Nn #1 #2 {

168 \vbadness \@M
169 \vfuzz \c_max_dim

96

170 \vbox_set_to_ht:Nnn #1 { \box_ht:N #1 } {

171 \hbox_set:Nn \1__tag_tmpa_box { __tag mc_insert_extra_tmb:n {#2} }
172 \hbox_set:Nn \1__tag_tmpb_box { __tag mc_insert_extra_tme:n {#2} }
173 \int_compare:nNnT {\1__tag_loglevel_int} > { 0 }

174 {

175 \seq_log:c { g__tag_mc_#2_marks_seq}

176 }

The box placed on the top gets zero size and thus will not affect the box dimensions of
the box we are modifying.

177 \box_set_ht:Nn \1__tag_tmpa_box \c_zero_dim
178 \box_set_dp:Nn \1__tag_tmpa_box \c_zero_dim

The box added at the bottom will get the depth of the original box. This way we can
arrange that from the outside everything looks as before.

179 \box_set_ht:Nn \1__tag_tmpb_box \c_zero_dim
180 \box_set_dp:Nn \1__tag_tmpb_box { \box_dp:N #1 }

We need to set \boxmaxdepth in case the original box has an unusually large depth,
otherwise that depth is not preserved when we string things together.

181 \boxmaxdepth \@maxdepth
182 \box_use_drop:N \1__tag_tmpa_box
183 \vbox_unpack_drop:N #1

Back up by the depth of the box as we add that later again.
184 \tex_kern:D -\box_dp:N \1__tag_tmpb_box

And we don’t want any glue added when we add the box.

185 \nointerlineskip

186 \box_use_drop:N \1__tag_tmpb_box
w7 F

188 F

(End of definition for __tag_add_missing_mcs:Nn.)

\tag mc_add missing to stream:ln This is the main command to add mc to the stream. It is therefore guarded by the
tag add missing mcs to stream:ln mec-boolean.

If we aren’t in the main stream then processing is a bit more complicated because to get
at the marks in the box we need to artificially split it and then look at the split marks.

First argument is the box to update and the second is the “stream”. In lua mode the
command is a no-op.

180 \cs_new_protected:Npn __tag_add_missing_mcs_to_stream:Nn #1#2
190 {

101 __tag_check_if_active_mc:T {

First set up a temp box for trial splitting.

97

192

193

195

196

197

199

200

201

202

203

204

205

206

207

208

209

\vbadness\maxdimen
\box_set_eq:NN \1__tag_tmpa_box #1

Split the box to the largest size available. This should give us all content (but to be sure
that there is no issue we could test out test box is empty now (not done).

\vbox_set_split_to_ht:NNn \1__tag_tmpa_box \1__tag_tmpa_box \c_max_dim

As a side effect of this split we should now have the first and bottom split marks set up.
We use this to set up \1__tag_mc_firstmarks_seq

\exp_args:NNe
\seq_set_from_clist:Nn \1__tag_mc_firstmarks_seq

{ \tex_splitfirstmarks:D \g__tag mc_marks }

Some debugging info:

s % \iow_term:n { First~ mark~ from~ this~ box: }

VA \seq_log:N \1__tag_mc_firstmarks_seq

If this mark was empty then clearly the bottom mark will too be empty. Thus in this
case we make use of the saved bot mark from the previous chunk. Note that if this is the
first chunk in the stream the global seq would contain a random value, but then we can’t
end in this branch because the basis assumption is that streams are properly marked up
so the first chunk would always have a mark at the beginning!

\seq_if_empty:NTF \1__tag _mc_firstmarks_seq
{
__tag_check_typeout_v:n
{
No~ marks~ so~ use~ saved~ bot~ mark:~
\seq_use:cn {g__tag_mc_#2_marks_seq} {,~} \iow_newline:
}
\seq_set_eq:Nc \1__tag_mc_firstmarks_seq {g__tag mc_#2_marks_seq}

We also update the bot mark to the same value so that we can later apply __tag_add_-
missing_mcs:Nn with the data structures in place (see assumptions made there).

\seq_set_eq:NN \1__tag_mc_botmarks_seq \1__tag mc_firstmarks_seq
}

If there was a first mark then there is also a bot mark (and it can’t be the same as
our marks always come in pairs). So if that branch is chosen we update \1__tag_mc_-
botmarks_seq from the bot mark.

{
__tag_check_typeout_v:n
{
Pick~ up~ new~ bot~ mark!
}
\exp_args:NNe
\seq_set_from_clist:Nn \1__tag_mc_botmarks_seq
{ \tex_splitbotmarks:D \g__tag mc_marks }
}

98

__tag_mc_if_in_p:
__tag_mc_if_in:TF
\tag_mc_if_in_p:
\tag_mc_if_in:TF

__tag_mc_bmc:n
__tag_mc_emc:

__tag_mc_bdc:nn

__tag_mc_bdc_mcid:nn
__tag_mc_bdc_mcid:n
__tag_mc_handle_mcid:nn
__tag_mc_handle_mcid:oo

Finally we call __tag_add_missing_mcs:Nn to add any missing tmb/tme as needed,

__tag_add_missing _mcs:Nn #1 {#2}

\seq_gset_eq:cN {g__tag_mc_#2_marks_seq} \1__tag_mc_botmarks_seq

\cs_set_eq:NN \tag_mc_add_missing _to_stream:Nn __tag_add_missing_mcs_to_stream:Nn

(End of definition for \tag_mc_add_missing_to_stream:Nn and __tag_add_missing_mcs_to_stream:Nn.
This function is documented on page 84.)

This is a test if a mc is open or not. It depends simply on a global boolean: mec-chunks
are added linearly so nesting should not be relevant.

One exception are header and footer (perhaps they are more, but for now it doesn’t
seem so, so there are no dedicated code to handle this situation): When they are built
and added to the page we could be both inside or outside a mc-chunk. But header and
footer should ignore this and not push/pop or warn about nested mc. It is therefore
important there to set and reset the boolean manually. See the tagpddocu-patches.sty
for an example.

\prg_new_conditional:Nnn __tag mc_if_in: {p,T,F,TF}
{
\bool_if:NTF \g__tag_in_mc_bool
{ \prg_return_true: }
{ \prg_return_false: }
}

\prg_new_eq_conditional:NNn \tag _mc_if_in: __tag mc_if_in: {p,T,F,TF}

(End of definition for __tag_mc_if_in:TF and \tag_mc_if_in:TF. This function is documented on page
83.)

These are the low-level commands. There are now equal to the pdfmanagement com-
mands generic mode, but we use an indirection in case luamode need something else.
change 04.08.2018: the commands do not check the validity of the arguments or try to
escape them, this should be done before using them. change 2023-08-18: we are delaying
the writing to the shipout.

% #1 tag, #2 properties

\cs_set_eq:NN __tag _mc_bmc:n \pdf_bmc:n

\cs_set_eq:NN __tag_mc_emc: \pdf_emc:

\cs_set_eq:NN __tag_mc_bdc:nn \pdf_bdc:nn

\cs_set_eq:NN __tag_mc_bdc_shipout:ee \pdf_bdc_shipout:ee

(End of definition for __tag_mc_bmc:n, __tag_mc_emc:, and __tag_mc_bdc:nn.)

This create a BDC mark with an /MCID key. Most of the work here is to get the current
number value for the MCID: they must be numbered by page starting with 0 and then
successively. The first argument is the tag, e.g. P or Span, the second is used to pass
more properties. Starting with texlive 2023 this is much simpler and faster as we can
use delay the numbering to the shipout. We also define a wrapper around the low-level
command as luamode will need something different.

99

250 \hook_gput_code:nnn {shipout/before}{tagpdf}{ \flag_clear:n { __tag/mcid } }
20 \cs_set_protected:Npn __tag_mc_bdc_mcid:nn #1 #2

241 {

242 \int_gincr:N \c@g__tag_MCID_abs_int

243 __tag_property_record:eo

244 {

245 mcid-\int_use:N \c@g__tag MCID_abs_int
246 }

217 { \c__tag_property_mc_clist }

248 __tag_mc_bdc_shipout:ee

249 {#1}

250 {

251 /MCID~\flag height:n { __tag/mcid }
252 \flag_raise:n { __tag/mcid }~ #2

253 }

254 }

255 \cs_new_protected:Npn __tag_mc_bdc_mcid:n #1
256 {

257 __tag_mc_bdc_mcid:nn {#1} {}

258 }

259

260 \cs_new_protected:Npn __tag_mc_handle_mcid:nn #1 #2 J#1 tag, #2 properties
261 {

262 __tag_mc_bdc_mcid:nn {#1} {#2}

263 }

264

265 \cs_generate_variant:Nn __tag _mc_handle_mcid:nn {oo}

End of definition for __tag_mc_bdc_mcid:nn, __tag_mc_bdc_mcid:n, and __tag_mc_handle_-
8. ’ 8. 8.
mcid:nn.)

__tag_mc_handle_stash:n This is the handler which puts a mc into the the current structure. The argument is the

__tag_mc_handle_stash:e number of the mc. Beside storing the mc into the structure, it also has to record the
structure for the parent tree. The name is a bit confusing, it does not handle mc with
the stash key ... TODO: why does luamode use it for begin + use, but generic mode
only for begin?

266 \cs_new_protected:Npn __tag_mc_handle_stash:n #1 };1 mcidnum

267 {

268 __tag_check_mc_used:n {#1}

269 __tag_struct_kid_mc_gput_right:nn

270 { \g__tag_struct_stack_current_tl }

271 {#1}

272 \prop_gput:Nee \g__tag_mc_parenttree_prop
273 {#1}

274 { \g__tag_struct_stack_current_tl }

275 }

276 \cs_generate_variant:Nn __tag_mc_handle_stash:n { e }
(End of definition for __tag_mc_handle_stash:n.)

__tag_mc_bmc_artifact: Two commands to create artifacts, one without type, and one with. We define also a
__tag_mc_bmc_artifact:n wrapper handler as luamode will need a different definition. TODO: perhaps later: more
__tag_mc_handle_artifact:N properties for artifacts

100

277 \cs_new_protected:Npn __tag mc_bmc_artifact:

278 {

279 __tag_mc_bmc:n {Artifact}

280 }

281 \cs_new_protected:Npn __tag_mc_bmc_artifact:n #1
282 {

283 __tag_mc_bdc:nn {Artifact}{/Type/#1}

284 }

285 \cs_new_protected:Npn __tag_mc_handle_artifact:N #1
286 % #1 is a var containing the artifact type

287 {

288 \int_gincr:N \c@g__tag_MCID_abs_int

289 \tl_if_empty:NTF #1

200 { __tag_mc_bmc_artifact: }

201 { \exp_args:No__tag_mc_bmc_artifact:n {#1} }
292 }

(End of definition for __tag_mc_bmc_artifact:, __tag_mc_bmc_artifact:n, and __tag_mc_handle_-
artifact:N.)

__tag_get_data_mc_tag: This allows to retrieve the active mc-tag. It is use by the get command.

2035 \cs_new:Nn __tag_get_data_mc_tag: { \g__tag_mc_key_tag_tl }
294 (/generic)

(End of definition for __tag_get_data_mc_tag:.)

\tag_mc_begin:n These are the core public commands to open and close an mc. They don’t need to be
\tag_mc_end: in the same group or grouping level, but the code expect that they are issued linearly.
The tag and the state is passed to the end command through a global var and a global

boolean.
205 {base)\cs_new_protected:Npn \tag_mc_begin:n #1 { __tag _whatsits: \int_gincr:N \c@g__tag_MCID_ab:s
205 {base)\cs_new_protected:Nn \tag _mc_end:{ __tag_whatsits: }
207 (xgeneric | debug)
205 (*kgeneric)
200 \cs_set_protected:Npn \tag_mc_begin:n #1 }#1 keyval
300 {
301 __tag_check_if_active_mc:T
302 {
203 (/generic)
304 (*debug)
;05 \cs_set_protected:Npn \tag_mc_begin:n #1 J#1 keyval
306 {
307 __tag_check_if_active_mc:TF
308 {
309 __tag_debug_mc_begin_insert:n { #1 }
310 (/debug)
311 \group_begin: Jhm
312 __tag_check_mc_if_nested:
313 \bool_gset_true:N \g__tag_in_mc_bool

set default MC tags to structure:

101

314 \tl_set_eq:NN \1__tag mc_key_tag_tl \g__tag_struct_tag_tl

315 \tl_gset_eq:NN\g__tag_mc_key_tag_tl \g__tag_struct_tag_tl

316 \tl_if_empty:NTF\1l__tag_mc_lang tl

317 {

318 \keys_set:nn { __tag / mc }{ #1 }

319 }

320 {

301 \keys_set:nn { __tag / mc }{ lang=\1__tag mc_lang_tl, #1 }
322 }

323 \bool_if:NTF \1__tag_mc_artifact_bool

324 { Jhandle artifact

325 __tag_mc_handle_artifact:N \1__tag mc_artifact_type_tl

326 \exp_args:No

327 __tag_mc_artifact_begin_marks:n { \1__tag mc_artifact_type_tl }
328 }

329 { %handle mcid type

330 __tag_check_mc_tag:N \1__tag_mc_key_tag_tl

331 __tag_mc_handle_mcid:oo

332 { \1__tag_mc_key_tag_tl }

333 { \1__tag _mc_key_properties_tl }

334 __tag_mc_begin_marks:oo{\1__tag_mc_key_tag_tl1}{\1__tag_mc_key_label_tl1}
335 \tl_if_empty:NF {\1__tag_mc_key_label_t1}

336 {

337 __tag_mc_handle_mc_label:e { \1__tag_mc_key_label_t1 }
338 }

check if the MC can be used here. This is guarded by the stash boolean.

339 \bool_if:NF \1__tag_mc_key_stash_bool

340 {

341 \socket_use:nn{tag/check/parent-child}
342 {

343 __tag_mc_check_parent_child:o

344 { \g__tag_struct_stack_current_tl }
345 }

346 __tag _mc_handle_stash:e { \int_use:N \c@g__tag MCID_abs_int }
347

348 }

349 }

350 \group_end:

351 F

352 (*debug)

353 {

354 __tag_debug_mc_begin_ignore:n { #1 }

355 }

556 (/debug)

357 }

358 (*generic)

550 \cs_set_protected:Nn \tag_mc_end:

360 {

361 __tag_check_if_active_mc:T

362 {

3 (/generic)

364 (*debug)

102

365 \cs_set_protected:Nn \tag_mc_end:
366 {

367 __tag_check_if_active_mc:TF

368 {

369 __tag_debug _mc_end_insert:
s70 {/debug)

371 __tag_check_mc_if_open:

372 \bool_gset_false:N \g__tag_in_mc_bool
373 \tl_gset:Nn \g__tag mc_key_tag tl { }
374 __tag_mc_emc:

375 __tag_mc_end_marks:

376 }

377 (*debug)

378 {

379 __tag_debug_mc_end_ignore:

380 }

381 (/debug)

382 }

553 (/generic | debug)

(End of definition for \tag_mc_begin:n and \tag_mc_end:. These functions are documented on page
83.)

1.4 Keys

Definitions are different in luamode. tag and raw are expanded as \lua_now:e in lua
does it too and we assume that their values are safe.

tag (mc-key)
raw (mc-key)
alt (mc-keyys (*generic)
actualtext (mc-keyys \keys_define:nn { __tag / mc }
label (mc-key)® 1

artifact (mc-key)® tag .code:n = J, the name (H,P,Span) etc

389 \tl_set:Ne \1__tag_mc_key_tag tl { #1 }

300 \tl_gset:Ne \g__tag mc_key_tag tl { #1 }

391 },

392 raw .code:n =

393 {

304 \tl_put_right:Ne \1__tag_mc_key_properties_tl { #1 }

395 +,

396 alt .code:n = J, Alt property

397 {

398 \str_set_convert:Noon

399 \1__tag_tmpa_str

400 { #1 }

401 { default }

402 { utf16/hex }

403 \tl_put_right:Nn \1__tag_mc_key_properties_tl { /Alt~< }
404 \tl_put_right:No \1__tag _mc_key_properties_tl { \1__tag_tmpa_str>~ }
405 1,

406 alttext .meta:n = {alt=#1},

103

lang is not according to the spec, but it works in acrobat ... We assume that this are
simple strings that do not need escaping.

407 lang .code:n = J, Lang property

408 {

400 \tl_put_right:Ne \1__tag mc_key_properties_tl { /Lang~(#1) }
410 },

411 actualtext .code:n = J, ActualText property

412 {

413 \tl_if_empty:oF{#1}

414 {

415 \str_set_convert :Noon

416 \1__tag_tmpa_str

417 { #1 }

418 { default }

419 { utf16/hex }

420 \tl_put_right:Nn \1__tag _mc_key_properties_tl { /ActualText~< }
421 \tl_put_right:No \1__tag_mc_key_properties_tl { \1__tag_tmpa_str>~ }
422 }

423 1,

424 label .tl_set:N = \1__tag_mc_key_label_tl1,

425 artifact .code:n =

426 {

427 \exp_args:Nne

428 \keys_set:nn

429 { __tag / mc }

430 { __artifact-bool, __artifact-type=#1 }

431 +,

432 artifact .default:n = {notype}

433 }

134 {/generic)

(End of definition for tag (mc-key) and others. These functions are documented on page 84.)

The tagpdf-mc-luacode module
Code related to Marked Content (me-chunks), luamode-specific
Part of the tagpdf package

Ulrike Fischer

Version 0.99x, released 2026-01-12

104

1
>
3
4
5
6
7
8

9

10

Part VII

The code is split into three parts: code shared by all engines, code specific to luamode
and code not used by luamode.

1 Marked content code — luamode code

luamode uses attributes to mark mc-chunks. The two attributes used are defined in
the backend file. The backend also load the lua file, as it can contain functions needed
elsewhere. The attributes for mc are global (between 0.6 and 0.81 they were local but this
was reverted). The attributes are setup only in lua, and one should use the lua functions
to set and get them.
g_00_mc_type_attr: the value represent the type
g_00_mc_cnt_attr: will hold the \c@g_0@_MCID_abs_int value

Handling attribute needs a different system to number the page wise mcid’s:
a \tagmcbegin ... \tagmcend pair no longer surrounds exactly one mc chunk: it
can be split at page breaks. We know the included mcid(s) only after the ship
out. So for the struct -> mcid mapping we need to record struct -> mc-cnt (in
\g_00@_mc_parenttree_prop and/or a lua table and at shipout mc-cnt-> {mcid, mcid,
and when building the trees connect both.

Key definitions are overwritten for luatex to store that data in lua-tables. The data
for the mc are in 1tx.@@.mc [absnum]. The fields of the table are:
tag : the type (a string)
raw : more properties (string)
label: a string.
artifact: the presence indicates an artifact, the value (string) is the type.
kids: a array of tables
{1={kid=num2,page=pagenuml}, 2={kid=num?2,page=pagenum2}, ...},
this describes the chunks the mc has been split to by the traversing code
parent: the number of the structure it is in. Needed to build the parent tree.

(ee=tag)
(xluamode)
\ProvidesExplPackage {tagpdf-mc-code-lua} {2026-01-12} {0.99x}
{tagpdf - mc code only for the luamode }
(/luamode)
(*debug)
\ProvidesExplPackage {tagpdf-debug-lua} {2026-01-12} {0.99x}
{part of tagpdf - debugging code related to marking chunks - lua mode}
{/debug)

The main function which wanders through the shipout box to inject the literals. if the
new callback is there, it is used.

(xluamode)
\hook_gput_code:nnn{begindocument}{tagpdf/mc}
{
\bool_if:NT\g__tag_active_space_bool
{
\lua_now:e

{

105

17 if~luatexbase.callbacktypes.pre_shipout_filter~then~

18 luatexbase.add_to_callback("pre_shipout_filter", function(TAGBOX)~
19 1tx.__tag.func.space_chars_shipout (TAGBOX) ~return~true~

20 end, "tagpdf")~

21 if~luatexbase.declare_callback_rule~then~

22 luatexbase.declare_callback_rule("pre_shipout_filter", "luaotfload.dvi", "after'
23 end~

24 end

2 ¥

2 \lua_now:e

27 {

28 if~luatexbase.callbacktypes.pre_shipout_filter~then~

29 token.get_next ()~

30 end

31 F\@secondoftwo\@gobble

32 {

33 \hook_gput_code:nnn{shipout/before}{tagpdf/lua}

34 {

35 \lua_now:e

36 { 1tx.__tag.func.space_chars_shipout (tex.box["ShipoutBox"]) }
a7 F}

38 }

39 }

0 \bool_if:NT\g__tag_active_mc_bool

41 {

2 \lua_now:e

e {

44 if~luatexbase.callbacktypes.pre_shipout_filter~then~

4 luatexbase.add_to_callback("pre_shipout_filter", function(TAGBOX)~
6 1tx.__tag.func.mark_shipout (TAGBOX) ~return~true~

47 end, "tagpdf")~

48 end

19 }

50 \lua_now:e

51 {

52 if~luatexbase.callbacktypes.pre_shipout_filter~then~

53 token.get_next ()~

54 end

55 }\@secondoftwo\@gobble

56 {

57 \hook_gput_code:nnn{shipout/before}{tagpdf/lua}

58 {

59 \lua_now:e

60 { 1tx.__tag.func.mark_shipout (tex.box["ShipoutBox"]) }
61 }

6 }

63 }

6 F

1.1 Commands

\ tag add missing mcs to strean:ln - This command is used in the output routine by the ptagging code. It should do nothing
in luamode.

106

o5 \cs_new_protected:Npn __tag_add_missing_mcs_to_stream:Nn #1#2 {}
e \cs_set_eq:NN \tag_mc_add_missing_to_stream:Nn __tag_add_missing mcs_to_stream:Nn

(End of definition for __tag_add_missing_mcs_to_stream:Nn.)
\tag_mc_new_stream:n
o7 \cs_new_protected:Npn \tag_mc_new_stream:n #1 {}
(End of definition for \tag_mc_new_stream:n. This function is documented on page 84.)
__tag mc_if_in_p: This tests, if we are in an mc, for attributes this means to check against a number.

__tag_mc_if_in:TF
\tag_mc_if_in_p:cs \prg_new_conditional:Nnn __tag_mc_if_in: {p,T,F,TF}

\tag_mc_if_in:TF"” 1

70 \int_compare:nNnTF

71 { -2147483647 }

73 {\lua_now:e

74 {

75 tex.print (\int_use:N \c_document_cctab,tex.getattribute (luatexbase.attributes.g__tag_
76 }

}
78 { \prg_return_false: }
{ \prg_return_true: }

80 }
s> \prg_new_eq_conditional:NNn \tag_mc_if_in: __tag_mc_if_in: {p,T,F,TF}

(End of definition for __tag_mc_if_in:TF and \tag_mc_if_in:TF. This function is documented on page
83.)

\ tag mc lua set mc type attr:n This takes a tag name, and sets the attributes globally to the related number.
__tag mc_lua set mc_type attr:o
__tag mc_lua_unset mc_type attr-es \cs_new:Nn __tag mc_lua_set_mc_type_attr:n 7, #1 is a tag name

e o{

85 4TOD0 1tx.__tag.func.get_num_from("#1") seems not to return a suitable number??
86 \tl_set:Ne\l__tag_tmpa_tl{\lua_now:e{ltx.__tag.func.output_num_from ("#1")} }
87 \lua_now:e

88 {

89 tex.setattribute

90 (

91 "global",

92 luatexbase.attributes.g__tag mc_type_attr,

93 \1__tag_tmpa_t1

94)

95 }

9% \lua_now:e

97 {

98 tex.setattribute

99 (

100 "global",

101 Juatexbase.attributes.g__tag_mc_cnt_attr,

102 __tag_get_mc_abs_cnt:

103)

107

104 }

105 }

106

107 \cs_generate_variant:Nn__tag_mc_lua_set_mc_type_attr:n { o }
108

100 \cs_new:Nn __tag_mc_lua_unset_mc_type_attr:

110 {

111 \lua_now:e

112 {

113 tex.setattribute

114 (

115 "global",

116 luatexbase.attributes.g__tag_mc_type_attr,
117 -2147483647

118)

119 }

120 \lua_now:e

121 {

122 tex.setattribute

123 (

124 "global",

125 luatexbase.attributes.g__tag_mc_cnt_attr,
126 -2147483647

127)

128 }

129 }

(End of definition for __tag_mc_lua_set_mc_type_attr:n and __tag_mc_lua_unset_mc_type_attr:.)

__tag_mc_insert_mcid_kids:n These commands will in the finish code replace the dummy for a mc by the real mcid
\ tag mc insert mcid single kids:n kids we need a variant for the case that it is the only kid, to get the array right

131 \cs_new:Nn __tag mc_insert_mcid_kids:n

132 {
133 \lua_now:e { ltx.__tag.func.mc_insert_kids (#1,0) }
134 }

136 \cs_new:Nn __tag _mc_insert_mcid_single_kids:n

7

138 \lua_now:e {ltx.__tag.func.mc_insert_kids (#1,1) }
139 }

(End of definition for __tag_mc_insert_mcid_kids:n and __tag_mc_insert_mcid_single_kids:n.)

__tag_mc_handle_stash:n This is the lua variant for the command to put an mcid absolute number in the current
__tag_mc_handle_stash:e structure.

10 (/luamode)

111 (*luamode | debug)

112 (luamode) \cs_new_protected:Npn __tag mc_handle_stash:n #1 /1 mcidnum
145 (debug)\cs_set_protected:Npn __tag_mc_handle_stash:n #1 1 mcidnum
144 {

145 __tag_check_mc_used:n { #1 }

108

146 \seq_gput_right:cn J, Don't fill a lua table due to the command in the item,

147 % so use the kernel command

148 { g__tag_struct_kids_\g__tag_struct_stack_current_tl _seq }

149 {

150 __tag mc_insert_mcid_kids:n {#1})

151 }

152 (debug) \seq_gput_right:cn 7, Don't fill a lua table due to the command in the item,
155 (debug) % so use the kernel command

15 (debug) { g__tag_struct_debug_kids_\g__tag_struct_stack_current_tl _seq }
155 (debug} {

156 (debug) MC~#1),

157 (debug) }

158 \lua_now:e

159 {

160 Itx.__tag.func.store_struct_mcabs

161 (

162 \g__tag_struct_stack_current_tl,#1

163)

164 }

165 }

s (/luamode | debug)
167 (*luamode)
s \cs_generate_variant:Nn __tag mc_handle_stash:n { e }

1

Y

(End of definition for __tag_mc_handle_stash:n.)

\tag_mc_begin:n This is the lua version of the user command. We currently don’t check if there is nesting
as it doesn’t matter so much in lua.

160 \cs_set_protected:Nn \tag_mc_begin:n

170 {

171 __tag_check_if_active_mc:T

172 {

173 \group_begin:

174 %__tag_check_mc_if_nested:

175 \bool_gset_true:N \g__tag_in_mc_bool

176 \bool_set_false:N\1__tag_mc_artifact_bool
177 \tl_clear:N \1__tag_mc_key_properties_tl
178 \int_gincr:N \c@g__tag_MCID_abs_int

set the default tag to the structure:

179 \tl_set_eq:NN \1__tag mc_key_tag_tl \g__tag_struct_tag_ tl
180 \tl_gset_eq:NN\g__tag_mc_key_tag_tl \g__tag_struct_tag_ tl
181 \lua_now:e

182 {

183 1ltx.__tag.func.store_mc_data(__tag_get_mc_abs_cnt:,"tag","\g__tag_struct_tag_tl")
184 }

2025-05-23 allow lang on the MC (not really spec conform, but does work in acrobat).

185 \tl_if_empty:NTF\1l__tag mc_lang tl
186 {
187 \keys_set:nn { __tag / mc }{ label={}, #1 }

109

188

}
189 {

190 \keys_set:nn { __tag / mc }{ label={},lang=\1__tag mc_lang tl, #1 }
191 }

192 /icheck that a tag or artifact has been used

103 __tag_check_mc_tag:N \1__tag _mc_key_tag_tl

194 %set the attributes:

195 __tag mc_lua_set_mc_type_attr:o { \1__tag _mc_key_tag tl }
196 \bool_if:NF \1__tag_mc_artifact_bool

197 { J store the absolute num name in a label:

198 \tl_if_empty:NF {\1__tag_mc_key_label_t1}

199 {

200 __tag_mc_handle_mc_label:e { \1__tag_mc_key_label_t1 }
201 }

202 % if not stashed record the absolute number

203 \bool_if:NF \1__tag_mc_key_stash_bool

204 {

205 \socket_use:nn{tag/check/parent-child}

206 {

207 __tag_mc_check_parent_child:o

208 { \g__tag_struct_stack_current_tl }

209 }

210 __tag _mc_handle_stash:e { __tag _get_mc_abs_cnt: }
211 }

212 }

213 \group_end:

214 }

a5}

(End of definition for \tag_mc_begin:n. This function is documented on page 83.)

\tag_mc_end:

TODO: check how the use command must be guarded.

216 \cs_set_protected:Nn \tag_mc_end:

217 {

218 __tag_check_if_active_mc:T

219 {

220 %__tag_check_mc_if_open:

221 \bool_gset_false:N \g__tag_in_mc_bool
222 \bool_set_rfalse:N\1__tag mc_artifact_bool
223 __tag_mc_lua_unset_mc_type_attr:

224 \tl_set:Nn \1__tag_mc_key_tag tl { }
225 \tl_gset:Nn \g__tag mc_key_tag_tl { }
226 }

227 }

(End of definition for \tag_mc_end:. This function is documented on page 83.)

\tag_mc_reset_box:N This allows to reset the mc-attributes in box. On base and generic mode it should do
nothing.

22s \cs_set_protected:Npn \tag_mc_reset_box:N #1
229 {

110

230 \lua_now:e

231 {

232 local~type=tex.getattribute (luatexbase.attributes.g__tag_mc_type_attr)
233 local~mc=tex.getattribute (luatexbase.attributes.g__tag mc_cnt_attr)

234 ltx.__tag.func.update_mc_attributes (tex.getbox(\int_use:N #1),mc,type)
235 }

236 }

(End of definition for \tag_mc_reset_box:N. This function is documented on page 83.)

__tag_get_data_mc_tag: The command to retrieve the current mc tag. TODO: Perhaps this should use the
attribute instead.

257 \cs_new:Npn __tag_get_data_mc_tag: { \g__tag mc_key_tag_tl }

(End of definition for __tag_get_data_mc_tag:.)

1.2 Key definitions

tag (mc-key) TODO: check conversion, check if local/global setting is right.
raw (mc-key)

alt (mc-key)ys \keys_define:nn { __tag / mc }
lang (mc-key=» T

actualtext (mc-key)” tag .code:n = 7

label (mc-key)" {
. 242 \tl_set:Ne \1__tag_mc_key_tag tl { #1 }
artifact (mc-key)

243 \tl_gset:Ne \g__tag mc_key_tag tl { #1 }
244 \lua_now:e
245 {
246 1tx.__tag.func.store_mc_data(__tag_get_mc_abs_cnt:, "tag", "#1")
247 }
248 } 5
249 raw .code:n =
250 {
251 \tl_put_right:Ne \1__tag _mc_key_properties_tl { #1 }
252 \lua_now:e
253 {
254 1tx.__tag.func.store_mc_data(__tag_get_mc_abs_cnt:, "raw","#1")
255 }
256 +,
257 alt .code:n = J, Alt property
258 {
259 \tl_if_empty:oF{#1}
260 {
261 \str_set_convert:Noon
262 \1__tag_tmpa_str
263 { #1 }
264 { default }
265 { utf16/hex }
266 \tl_put_right:Nn \1__tag _mc_key_properties_tl { /Alt~< }
267 \tl_put_right:No \1__tag_mc_key_properties_tl { \1__tag_tmpa_str>~ }
268 \lua_now:e
269 {

270 1tx.__tag.func.store_mc_data

111

271 (
272 __tag_get_mc_abs_cnt:,"alt","/Alt~<\str_use:N \1__tag_tmpa_str>"

273)

274 }

275 }

276 +,

277 lang .code:n = J, Lang property

278 ‘[

279 \tl_if_empty:oF{#1}

280 {

281 \tl_put_right:Ne \1__tag mc_key_properties_tl { /Lang~(#1) }
282 \lua_now:e

283 {

284 1tx.__tag.func.store_mc_data
285 (

286 __tag_get_mc_abs_cnt:,"lang","/Lang~(#1)"
287)

288 }

289 }

290 } 5

201 alttext .meta:n = {alt=#1},

202 actualtext .code:n =}, Alt property

293 {

294 \tl_if_empty:oF{#1}

295 {

206 \str_set_convert :Noon

207 \1__tag_tmpa_str

298 { #1 }

200 { default }

300 { utf16/hex }

301 \tl_put_right:Nn \1__tag _mc_key_properties_tl { /Alt~< }
302 \tl_put_right:No \1__tag_mc_key_properties_tl { \1__tag_tmpa_str>~ }
303 \lua_now:e

304 {

305 Itx.__tag.func.store_mc_data

306 (

307 __tag_get_mc_abs_cnt:,

308 "actualtext",

300 "/ActualText~<\str_use:N \1__tag_tmpa_str>"
310)

311 }

312 }

313 } 5

314 label .code:n =

315 {

316 \tl_set:Nn\l__tag_mc_key_label_tl { #1 }
317 \lua_now:e

318 {

319 ltx.__tag.func.store_mc_data

320 (

321 __tag_get_mc_abs_cnt:,"label", "#1"
322)

323 }

324 } B

112

325 __artifact-store .code:n =

326 {

327 \lua_now:e

328 {

329 ltx.__tag.func.store_mc_data

330 (

331 __tag_get_mc_abs_cnt:,"artifact", "#1"
332)

333 }

334 1,

335 artifact .code:n =

336 {

337 \exp_args:Nne

338 \keys_set:nn

339 { __tag / mc}

340 { __artifact-bool, __artifact-type=#1, tag=Artifact }
341 \exp_args:Nne

342 \keys_set:nn

343 { __tag / mc }

344 { __artifact-store=\1__tag mc_artifact_type_tl }
345 +,

346 artifact .default:n = { notype }

347 }
349 (/Iuamode)
(End of definition for tag (mc-key) and others. These functions are documented on page 84.)

The tagpdf-struct module
Commands to create the structure
Part of the tagpdf package

Ulrike Fischer

Version 0.99x, released 2026-01-12

113

\tag_struct_begin:n
\tag_struct_end:
\tag_struct_end:n

\tag_struct_use:n
\tag_struct_use_num:n

\tag_struct_object_ref:n
\tag_struct_object_ref:e

\tag_struct_insert_annot:nn

\tag_struct_parent_int:

\tag_struct_gput:nnn

Part VIII

1 Public Commands

\tag_struct_begin:n {(key-values)}

\tag_struct_end:

\tag_struct_end:n {(tag)}

These commands start and end a new structure. They don’t start a group. They set
all their values globally. \tag_struct_end:n does nothing special normally (apart from
swallowing its argument, but if tagpdf-debug is loaded, it will check if the {({tag)} (after
expansion) is identical to the current structure on the stack. The tag is not role mapped!

\tag_struct_use:n {(label)}

\tag_struct_use_num:n {(structure number)}

These commands insert a structure previously stashed away as kid into the currently
active structure. A structure should be used only once, if the structure already has a
parent a warning is issued.

\tag_struct_object_ref:n {(structure number)}

This is a small wrapper around \pdf_object_ref:n to retrieve the object reference of
the structure with the number (struct number). This number can be retrieved and
stored for the current structure for example with \tag_get :n{(struct,um)}. Be aware
that it can only be used if the structure has already been created and that it doesn’t
check if the object actually exists!

The following two functions are used to add annotations. They must be used together
and with care to get the same numbers. Perhaps some improvements are needed here.

\tag_struct_insert_annot:nn {(object reference)} {(struct parent number)}

This inserts an annotation in the structure. (object reference) is there reference to
the annotation. (struct parent number) should be the same number as had been in-
serted with \tag_struct_parent_int: as StructParent value to the dictionary of the
annotation. The command will increase the value of the counter used by \tag_struct_-
parent_int:.

\tag_struct_parent_int:

This gives back the next free /StructParent number (assuming that it is together with
\tag_struct_insert_annot:nn which will increase the number.

\tag_struct_gput:nnn {(structure number)} {(keyword)} {(value)}

This is a command that allows to update the data of a structure. This often can’t done
simply by replacing the value, as we have to preserve and extend existing content. We
use therefore dedicated functions adjusted to the key in question. The first argument is
the number of the structure, the second a keyword referring to a function, the third the
value. Currently the only keyword is ref which updates the Ref key (an array)

114

\tag_struct_gput_ref:nnn \tag_struct_gput_ref:nnn {(structure number)} {(keyword)} {({value)}

This is an user interface to add a Ref key to an existing structure. The target structure
doesn’t have to exist yet but can be addressed by label, destname or even num. (keyword)
is currently either label, dest or num. The value is then either a label name, the name
of a destination or a structure number.

2 Public keys

2.1 Keys for the structure commands

tag (struct key) This is required. The value of the key is normally one of the standard types listed in the
main tagpdf documentation. It is possible to setup new tags/types. The value can also
be of the form type/NS, where NS is the shorthand of a declared name space. Currently
the names spaces pdf, pdf2, mathml and user are defined. This allows to use a different
name space than the one connected by default to the tag. But normally this should not
be needed.

stash (struct key) Normally a new structure inserts itself as a kid into the currently active structure.
This key prohibits this. The structure is nevertheless from now on “the current active
structure” and parent for following marked content and structures.

label (struct key) This key sets a label by which one can refer to the structure. It is e.g. used by \tag_-
struct_use:n (where a real label is actually not needed as you can only use structures
already defined), and by the ref key (which can refer to future structures). Internally
the label name will start with tagpdfstruct- and it stores the two attributes tagstruct
(the structure number) and tagstructobj (the object reference).

parent (struct key) By default a structure is added as kid to the currently active structure. With the parent
key one can choose another parent. The value is a structure number which must refer
to an already existing, previously created structure. Such a structure number can for
example be have been stored with \tag_get:n, but one can also use a label on the
parent structure and then use \property_ref:nn{tagpdfstruct-label}{tagstruct}
to retrieve it.

firstkid (struct key) If this key is used the structure is added at the left of the kids of the parent structure
(if the structure is not stashed). This means that it will be the first kid of the structure
(unless some later structure uses the key too).

title (struct key) This keys allows to set the dictionary entry /Title in the structure object. The value
title-o (struct key) is handled as verbatim string and hex encoded. Commands are not expanded. title-o
will expand the value once.

alt (struct key) This key inserts an /A1t value in the dictionary of structure object. The value is handled
as verbatim string and hex encoded. The value will be expanded first once. If it is empty,
nothing will happen.

actualtext (struct key) This key inserts an /ActualText value in the dictionary of structure object. The value
is handled as verbatim string and hex encoded. The value will be expanded first once. If
it is empty, nothing will happen.

lang (struct key) This key allows to set the language for a structure element. The value should be a
bep-identifier, e.g. de-De.

115

ref (struct key) This key allows to add references to other structure elements, it adds the /Ref array to
the structure. The value should be a comma separated list of structure labels set with
the label key. e.g. ref={labell,label2}.

E (struct key) This key sets the /E key, the expanded form of an abbreviation or an acronym (I couldn’t
think of a better name, so I sticked to E).

AF (struct key) These keys handle associated files in the structure element.
AFref (struct key

AFinline (struct key AF = (object name)

(
()
()
AFinline-o (struct key) AFref = (object reference)
texsource (struct key)
()

mathml (struct key

AF-inline = (text content)

The value (object name) should be the name of an object pointing to the /Filespec
dictionary as expected by \pdf_object_ref:n from a current 13kernel.

The value AF-inline is some text, which is embedded in the PDF as a text file with
mime type text/plain. AF-inline-o is like AF-inline but expands the value once.

Future versions will perhaps extend this to more mime types, but it is still a research
task to find out what is really needed.

texsource is a special variant of AF-inline-o which embeds the content as .tex source
with the /AFrelationship key set to /Source. It also sets the /Desc key to a (currently)
fix text.

mathml is a special variant of AF-inline-o which embeds the content as .xml file with
the /AFrelationship key set to /Supplement. It also sets the /Desc key to a (currently)
fix text.

The argument of AF is an object name referring an embedded file as declared for example
with \pdf_object_new:n or with the 13pdffile module. AF expands its argument (this
allows e.g. to use some variable for automatic numbering) and can be used more than
once, to associate more than one file.

The argument of AFref is an object reference to an embedded file or a variable expanding
to such a object reference in the format as you would get e.g. from \pdf_object_ref_ -
last: or \pdf_object_ref:n (and which is different for the various engines!). The key
allows to make use of anonymous objects. Like AF the AFref key expands its argument
and can be used more than once, to associate more than one file. It does not check if the
reference is valid!

The inline keys can be used only once per structure. Additional calls are ignored.

attribute (struct key) This key takes as argument a comma list of attribute names (use braces to protect
the commas from the external key-val parser) and allows to add one or more attribute
dictionary entries in the structure object. As an example

\tagstructbegin{tag=TH,attribute= TH-row}

Attribute names and their content must be declared first in \tagpdfsetup.

attribute-class (struct key) This key takes as argument a comma list of attribute class names (use braces to protect
the commas from the external key-val parser) and allows to add one or more attribute
classes to the structure object.

Attribute class names and their content must be declared first in \tagpdfsetup.

116

2.2 Setup keys

role/new-attribute (setup-key) role/new-attribute = {(name)}{(Content)}
newattribute (deprecated)

This key can be used in the setup command \tagpdfsetup and allow to declare a new
attribute, which can be used as attribute or attribute class. The value are two brace
groups, the first contains the name, the second the content.

\tagpdfsetup
{

role/new-attribute =

{TH-col}{/0 /Table /Scope /Column},
role/new-attribute =

{TH-row}{/0 /Table /Scope /Row},

}

root-AF (setup key)

root-AF = (object name)

This key can be used in the setup command \tagpdfsetup and allows to add associated
files to the root structure. Like AF it can be used more than once to add more than one
file.

1 (e0=tag)
2> (xheader)
s \ProvidesExplPackage {tagpdf-struct-code} {2026-01-12} {0.99x}

+ {part of tagpdf - code related to storing structurel}
5 {/header)

3 Variables

\cOg__tag_struct_abs_int Every structure will have a unique, absolute number.

s (base)\int_new:N \c@g__tag struct_abs_int
7 (base)\int_gset:Nn \cOg__tag struct_abs_int { 1 }

(End of definition for \c@g__tag_struct_abs_int.)

\g__tag_struct_objR_seq a sequence to store mapping between the structure number and the object number. We
assume that structure numbers are assign consecutively and so the index of the seq can
be used. A seq allows easy mapping over the structures.

s (xpackage)
o __tag_seq_new:N \g__tag struct_objR_seq

(End of definition for \g__tag_struct_objR_seq.)

\c__tag_struct_null_t1l In lua mode we have to test if the kids a null

117

10 \tl_const:Nn\c__tag_struct_null_tl {null}
(End of definition for \c__tag_struct_null_tl.)

\g__tag_struct_cont_mc_prop in generic mode it can happen after a page break that we have to inject into a structure
sequence an additional mc after. We will store this additional info in a property. The
key is the absolute mc num, the value the pdf directory.

11 __tag_prop_new:N \g__tag_struct_cont_mc_prop
(End of definition for \g__tag_struct_cont_mc_prop.)

\g__tag_struct_stack_seq A stack sequence for the structure stack. When a sequence is opened it’s number is put
on the stack.

> \seq_new:N \g__tag_struct_stack_seq
\seq_gpush:Nn \g__tag_struct_stack_seq {1}

~

(End of definition for \g__tag_struct_stack_seq.)

\g__tag_struct_tag_stack_seq We will perhaps also need the tags. While it is possible to get them from the numbered
stack, lets build a tag stack too.

+ \seq_new:N \g__tag_struct_tag_stack_seq
\seq_gpush:Nn \g__tag struct_tag_stack_seq {{Root}{StructTreeRoot}}

~

~

(End of definition for \g__tag_struct_tag_stack_seq.)

\g tag struct stack current t1 The global variable will hold the current structure number. It is already defined in
\l_tag struct stack parent tmpa t1 tagpdf-base. The local temporary variable will hold the parent when we fetch it from
the stack.

s (/package)

17 (base)\t1l_new:N \g__tag_struct_stack_current_tl

s (base)\tl_gset:Nn \g__tag struct_stack_current_tl {\int_use:N\c@g__tag_struct_abs_int}
o (xpackage)

20 \tl_new:N \1__tag_struct_stack_parent_tmpa_tl

~

(End of definition for \g__tag_struct_stack_current_tl and \1__tag_struct_stack_parent_tmpa_tl.)

In luatex we will store the structure number as attribute.

21 \sys_if_engine_luatex:TF

22 {

23 \cs_new:Npn __tag_struct_set_attribute:
24 {

25 \lua_now:e

26 {

27 tex.setattribute

28 (

29 "global",

30 luatexbase.attributes.g__tag_structnum_attr,
31 \g__tag_struct_stack_current_tl

32)

118

34 }
s}
{

37 \cs_new_eq:NN __tag_struct_set_attribute: \prg_do_nothing:
38 }

I will need at least one structure: the StructTreeRoot normally it should have only
one kid, e.g. the document element.

The data of the StructTreeRoot and the StructElem are in properties: \g_@@_struct_1_prop
for the root and \g_@@_struct_N_prop, N >= 2 for the other.

This creates quite a number of properties, so perhaps we will have to do this more
efficiently in the future.

All properties have at least the keys

Type StructTreeRoot or StructElem

and the keys from the two following lists (the root has a special set of properties). the
values of the prop should be already escaped properly when the entries are created (ti-
tle,lange,alt,E actualtext)

\c_tag struct StructTreeRoot entries seq These seq contain the keys we support in the two object types. They are currently no
longer used, but are provided as documentation and for potential future checks. They
should be adapted if there are changes in the PDF format.

\c__tag struct StructElem entries seq

30 \seq_const_from_clist:Nn \c__tag_struct_StructTreeRoot_entries_seq
40 {%p . 857/858

41 Type, % always /StructTreeRoot

42 K, % kid, dictionary or array of dictionaries
43 IDTree, % currently unused

4 ParentTree, % required,obj ref to the parent tree

45 ParentTreeNextKey, J; optional

46 RoleMap,

a7 ClassMap,

48 Namespaces,

49 AF Zpdf 2.0

50 }

52 \seq_const_from_clist:Nn \c__tag_struct_StructElem_entries_seq
53 {%p 858 f

54 Type, %always /StructElem

55 S, Jtag/type

56 P, /iparent

57 ID, Joptional

58 Ref, Joptional, pdf 2.0 Use?

59 Pg, %obj num of starting page, optional

60 K, Zkids

61 A, Zattributes, probably unused

62 c, %class ""

63 /R, Jattribute revision number, irrelevant for us as we
64 % don't update/change existing PDF and (probably)
65 % deprecated in PDF 2.0

66 T, stitle, value in () or <>

67 Lang, %language

68 Alt, 7% value in () or <>

119

69
70

71

\g__tag_struct_tag_tl
\g__tag_struct_tag_NS_tl
\1__tag_struct_roletag_tl
\g__tag_struct_roletag NS_tl

\1__tag_struct_parenttag_tl

\1__tag struct_parenttag NS t177

78

79

80

81

83

\g__tag struct label num prop

8

X

\l_tag struct elem stash bool

%
&

\1__tag_struct_addkid_tl

86

87

E, /i abbreviation

ActualText,

AF, /pdf 2.0, array of dict, associated files
NS, /pdf 2.0, dict, namespace
PhoneticAlphabet, Jpdf 2.0

Phoneme Zpdf 2.0

}

(End of definition for \c__tag_struct_StructTreeRoot_entries_seq and \c__tag_struct_StructElem_-
entries_seq.)

3.1 Variables used by the keys

Use by the tag key to store the tag and the namespace. The roletag variables will hold
locally rolemapping info needed for the parent-child checks. The parenttag variables
allow to set the target role of the parent of stashed structures.

\tl_new:N \g__tag_struct_tag tl

\tl_new:N \g__tag_struct_tag_NS_t1

\tl_new:N \1__tag_struct_roletag_tl

\tl_new:N \1__tag_struct_roletag_NS_tl

\tl_new:N \1__tag_struct_parenttag_tl

\tl_set:Nn \1__tag_struct_parenttag_tl {STASHED}
\tl_new:N \1__tag_struct_parenttag_NS_tl
\tl_set:Nn \1__tag_struct_parenttag NS_tl {latex}
(End of definition for \g__tag_struct_tag_tl and others.)

This will hold for every structure label the associated structure number. The prop will
allow to fill the /Ref key directly at the first compilation if the ref key is used.

\prop_new_linked:N \g__tag struct_label_num_prop
(End of definition for \g__tag_struct_label_num_prop.)
This will keep track of the stash status

\bool_new:N \1__tag_struct_elem_stash_bool

(End of definition for \1__tag_struct_elem_stash_bool.)

This decides if a structure kid is added at the left or right of the parent. The default is
right.

\tl_new:N \1__tag_struct_addkid_tl
\tl_set:Nn \1__tag_struct_addkid_tl {right}

(End of definition for \1__tag_struct_addkid_t1.)

120

\g__tag_struct_dest_num_prop

89

90

\g_ tag struct ref by dest prop

9.

9.

N

__tag_struct_prop_gput:nnn

93

9:

X

96
97
98
99

100

102

103

104

__tag_pdf_name_e:n

3.2 Variables used by tagging code of basic elements

This variable records for (some or all, not clear yet) destination names the related struc-
ture number to allow to reference them in a Ref. The key is the destination. It is currently
used by the toc-tagging and sec-tagging code.

; (/package)

(base) \prop_new_linked:N \g__tag_struct_dest_num_prop
(*package)

(End of definition for \g__tag_struct_dest_num_prop.)

This variable contains structures whose Ref key should be updated at the end to point
to structured related with this destination. As this is probably need in other places too,
it is not only a toc-variable. TODO: remove after 11/2024 release.

\prop_new_linked:N \g__tag_struct_ref_by_dest_prop
(/package)

(End of definition for \g__tag_struct_ref_by_dest_prop.)

4 Commands

The structure props must be filled in various places. For this we use a common command
which also takes care of the debug package:

(xpackage | debug)
(package) \cs_new_protected:Npn __tag_struct_prop_gput:nnn #1 #2 #3

5 (debug)\cs_set_protected:Npn __tag_struct_prop_gput:nnn #1 #2 #3

{
__tag_prop_gput:cnn
{ g__tag_struct_#1_prop MH#2}{#3}
(debug)\prop_gput:cnn { g__tag_struct_debug_#1_prop } {#2} {#3}
}
\cs_generate_variant:Nn __tag_struct_prop_gput:nnn {onn,nne,nee,nno}
(/package | debug)

(End of definition for __tag_struct_prop_gput:nnn.)

4.1 Initialization of the StructTreeRoot

The first structure element, the StructTreeRoot is special, so created manually. The
underlying object is @@/struct/1 which is currently created in the tree code (TODO
move it here). The ParentTree and RoleMap entries are added at begin document in the
tree code as they refer to object which are setup in other parts of the code. This avoid
timing issues.

(xpackage)
\tl_gset:Nn \g__tag_struct_stack_current_tl {1}

5 \cs_new:Npn __tag_pdf_name_e:n #1{\pdf_name_from_unicode_e:n{#1}}

(/package)

121

(End of definition for __tag_pdf_name_e:n.)

g__tag_struct_1_prop
g__tag_struct_kids_1_seq

9

7 (xpackage)
10s __tag_prop_new:c { g__tag_struct_1_prop }
109 __tag _seq_new:c { g__tag struct_kids_1_seq }

111 __tag_struct_prop_gput:nne

112 {1%

113 { Type }

114 { \pdf_name_from_unicode_e:n {StructTreeRoot} }

16 __tag_struct_prop_gput:nne
117 {1%
118 {S}

10 { \pdf_name_from_unicode_e:n {StructTreeRoot} }

21 __tag_struct_prop_gput:nne
122 {11}

123 { tag }

12¢ { {StructTreeRoot}{pdf} }

126 __tag_struct_prop_gput:nne
127 {1}

128 { rolemap }

120 { {StructTreeRoot}{pdf} }

131 __tag_struct_prop_gput :nne
132 {1%

133 { parentrole }

132 { {StructTreeRoot}{pdf} }

Namespaces are pdf 2.0. If the code moves into the kernel, the setting must be probably

delayed.
136 \pdf_version_compare:NnF < {2.0}
137 {
138 __tag_struct_prop_gput :nne
139 { 1 }
140 { Namespaces }
141 { \pdf_object_ref:n { __tag/tree/namespaces } }
142 }

N

s (/package)
In debug mode we have to copy the root manually as it is already setup:
114 (debug)\prop_new:c { g__tag_struct_debug_1_prop }
15 (debug)\seq_new:c { g__tag_struct_debug_kids_1_seq }
16 (debug) \prop_gset_eq:cc { g__tag struct_debug 1_prop }{ g__tag struct_1_prop }
117 (debug)\prop_gremove:cn { g__tag_struct_debug_1_prop }{Namespaces}

(End of definition for g__tag_struct_1_prop and g__tag_struct_kids_1_seq.)

122

4.2 Adding the /ID key

Every structure gets automatically an ID which is currently simply calculated from the
structure number.

__tag_struct_get_id:n

115 (*package)
120 \cs_new:Npn __tag_struct_get_id:n #1 J#l=struct num

150 {

151 (

152 ID.

153 \prg_replicate:nn

154 { \int_abs:n{\g__tag tree_id_pad_int - \tl_count:e { \int_to_arabic:n { #1 } }} }
156 \int_to_arabic:n { #1 }

157)

158 }

(End of definition for __tag_struct_get_id:n.)

4.3 Filling in the tag info

\tag struct set tag infornn This adds or updates the tag info to a structure given by a number. We need also the
original data, so we store both.

150 \pdf_version_compare:NnTF < {2.0}

w0 {

161 \cs_new_protected:Npn __tag_struct_set_tag_info:nnn #1 #2 #3
162 %#1 structure number, #2 tag, #3 NS

163 {

164 __tag_struct_prop_gput:nne

165 { #1 }

166 { S }

167 { \pdf_name_from_unicode_e:n {#2} }

168 __tag_struct_prop_gput :nnn

169 { #1 }

170 { tag }

171 { {#2} {} }

172 }

173 }

i7a

175 \cs_new_protected:Npn __tag_struct_set_tag_info:nnn #1 #2 #3
176 {

177 __tag_struct_prop_gput :nne

178 { #1 }

179 { S }

180 { \pdf_name_from_unicode_e:n {#2} } J

181 \prop_get:NnNT \g__tag_role_NS_prop {#3} \1__tag_get_tmpc_tl
182 {

183 __tag_struct_prop_gput:nne

184 { #1 }

185 { NS }

186 { \1__tag_get_tmpc_tl } J

123

187 }

188 __tag_struct_prop_gput:nnn
189 { #1 }

190 { tag }

101 { {#2} {#3} }

192 F

193 }

104 \cs_generate_variant:Nn __tag_struct_set_tag_info:nnn {eoo}
(End of definition for __tag_struct_set_tag_info:nnn.)

__tag_struct_get_role:nnNN We also need a way to get the tag info needed for parent child check from parent struc-
tures. The tag info is stored as the value of the rolemap key, but for “transparent”
structures we also have to look into parentrole key.

105 \cs_new_protected:Npn __tag_struct_get_role:nnNN #1 #2 #3 #4

196 %#1 :struct num,

197 %#2 :rolemap or parentrole

198 ##3 :tlvar for tag (rolemapped)

199 %#4 :tlvar for NS (rolemapped, so standard or empty or UNKNOWN)

200 {

201 \prop_get :cnNTF

202 { g__tag_struct_#1_prop }

203 { #2 }

204 \1__tag_get_tmpc_tl

205 {

206 \tl_set:Ne #3{\exp_last_unbraced:No\use_i:nn { \1__tag_get_tmpc_tl }}
207 \tl_set:Ne #4{\exp_last_unbraced:No\use_ii:nn { \1__tag_get_tmpc_tl }}
208 }

209 {

210 \tl_clear:N#3

211 \tl_clear:N#4

212 3

213 }

214 \cs_generate_variant:Nn__tag struct_get_role:nnNN {enNN}

(End of definition for __tag_struct_get_role:nnNN.)

4.4 Handlings kids

Commands to store the kids. Kids in a structure can be a reference to a mec-chunk,
an object reference to another structure element, or a object reference to an annotation
(through an OBJR object).

_tag struct kid mc gput right:nn The command to store an mc-chunk, this is a dictionary of type MCR. It would be
_tag struct kid mc gput right:ne possible to write out the content directly as unnamed object and to store only the object
reference, but probably this would be slower, and the PDF is more readable like this. The
code doesn’t try to avoid the use of the /Pg key by checking page numbers. That imho
only slows down without much gain. In generic mode the page break code will perhaps
to have to insert an additional mcid after an existing one. For this we use a property list

At first an auxiliary to write the MCID dict. This should normally be expanded!

124

215 \cs_new:Npn __tag_struct_mcid_dict:n #1 }#1 MCID absnum

216 {

217 <<

218 /Type \c_space_tl /MCR \c_space_tl

219 /Pg

220 \c_space_tl1

221 \pdf_pageobject_ref:n { \property_ref:enn{mcid-#1}{tagabspage}{1} }
222 /MCID \c_space_tl \property_ref:enn{mcid-#1}{tagmcid}{1}

223 >>

224 3

225 (/package)

22 (xpackage | debug)

227 {package)\cs_new_protected:Npn __tag struct_kid_mc_gput_right:nn #1 #2
22s (debug)\cs_set_protected:Npn __tag_struct_kid_mc_gput_right:nn #1 #2
220 J#1 structure num, #2 MCID absnumj,

230 {

231 __tag_seq_gput_right:ce

232 { g__tag_struct_kids_#1_seq }

233 {

234 __tag_struct_mcid_dict:n {#2}

235 }

23 {debug) \seq_gput_right:cn

237 {debug) { g__tag_struct_debug_kids_#1_seq }
238 (debug) {

230 {debug) MC~#2

240 (debug} }

241 __tag_seq_gput_right:cn

242 { g__tag_struct_kids_#1_seq }

243 {

244 \prop_item:Nn \g__tag_struct_cont_mc_prop {#2}
245 }

246 }

47 (package)\cs_generate_variant:Nn __tag_struct_kid_mc_gput_right:nn {ne}
(End of definition for __tag_struct_kid_mc_gput_right:nn.)

¢ struct kid struct gput right:mn This commands adds a structure as kid. We only need to record the object reference in
\ tag struct kid struct gput rightiee the sequence.

e O—

__tag

215 (package) \cs_new_protected:Npn__tag_struct_kid_struct_gput_right:nn #1 #2
210 (debug)\cs_set_protected:Npn__tag_struct_kid_struct_gput_right:nn #1 #2
250 4/4#1 num of parent struct, #2 kid struct

251 {

252 __tag_seq_gput_right:ce

253 { g__tag_struct_kids_#1_seq }

254 {

255 \pdf_object_ref_indexed:nn { __tag/struct } #2 }
256 }

257 {debug) \seq_gput_right:cn

2 (debug) { g__tag_struct_debug_kids_#1_seq }
259 (debug) {

260 {debug) Struct~#2

261 (debug) }

125

262 }

23 (package)\cs_generate_variant:Nn __tag_struct_kid_struct_gput_right:nn {ee}
(End of definition for __tag_struct_kid_struct_gput_right:nn.)

\ tag struct kid struct gput left:nn This commands adds a structure as kid one the left, so as first kid. We only need to

_tag struct kid struct gput left:ee record the object reference in the sequence.

261 {package)\cs_new_protected:Npn__tag_struct_kid_struct_gput_left:nn #1 #2
265 {debug)\cs_set_protected:Npn__tag_struct_kid_struct_gput_left:nn #1 #2
266 44#1 num of parent struct, #2 kid struct

267 {

268 __tag_seq_gput_left:ce

269 { g__tag_struct_kids_#1_seq }

270 {

271 \pdf_object_ref_indexed:nn { __tag/struct } #2 }
272 }

273 {debug) \seq_gput_left:cn

272 {debug) { g__tag_struct_debug_kids_#1_seq }
275 (debug) {

276 {debug) Struct~#2

277 (debug} }

o7 F

270 {package)\cs_generate_variant:Nn __tag_struct_kid_struct_gput_left:nn {ee}
(End of definition for __tag_struct_kid_struct_gput_left:nn.)

_tag struct kid OBJR gput right:nmm At last the command to add an OBJR object. This has to write an object first. The
_tag struct kid OBJR_gput_right:cce first argument is the number of the parent structure, the second the (expanded) object
reference of the annotation. The last argument is the page object reference

220 (package)\cs_new_protected:Npn__tag_struct_kid_OBJR_gput_right:nnn #1 #2 #3
(package)

222 (package)
(debug)\cs_set_protected:Npn__tag_struct_kid_OBJR_gput_right:nnn #1 #2 #3

281 J4#1 num of parent struct,#2 obj reference,#3 page object reference

285 {

286 \pdf_object_unnamed_write:nn

287 { dict }

288 {

289 /Type/UBJR/Ubj ~#2/Pg~#3

290 }

201 __tag_seq_gput_right:ce

202 { g__tag_struct_kids_#1_seq }

293 {

204 \pdf_object_ref_last:

281

N
o
@

() \seq_gput_right:ce

207 {) { g__tag struct_debug_kids_#1_seq }

298 (debug) {

() OBJR~reference

300 < > 3

301 }

302 {/package | debug)

s0s (*package)

304 \cs_generate_variant:Nn__tag_struct_kid_OBJR_gput_right:nnn { eee }

126

__tag_struct_exchange kid command:N

305

307
308
309
310
311
312
313

314

__tag_struct_fill_kid_key:n

315

316

326
327
328
329

330

340

345

346

(End of definition for __tag_struct_kid_OBJR_gput_right:nnn.)

In luamode it can happen that a single kid in a structure is split at a page break into
two or more mcid. In this case the lua code has to convert put the dictionary of the kid
into an array. See issue 13 at tagpdf repo. We exchange the dummy command for the
kids to mark this case. Change 2024-03-19: don’t use a regex - that is slow.

\cs_new_protected:Npn__tag_struct_exchange_kid_command:N #1 J#1 = seq var
{
\seq_gpop_left:NN #1 \1__tag_tmpa_tl
\tl_replace_once:Nnn \1__tag_tmpa_t1
{__tag_mc_insert_mcid_kids:n}
{__tag_mc_insert_mcid_single_kids:n}
\seq_gput_left:No #1 { \1__tag_tmpa_tl }
}

\cs_generate_variant:Nn__tag_struct_exchange_kid_command:N { c }
(End of definition for __tag_struct_exchange_kid_command:N.)

This command adds the kid info to the K entry. In lua mode the content contains
commands which are expanded later. The argument is the structure number.

\cs_new_protected:Npn __tag_struct_£ill_kid_key:n #1 J#1 is the struct num

{
\bool_if:NF \g__tag_mode_lua_bool

{

\seq_clear:N \1__tag_tmpa_seq

\seq_map_inline:cn { g__tag struct_kids_#1_seq }

{ \seq_put_right:Ne \1__tag_tmpa_seq { ##1 } }

%\seq_show:c { g__tag_struct_kids_#1_seq }

%\seq_show:N \1__tag tmpa_seq

\seq_remove_all:Nn \1__tag_tmpa_seq {}

%\seq_show:N \1__tag_tmpa_seq

\seq_gset_eq:cN { g__tag_struct_kids_#1_seq } \1__tag_tmpa_seq
}

\int_case:nnF

{
\seq_count:c
{
g__tag_struct_kids_#1_seq
}
}
{
{07}

{ } /no kids, do nothing
{1} % 1 kid, insert
{
% in this case we need a special command in
% luamode to get the array right. See issue #13
\sys_if_engine_luatex:TF
{
__tag_struct_exchange_kid_command:c
{g__tag _struct_kids_#1_seq}

127

360

361

362

363

364

365

366

367

368

369

370

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

check if we get null

\tl_set:Ne\l__tag_tmpa_tl
{\use:e{\seq_item:cn {g__tag _struct_kids_#1_seq} {1}}}
\tl_if_eq:NNF\1__tag_tmpa_tl \c__tag_struct_null_tl

{
__tag_struct_prop_gput:nne
{#1}
{K}
{
\seq_item:cn
{
g__tag struct_kids_#1_seq
}
{1}
}
}
}
{
__tag_struct_prop_gput:nne
{#1}
{K}
{
\seq_item:cn
{
g__tag_struct_kids_#1_seq
}
{1}
}
}
A
}
{ J/many kids, use an array
__tag_struct_prop_gput:nne
{#1}
{K}
{
[
\seq_use:cn
{
g__tag _struct_kids_#1_seq
}
{
\c_space_t1
}
]
}
}

(End of definition for __tag_struct_fill_kid_key:n.)

128

__tag struct_get dict_content:nll

395

396

398

399

404
405
406
407

408

__tag_struct_format rolemap:nnll
__tag struct format parentrole:mnll
__tag_struct_format_P:nnN

__tag_struct_format_tag:nnNo
410

411

__tag_struct_format_parentnum:nnl

__tag_struct_format_Ref :nnN

4.5 Output of the object

This maps the dictionary content of a structure into a tl-var. Basically it does what
\pdfdict_use:n does. This is used a lot so should be rather fast.

\cs_new_protected:Npn __tag_struct_get_dict_content:nN #1 #2 J#1: structure num

{
\tl_clear:N #2
\prop_map_inline:cn { g__tag_struct_#1_prop }
{

Some keys needs the option to format the value, e.g. add brackets for an array, we also
need the option to ignore some entries in the properties.

\cs_if_exist_use:cTF {__tag_struct_format_##1:nnN}
{
{##1H{##2}142
}
{
\tl_put_right:Ne #2 { \c_space_tl/##1~##2 }
}

}
(End of definition for __tag_struct_get_dict_content:nN.)

This three entries should not end in the PDF. Todo: check if the S/NS keys can be
dropped and replaced by a processing of the tag key.

\cs_new:Nn__tag_struct_format_rolemap:nnN{}
\cs_new:Nn__tag_struct_format_parentrole:nnN{}
\cs_new:Nn__tag_struct_format_tag:nnN{}

(End of definition for __tag_struct_format_rolemap:nnN and others.)

parent is a structure number and should expand to the object reference.

\cs_new_protected:Nn__tag_struct_format_parentnum:nnN

{
\tl_put_right:Ne #3 { ~/P~\pdf_object_ref_indexed:nn { __tag/struct} { #2 } }
}

(End of definition for __tag_struct_format_parentnum:nnN.)

Ref is an array, we store values as a clist of commands that must be executed here, the
formatting has to add also brackets.

\cs_new_protected:Nn__tag_struct_format_Ref :nnN
{
\tl_put_right:Nn #3 { ~/#1~[} %]
\clist_map_inline:nn{ #2 }
{
##1 #3
}

129

__tag_struct_write_obj:n

429

430

460

461

__tag struct_insert annot:nn

\tl_put_right:Nn #3
{70
\c_space_t1]
}
}

(End of definition for __tag_struct_format_Ref:nnN.)

This writes out the structure object. This is done in the finish code, in the tree module
and guarded by the tree boolean.

s \cs_new_protected:Npn __tag_struct_write_obj:n #1), #1 is the struct num

{
\prop_if_exist:cTF { g__tag_struct_#1_prop }
{

It can happen that a structure is not used and so has not parent. Simply ignoring it is
problematic as it is also recorded in the IDTree, so we make an artifact out of it.

\prop_get:cnNF { g__tag_struct_#1_prop } {parentnum}\l__tag_tmpb_tl

{

% \prop_gput:cne { g__tag_struct_#1_prop } {P}

YA {\pdf_object_ref_indexed:nn { __tag/struct }{1}}
\prop_gput:cne { g__tag struct_#1_prop } {parentnum}{1}
\prop_gput:cne { g__tag_struct_#1_prop } {S}H/Artifact}
\seq_if_empty:cF {g__tag_struct_kids_#1_seq}

{
\msg_warning:nnee
{tag}
{struct-orphan}
{ #1 }
{\seq_count:c{g__tag_struct_kids_#1_seql}}
}
}
__tag _struct_£fill_kid_key:n { #1 }
__tag_struct_get_dict_content:nN { #1 } \1__tag_tmpa_tl
\pdf_object_write_indexed:nnne
{ __tag/struct M #1 }
{dict}
{
\1__tag_tmpa_tl\c_space_tl
/ID~__tag_struct_get_id:n{#1}
}
}
{
\msg_error:nnn { tag } { struct-no-objnum } { #1}
}
}

(End of definition for __tag_struct_write_obj:n.)

This is the command to insert an annotation into the structure. It can probably be used
for xform too

Annotations used as structure content must

130

1. add a StructParent integer to their dictionary
2. push the object reference as OBJR object in the structure

3. Add a Structparent/obj-nr reference to the parent tree.
For a link this looks like this

\tag_struct_begin:n { tag=Link }
\tag_mc_begin:n { tag=Link }
¢D) \pdfannot_dict_put:nne
{ 1ink/URI }
{ StructParent }
{ \int_use:N\c@g_@@_parenttree_obj_int }
<start link> link text <stop link>
(2+3) \@@_struct_insert_annot:nn {obj ref}{parent num}
\tag_mc_end:
\tag_struct_end:

w2 \cs_new_protected:Npn __tag_struct_insert_annot:nn #1 #2
w63 J#1 object reference to the annotation/xform
/#2 structparent number

465 {

466 \bool_if:NT \g__tag_active_struct_bool

467 {

468 /%get the number of the parent structure:

469 \seq_get :NNF

470 \g__tag_struct_stack_seq

471 \1__tag_struct_stack_parent_tmpa_tl

472 {

473 \msg_error:nn { tag } { struct-faulty-nesting }
474 3

475 /put the obj number of the annot in the kid entry, this also creates
476 /the OBJR object

477 __tag_property_record:nn {Q@tag@objr@page0@#2 }{ tagabspage }
478 __tag_struct_kid_OBJR_gput_right:eee

479 ‘[

480 \1__tag_struct_stack_parent_tmpa_tl

481 }

482 {

483 #1 7

484 }

485 {

486 \pdf_pageobject_ref:n

487 { \property_ref:nnn {@tag@objr@page@#2 }{ tagabspage }{1} }
488 }

489 % add the parent obj number to the parent tree:

490 % the command always expands its arguments!

401 __tag_parenttree_add_objr:nn

492 {

493 #2

494 3

495 {

131

__tag struct_insert annot shipout:nmn

\pdf_
__tag/struct M \1__tag _struct_stack_parent_tmpa_tl }

{
}

object_ref_indexed:nn

% increase the int:
\int_gincr:N \c@g__tag_parenttree_obj_int

}
}

(End of definition for __tag_struct_insert_annot:nn.)

This command is similar to the previous one but is meant to be used at shipout (currently
only sensible for luatex). To move the OBJR into the right structure it has to get the
structure number additionally as argument. But as it is used at shipout it doesn’t need
a label to get the page reference but can use \g_shipout_readonly_int. It does not
increase the parenttree integer (timing is wrong in lua), instead code using the command

has to do it. See the lua code.

\cs_new_protected:Npn__tag_struct_insert_annot_shipout:nnn #1#2#3
% #1 structnum, #2 object reference, #3 StructParentNum

{

__tag_struct_

{
#1

}
{
#2

}
{

kid_OBJR_gput_right:eee

\pdf_pageobject_ref:n
{ \int_use:N \g_shipout_readonly_int } J,

}

% add the parent obj number to the parent tree:

% the command

{
#3

}
{

always expands its arguments!

__tag_parenttree_add_objr:nn

\pdf_object_ref_indexed:nn
{ __tag/struct } #1 }

}

(End of definition for __tag_struct_insert_annot_shipout:nnn.)

this command allows \tag_get:n to get the current structure tag with the keyword

struct_tag.

\cs_new:Npn __tag_get_data_struct_tag:

{
\exp_args:Ne
\tl_tail:n
{

\prop_item:cn {g__tag_struct_\g__tag struct_stack_current_tl _prop}{S}

132

534

__tag_get_data_struct_id:

536
537
538
539

540

__tag_get_data_struct_num:

__tag get data struct counter:

__tag_struct_check parent_child aux:nnnnl

}
(End of definition for __tag_get_data_struct_tag:.)

this command allows \tag_get:n to get the current structure id with the keyword
struct_id.

\cs_new:Npn __tag_get_data_struct_id:

{
__tag_struct_get_id:n {\g__tag _struct_stack_current_tl}
}
(/package)

(End of definition for __tag_get_data_struct_id:.)

this command allows \tag_get:n to get the current structure number with the keyword
struct_num. We will need to handle nesting

(*base)
\cs_new:Npn __tag_get_data_struct_num:
{
\g__tag_struct_stack_current_tl
}
; (/base)

(End of definition for __tag_get_data_struct_num:.)

this command allows \tag_get:n to get the current state of the structure counter with
the keyword struct_counter. By comparing the numbers it can be used to check the
number of structure commands in a piece of code.

(*base)
: \cs_new:Npn __tag_get_data_struct_counter:
{
\int_use:N \cOg__tag_struct_abs_int
}
> (/base)

(End of definition for __tag_get_data_struct_counter:.)
4.6 Commands for the parent-child checks
(xpackage)

\cs_new_protected:Npn __tag_struct_check_parent_child_aux:nnnnN #1#2#3#4#5
{

; /4 #1 structure number of parent

% #2 key to use to retrieve role of parent (either rolemap or parentrole field)
% #3 structure number of parent

% #4 key to use to retrieve role of child (either rolemap or parentrole field)
% #5 tl for return value

133

get parent rolemap

561 __tag_struct_get_role:nnNN
562 {#1}
563 {#2}
564 \1__tag_get_parent_tmpa_tl
565 \1__tag_get_parent_tmpb_tl

get child rolemap

566 __tag_struct_get_role:nnNN
567 {#3}
568 {#4}
569 \1__tag_get_child_tmpa_tl
570 \1__tag_get_child_tmpb_t1l
check
571 __tag_role_check_parent_child:ooooN
572 { \1__tag_get_parent_tmpa_tl }), rolemapped from above
573 { \1__tag_get_parent_tmpb_tl } J, rolemapped from above

574 { \1__tag _get_child_tmpa_tl } 7
75 { \1__tag get_child_tmpb_tl } J
576 #5

577 }

(End of definition for __tag_struct_check_parent_child_aux:nnnnN.)
\ tag struct check parent child:nn When comparing the relation between structures we use the structure numbers.

575 \cs_new_protected:Npn __tag_struct_check_parent_child:nn #1 #2

579 J, #1 structure number of parent

se0), #2 structure number of child.

ss1 /, This assumes that the fields rolemap/parentrole has already been filled.

582 {

This records if logging is on

583 \int_compare:nNnT {\1__tag_loglevel_int} > { 0 }

584 {

585 \prop_get:cnN{g__tag_struct_#1_prop}{tag}\l__tag_get_parent_tmpa_tl
586 \prop_get:cnN{g__tag_struct_#2_prop}{tagt\l__tag_get_parent_tmpb_tl
587 \msg_note:nnee

588 { tag }

589 { role-parent-child-check }

590 {

501 \quark_if_no_value:NTF \1__tag_get_parent_tmpa_tl

592 {77}

593 {

504 \exp_last_unbraced:No\use_ii:nn

595 { \1__tag_get_parent_tmpa_tl }

596 N

507 \exp_last_unbraced:No\use_i:nn

598 { \1__tag_get_parent_tmpa_tl }

134

599 }

600 }

601 {

602 \quark_if_no_value:NTF \1__tag_get_parent_tmpb_tl
603 {77}

604 {

605 \exp_last_unbraced:No\use_ii:nn
606 { \1__tag_get_parent_tmpb_tl }
607 N

608 \exp_last_unbraced:No\use_i:nn

609 { \1__tag_get_parent_tmpb_tl }
610 }

611 }

612 }

613 __tag_struct_check_parent_child_aux:nnnnN
614 {#1}

615 {rolemap}

616 {#2}

617 {rolemap}

618 \1__tag_parent_child_check_tl

if the return value is 7 we have to check against the parentrole field.

619 \int_compare:nNnT {\1__tag_parent_child_check_tl} = { \c__tag role_rule_checkparent_tl }

620 {

621 __tag_struct_check_parent_child_aux:nnnnlN
622 {#1 }

623 {parentrole}

624 {#2}

625 {rolemap}

626 \1__tag_parent_child_check_tl

627 }

628 __tag_check_struct_forbidden_parent_child:onn
629 {\1__tag_parent_child_check_t1}

630 {#1}

631 {#2}

632 }

633 \cs_generate_variant:Nn __tag_struct_check_parent_child:nn {oo}
(End of definition for __tag_struct_check_parent_child:nn.)

\ tag struct use check parent child:in A similar command is needed if a structure is stashed and used. The child can be - a
normal tag (e.g. H1) then rolemap = parentrole = Hlpdf2 and we should test rolemap
(parent) and rolemap (child) if = 7 parentrole (parent) and rolemap (child) That is the
normal check above.

- Part/Div/Nonstruct then rolemap = Partpdf2 and parentrole = STASHEDlatex or
target parentNS

If parentrole =STASHED we can’t test if the child fits here. If parentrole is not
STASHED, then would should test if target parent= rolemap (parent) or parentrole (par-
ent) and if yet then test rolemap (child) against rolemap (parent) and if =7 rolemap(child)
against parentrole(parent). that is again the normal check.

63+ \cs_new_protected:Npn __tag_struct_use_check_parent_child:nn #1 #2

135

635

636

637

638

639

659

660

661

662

663

% #1 structure number of parent
% #2 structure number of child. J
{
__tag_struct_get_role:enNN
{#2}
{rolemap}
\1__tag_get_child_tmpa_t1l
\1__tag _get_child_tmpb_t1
\str_case:onTF { \1__tag_get_child_tmpa_tl }

{
{Part} {}
{Div}t A}
{NonStruct} {}
}
{ Jchild=Part etc
__tag_struct_get_role:enNN
{#2}
{parentrole}
\1__tag_get_child_tmpa_t1l
\1__tag_get_child_tmpb_t1
\str_if_eq:noTF
{STASHED}{\1__tag_get_child_tmpa_t1}
{
% warn about unknown relationship
}
{
% test if
__tag_struct_get_role:enNN
{#1}
{parentrole}
\1__tag_get_parent_tmpa_tl
\1__tag_get_parent_tmpb_tl
\tl_if_eq:NNTF\1__tag get_parent_tmpa_tl \1__tag_get_child_tmpa_tl
{
__tag_struct_check_parent_child:nn {#1}{#2}
}
{
/warn that parent-tag was misused.
}
}
}
{
%child not Part etc, normal parent child test.
__tag_struct_check_parent_child:nn {#1}{#2}
}

}

\cs_generate_variant:Nn { __tag_struct_use_check_parent_child:nn }{oo}

(End of definition for __tag_struct_use_check_parent_child:nn.)

136

682
683
684
685
686

687

689
690
691
692

693

695
696
697
698

699

718
719
720

721

label (struct key)
stash (struct key)
parent (struct kegy
firstkid (struct kegy
tag (struct kegy
title (struct kefy
title-o (struct key)
alt (struct key)
actualtext (struct key)
lang (struct key)
ref (struct key)
E (struct key)

(

phoneme (struct key)

5 Keys

This are the keys for the user commands. we store the tag in a variable. But we should
be careful, it is only reliable at the begin.

This socket is used by the tag key. It allows to switch between the latex-tabs and
the standard tags.

\socket_new:nn { tag/struct/tag }{1}
\socket_new_plug:nnn { tag/struct/tag }{ latex-tags }
{
\prop_get :NeNTF \g__tag_role_tags_NS_prop {#1} \1__tag_tmp_unused_tl
{
\seq_set_split:Nne \1__tag_tmpa_seq { / }
{#1/\1__tag_tmp_unused_t1l}
}
{
\seq_set_split:Nne \1__tag_tmpa_seq { / }
{#1/}
}
\tl_gset:Ne \g__tag_struct_tag_tl { \seq_item:Nn\1__tag_tmpa_seq {1} }
\tl_gset:Ne \g__tag_struct_tag_NS_tl{ \seq_item:Nn\1l__tag_tmpa_seq {2} }
__tag_check_structure_tag:N \g__tag_struct_tag_tl
}

\socket_new_plug:nnn { tag/struct/tag } pdf-tags }
{
\prop_get :NeNTF \g__tag_role_tags_NS_prop {#1} \1__tag_tmp_unused_tl

\seq_set_split:Nne \1__tag tmpa_seq { / }
{#1/\1__tag_tmp_unused_t1l}
}
{
\seq_set_split:Nne \1__tag tmpa_seq { / }
{#1/}
}
\tl_gset:Ne \g__tag_struct_tag_tl { \seq_item:Nn\1__tag_tmpa_seq {1} }
\tl_gset:Ne \g__tag_struct_tag_NS_tl1{ \seq_item:Nn\l__tag_tmpa_seq {2} }
__tag_role_get:oolNN
{ \g__tag_struct_tag_tl }
{ \g__tag_struct_tag_NS_tl1}
\1__tag_tmpa_tl
\1__tag tmpb_tl
\tl_gset:Ne \g__tag_struct_tag_tl {\1__tag_tmpa_tl}
\tl_gset:Ne \g__tag_struct_tag_NS_tl{\1__tag tmpb_tl}
__tag_check_structure_tag:N \g__tag_struct_tag tl
}
\socket_assign_plug:nn { tag/struct/tag } {latex-tags}

\keys_define:nn { __tag / struct }
{
label .code:n =

{

137

766

768

769

\prop_gput:Nee\g__tag_struct_label_num_prop
{#1}{\int_use:N \c@g__tag_struct_abs_int}

__tag_property_record:eo

{tagpdfstruct-#1}

{ \c__tag property_struct_clist }

+,
stash .bool_set:N = \1__tag_struct_elem_stash_bool,
parent .code:n =
{
\bool_lazy_and:nnTF
{
\prop_if_exist_p:c { g__tag_struct_\int_eval:n {#1}_prop }
}
{
\int_compare_p:nNn {#1}<{\c@g__tag_struct_abs_int}
}
{ \tl_set:Ne \1__tag_struct_stack_parent_tmpa_tl { \int_eval:n {#1} } }
{
\msg_warning:nnee { tag } { struct-unknown }
{ \int_eval:n {#1} }
{ parent~key~ignored }
}
},
parent .default:n = {-1},
parent-tag .code:n =
{
\prop_get :NeNTF \g__tag role_tags_NS_prop {#1} \1__tag_tmp_unused_t1l
{
\seq_set_split:Nne \1__tag_tmpa_seq { / }
{#1/\1__tag_tmp_unused_t1l}
}
{
\seq_set_split:Nne \1__tag tmpa_seq { / }
{#1/}
}
\tl_set:Ne \1__tag_struct_parenttag_tl { \seq_item:Nn\1__tag_tmpa_seq {1} }
\tl_set:Ne \1__tag_struct_parenttag_NS_tl{ \seq_item:Nn\l__tag_tmpa_seq {2} }
__tag_role_get:ooNN
{ \1__tag_struct_parenttag_tl }
{ \1__tag_struct_parenttag NS_t1}
\1__tag_tmpa_t1l
\1__tag tmpb_tl
\tl_set:No \1__tag_struct_parenttag_tl {\1__tag_tmpa_t1}
\tl_set:No \1__tag_struct_parenttag NS_tl{\1__tag_tmpb_t1}
__tag_check_structure_tag:N \1__tag struct_parenttag_tl
+,
firstkid .code:n = { \tl_set:Nn \1__tag_struct_addkid_tl {left} },
tag .code:n =} S property
{
\socket_use:nn { tag/struct/tag }F{#1}
+,
title .code:n = J, T property
{

\str_set_convert:Nnnn

138

780 \1__tag_tmpa_str

781 { #1 }

782 { default }

783 { utf16/hex }

784 __tag_struct_prop_gput:nne

785 { \int_use:N \c@g__tag_struct_abs_int }
786 { T }

787 { <\1__tag_tmpa_str> }

788 +,

789 title-o .code:n =}, T property
790 {

701 \str_set_convert:Nonn

792 \1__tag_tmpa_str

793 { #1 }

794 { default }

795 { utf16/hex }

796 __tag_struct_prop_gput:nne

797 { \int_use:N \c@g__tag_struct_abs_int }
798 { T }

799 { <\1__tag_tmpa_str> }

800 +,

801 alt .code:n = J, Alt property

802 {

803 \tl_if_empty:oF{#1}

804 {

805 \str_set_convert :Noon

806 \1__tag_tmpa_str

807 {#1 }

808 { default }

809 { utf16/hex }

810 __tag_struct_prop_gput:nne

811 { \int_use:N \cOg__tag_struct_abs_int }
812 { A1t }

813 { <\1__tag_tmpa_str> }

814 }

815 },

816 alttext .meta:n = {alt=#1},

817 actualtext .code:n = J, ActualText property
818 {

819 \tl_if_empty:oF{#1}

820 {

821 \str_set_convert:Noon

822 \1__tag_tmpa_str

823 { #1 }

824 { default }

825 { utf16/hex }

826 __tag_struct_prop_gput :nne

827 { \int_use:N \c@g__tag struct_abs_int }
828 { ActualText }

829 { <\1__tag_tmpa_str>}

830 }

831 1,

832 phoneme .code:n = J, Phoneme property
833 {

139

__tag_struct_Ref_obj:
__tag_struct_Ref_label:
__tag_struct_Ref_dest:
__tag_struct_Ref_num:

834
835
836
837
838
839

840

nN
nN
nN
nN

856
857
858
859
860
861
862
863
864
865

866

868

869

\tl_if_empty:oF{#1}
{

\str_set_convert:Noon
\1__tag_tmpa_str
{ #1 }
{ default }
{ utf16/hex }

__tag_struct_prop_gput:nne
{ \int_use:N \c@g__tag_struct_abs_int }
{ Phoneme }
{ <\1__tag_tmpa_str>}

}
}J
lang .code:n = Ji Lang property
{

__tag_struct_prop_gput:nne
{ \int_use:N \cOg__tag_struct_abs_int }
{ Lang }
{ (#1) }
},
}

Ref is rather special as it values are often known only at the end of the document. It
therefore stores it values as clist of commands which are executed at the end of the
document, when the structure elements are written.

this commands are helper commands that are stored as clist in the Ref key of a structure.
They are executed when the structure elements are written in __tag_struct_write_-
obj. They are used in __tag_struct_format_Ref. They allow to add a Ref by object
reference, label, destname and structure number

\cs_new_protected:Npn __tag_struct_Ref_obj:nN #1 #2 J#1 a object reference
{
\tl_put_right:Ne#2
{
\c_space_tl#1
}
}

\cs_new_protected:Npn __tag_struct_Ref_label:nN #1 #2 J#1 a label
{
\prop_get :NnNTF \g__tag_struct_label_num_prop {#1} \1__tag_tmpb_tl

{
\tl_put_right:Ne#2
{
\c_space_tl\tag_struct_object_ref:e{ \1__tag tmpb_tl }
}
}
{

\msg_warning:nnn {tag}{struct-Ref-unknown}{Label~'#1'}
}
}
\cs_new_protected:Npn __tag_struct_Ref_dest:nN #1 #2 J#1 a dest name
{

140

878
879

880

882

889
890
891
892

893

ref (struct key)
E (struct key)
897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913
916
917
919

AF
AFref
AFinline

struct key)
struct key)
struct key)
AFinline-o (struct key)
texsource)
mathml)

struct key

A~ N N~ o~

struct key

\prop_get :NnNTF \g__tag_struct_dest_num_prop {#1} \1__tag_tmpb_tl

{
\tl_put_right:Ne#2
{
\c_space_t1\tag_struct_object_ref:e{ \1__tag_tmpb_tl }
}
}
{
\msg_warning:nnn {tag}{struct-Ref-unknown}{Destination~'#1'}
}

}

\cs_new_protected:Npn __tag_struct_Ref_num:nN #1 #2 }#1 a structure number
{
\tl_put_right:Ne#2
{
\c_space_tl\tag_struct_object_ref:e{ #1 }
}

(End of definition for __tag_struct_Ref_obj:nN and others.)

\keys_define:nn { __tag / struct }
{
ref .code:n = }, ref property
{
\clist_map_inline:on {#1}
{
\tag_struct_gput :nne
{\int_use:N \cOg__tag_struct_abs_int}{ref_labell}{ ##1 }
}
+,
E .code:n =), E property
{
\str_set_convert:Nnon
\1__tag_tmpa_str
{ #1 }
{ default }
{ utf16/hex }
__tag;struct_prop_gput:nne
{ \int_use:N \cOg__tag struct_abs_int }
{E}
{ <\1__tag_tmpa_str> }
+,
}

keys for the AF keys (associated files). They use commands from 13pdffile! The stream

variants use txt as extension to get the mimetype. TODO: check if this should be
configurable. For math we will perhaps need another extension. AF/AFref is an array
and can be used more than once, so we store it in a tl. which is expanded. AFinline
currently uses the fix extension txt. texsource is a special variant which creates a tex-file,
it expects a tl-var as value (e.g. from math grabbing)

141

\g__tag_struct_AFobj_int This variable is used to number the AF-object names
o0 \int_new:N\g__tag_struct_AFobj_int
921 \cs_generate_variant:Nn \pdffile_embed_stream:nnN {neN}

022 \cs_new_protected:Npn __tag_struct_add_inline_AF:nn #1 #2
923§, #1 content, #2 extension

o1 {

925 \tl_if_empty:nF{#1}

926 {

027 \group_begin:

928 \int_gincr:N \g__tag_struct_AFobj_int

929 \pdffile_embed_stream:neN

930 {#1}

931 {tag-AFfile\int_use:N\g__tag_struct_AFobj_int.#2}
932 \1__tag_tmpa_tl

933 __tag_struct_add_AF:ee

934 { \int_use:N \c@g__tag_struct_abs_int }
935 { \1__tag_tmpa_t1 }

936 __tag_struct_prop_gput:nne

937 { \int_use:N \c@g__tag_struct_abs_int }

938 { AF }

939 {

940 [

941 \tl_use:c

942 { g__tag_struct_\int_eval:n {\c@g__tag struct_abs_int}_AF_tl1 }
943 J

944 }

045 \group_end:

946 }

947 }

948

o0 \cs_generate_variant:Nn __tag_struct_add_inline_AF:nn {on}

os0 \cs_new_protected:Npn __tag_struct_add_AF:nn #1 #2
051/, #1 struct num #2 object reference

952 {

953 \tl_if_exist:cTF

954 {

955 g__tag_struct_#1_AF_tl

956 }

{

958 \tl_gput_right:ce

959 { g__tag_struct_#1_AF t1 }
960 { \c_space_tl #2 }

957

961 3

962 {

963 \tl_new:c

964 { g__tag_struct_#1_AF tl1 }
965 \tl_gset:ce

966 { g__tag _struct_#1_AF_tl }
967 { #2 }

968 }

969 }

142

o0 \cs_generate_variant:Nn __tag_struct_add_AF:nn {en,ee}
\keys_define:nn { __tag / struct }

971

972

976

978

979

980

981

982

983

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

{

AF .code:n =} AF property
{
\pdf_object_if_exist:eTF {#1}
{

__tag_struct_add_AF:ee

{ \int_use:N \c@g__tag_struct_abs_int }{\pdf_object_ref:e {#1}}
__tag_struct_prop_gput:nne

{ \int_use:N \cOg__tag_struct_abs_int }

{ AF }
{
[
\tl_use:c
{ g__tag_struct_\int_eval:n {\c@g__tag _struct_abs_int}_AF_tl }
]
}
}
{
% message?
}
},
AFref .code:n =}, AF property
{
\tl_if_empty:eF {#1}
{
__tag_struct_add_AF:ee { \int_use:N \c@g__tag struct_abs_int }{#1}
__tag_struct_prop_gput:nne
{ \int_use:N \c@g__tag struct_abs_int }
{ AF }
{
[
\tl_use:c
{ g__tag_struct_\int_eval:n {\c@g__tag_struct_abs_int}_AF_tl }
il
}
}
+,
,AFinline .code:n =
{
__tag_struct_add_inline_AF:nn {#1}{txt}
}
,AFinline-o .code:n =
{
__tag_struct_add_inline_AF:on {#1}{txt}
}
,texsource .code:n =
{

\group_begin:

\pdfdict_put:nnn { 1_pdffile/Filespec } {Desc}{(TeX~source)}
\pdfdict_put:nnn { 1_pdffile/Filespec }{AFRelationship} { /Source }
__tag_struct_add_inline_AF:on {#1}{tex}

\group_end:

143

1024 }

1025 ,mathml .code:n =

1026 {

1027 \group_begin:

1028 \pdfdict_put:nnn { 1_pdffile/Filespec } {Desc}{(mathml~representation)}
1029 \pdfdict_put:nnn { 1_pdffile/Filespec }{AFRelationship} { /Supplement }
1030 \pdfdict_put:nne { 1_pdffile }{Subtype}

1031 { \pdf_name_from_unicode_e:n{application/mathml+xml} }

1032 __tag_struct_add_inline_AF:on {#1}{xml}

1033 \group_end:

1034 }

1035 }

root-AF (setup key) The root structure can take AF keys too, so we provide a key for it. This key is used
with \tagpdfsetup, not in a structure!

103 \keys_define:nn { __tag / setup }

1037 {

1038 root-AF .code:n =

1039 {

1040 \pdf_object_if_exist:nTF {#1}
1041 {

1042 __tag_struct_add_AF:ee { 1 }\pdf_object_ref:n {#1}}
1043 __tag_struct_prop_gput:nne
1044 {17}

1045 { AF }

1046 {

1047 [

1048 \tl_use:c

1049 { g__tag_struct_1_AF_tl }
1050 J

1051 }

1052 }

1053 {

1054

1055 }

1056 1,

1057 }

ot-supplemental-file (setup key) This key allows to add a file as root-AF with relationship Supplement. This is typically
need to add a css or an html

1055 \keys_define:nn { __tag / setup }

1059 {

1060 root-supplemental-file .code:n =

1061 {

1062 \group_begin:

1063 \pdfdict_put:nnn {1_pdffile/Filespec} {AFRelationship}{/Supplement}
1064 \int_gincr:N \g__tag_unique_cnt_int

1065 \pdffile_embed_file:eee

1066 {#1 }

1067 {#1}

1068 {__tag_latex_css_\int_use:N\g__tag_unique_cnt_int}

1069 \keys_set:nn

144

1070 {__tag / setup}

1071 {root-AF={__tag_latex_css_\int_use:N\g__tag_unique_cnt_int}}
1072 \group_end:

1073 }

1074 }

og-supplemental-file (setup key) This key allows to add a file as AF with relationship Supplement to the Catalog. This
is typically need to add a css or an html.

1075 \keys_define:nn { __tag / setup }

1076 {

1077 catalog-supplemental-file .code:n =

1078 ‘[

1079 \group_begin:

1080 \pdfdict_put:nnn {1_pdffile/Filespec} {AFRelationship}{/Supplement}
1081 \int_gincr:N \g__tag_unique_cnt_int

1082 \pdffile_embed_file:eee

1083 {#1}

1084 {#1}

1085 {__tag_latex_css_\int_use:N\g__tag_unique_cnt_int}

1086 \pdfmanagement_add:nne

1087 {Catalog}

1088 {AF}

1089 {\pdf_object_ref:e{__tag_latex_css_\int_use:N\g__tag_unique_cnt_int }}
1090 \group_end:

1091 }

1092 }

6 User commands

We allow to set a language by default

\1__tag_struct_lang_tl

1003 \tl_new:N \1__tag struct_lang tl
1001 {/package)

(End of definition for \g__tag_struct_AFobj_int and \1__tag_struct_lang tl.)

\tag_struct_begin:n
\tag_struct_end:

1005 (base)\cs_new_protected:Npn \tag_struct_begin:n #1 {\int_gincr:N \c@g__tag_struct_abs_int}
1095 (base)\cs_new_protected:Npn \tag_struct_end:{}
1097 {base) \cs_new_protected:Npn \tag struct_end:n{}
1005 (xpackage | debug)
1090 (package) \cs_set_protected:Npn \tag_struct_begin:n #1 J#1 key-val
100 (debug)\cs_set_protected:Npn \tag_struct_begin:n #1 7#1 key-val
1101 {
102 (package) __tag_check_if_active_struct:T
1105 (debug)__tag_check_if_active_struct:TF
1104 {
1105 \group_begin:
1106 \int_gincr:N \c@g__tag_struct_abs_int

145

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

(debug)

(debug)

__tag_prop_new:c

{ g__tag_struct_\int_eval:n { \cOg__tag_struct_abs_int }_prop }

\prop_new:c { g__tag_struct_debug_\int_eval:n {\c@g__tag struct_abs_int}_prop }

__tag_seq_new:c

{ g__tag_struct_kids_\int_eval:n { \cO@g__tag_struct_abs_int }_seq}

\seq_new:c { g__tag_struct_debug_kids_\int_eval:n {\c@g__tag_struct_abs_int}_seq
\pdf_object_new_indexed:nn { __tag/struct }
{ \c@g__tag_struct_abs_int }
__tag_struct_prop_gput:nnn
{ \int_use:N \c@g__tag_struct_abs_int }

{ Type }

{ /StructElem }
\tl_if_empty:NF \1__tag_struct_lang tl

{

__tag_struct_prop_gput:nne
{ \int_use:N \c@g__tag_struct_abs_int }

{ Lang }

{ (\1__tag_struct_lang tl) }

}

__tag_struct_prop_gput:nnn
{ \int_use:N \cOg__tag_struct_abs_int }

{ Type }

{ /StructElem }

\tl_set:Nn \1__tag_struct_stack_parent_tmpa_tl {-1}
\keys_set:nn { __tag / struct} { #1 }

__tag_struct_set_

tag_info:eoo

{ \int_use:N \cOg__tag_struct_abs_int }
{ \g__tag_struct_tag_tl }
{ \g__tag_struct_tag NS_tl }
__tag_check_structure_has_tag:n { \int_use:N \c@g__tag_struct_abs_int }

The structure number of the parent is either taken from the stack or has been set with
the parent key.

\int_compare:nNnT { \1__tag_struct_stack_parent_tmpa_tl } = { -1 }

{
\seq_get :NNF

\g__tag_struct_stack_seq
\1__tag_struct_stack_parent_tmpa_tl

{

\msg_error:nn { tag } { struct-faulty-nesting }

}
}

\seq_gpush:NV \g__

tag_struct_stack_seq \c@g__tag struct_abs_int

__tag_role_get:ooNN
{ \g__tag_struct_tag tl }
{ \g__tag_struct_tag NS_tl }
\1__tag_struct_roletag_tl
\1__tag_struct_roletag NS_tl

\seq_gpush:Ne \g__

We push the role tag on the stack:

tag_struct_tag_stack_seq

146

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

{{\g__tag_struct_tag tl}{\1__tag_struct_roletag_tl}}
\tl_gset:NV \g__tag_struct_stack_current_tl \c@g__tag_struct_abs_int
__tag_struct_set_attribute:
%\seq_show:N \g__tag_struct_stack_seq

the rolemapped role and its NS are stored in the rolemap key.

__tag_struct_prop_gput:nne
{ \int_use:N \c@g__tag_struct_abs_int }

{ rolemap }
{

{\1__tag_struct_roletag_tl1}{\1__tag_struct_roletag_NS_tl}
}

If the role is one of Part, Div, NonStruct we have to (sometimes) retrieve the “real” parent
for the parent/child test. The role of this real parent is stored in the key parentrole. If
the current structure is stashed we use UNKNOWN as real parent if the current structure
is rolemapped to Part, Div or NonStruct so that the children can detect that no reliable
check is possible. For structures that are not rolemapped to Part, Div, NonStruct,
parentrole and rolemap are always equal.

\str_case:onTF { \1__tag_struct_roletag_tl }
{
{Part} {}
{Div} {}
{NonStruct} {}
}
{
\bool_if:NTF \1__tag_struct_elem_stash_bool
{
__tag_struct_prop_gput:nne
{ \int_use:N \c@g__tag_struct_abs_int }
{ parentrole }
{
{\1__tag_struct_parenttag_tl1}{\1__tag_struct_parenttag NS_tl1}
}
}
{
\prop_get:cnNT
{ g__tag_struct_ \1__tag_struct_stack_parent_tmpa_tl _prop }
{ parentrole }
\1__tag_get_tmpc_tl
{
__tag_struct_prop_gput:nno
{ \int_use:N \c@g__tag_struct_abs_int }
{ parentrole }
{
\1__tag_get_tmpc_tl
}

}
}
{
__tag_struct_prop_gput:nne

147

1195 { \int_use:N \c@g__tag struct_abs_int }

1196 { parentrole }

1197 {

1198 {\1__tag_struct_roletag_t1}{\1__tag struct_roletag NS_tl}
1199 }

1200 }

1201 \bool_if:NF

1202 \1__tag_struct_elem_stash_bool

1203 {

check if the tag can be used inside the parent. It only makes sense, if the structure is
actually used here, so it is guarded by the stash boolean.

1204 \socket_use:nn{tag/check/parent-child}

1205 {

1206 __tag_struct_check_parent_child:oo

1207 { \1__tag_struct_stack_parent_tmpa_tl }
1208 { \int_use:N \c@g__tag_struct_abs_int }
1209 }

Set the Parent structure number.

1210 __tag_struct_prop_gput:nne

1211 { \int_use:N \c@g__tag_struct_abs_int }

1212 { parentnum }

1213 {

1214 \1__tag_struct_stack_parent_tmpa_tl

1215 }

1216 %record this structure as kid:

1217 %\tl_show:N \g__tag_struct_stack_current_tl

1218 %\tl_show:N \1__tag_struct_stack_parent_tmpa_tl

1219 \use:c { __tag_struct_kid_struct_gput_ \1__tag_struct_addkid_tl :ee }
1220 { \1__tag_struct_stack_parent_tmpa_tl }

1221 { \g__tag_struct_stack_current_tl }

1222 %\prop_show:c { g__tag_struct_\g__tag_struct_stack_current_tl _prop }

1223 %\seq_show:c {g__tag_struct_kids_\1__tag_struct_stack_parent_tmpa_tl _seq}
1224 }

the debug mode stores in second prop and replaces value with more suitable ones. (If the
structure is updated later this gets perhaps lost, but well ...) This must be done outside
of the stash boolean.

1225 (debug) \prop_gset_eq:cc

1226 (debug) { g__tag _struct_debug_\int_eval:n {\c@g__tag_struct_abs_int}_prop }
1227 (debug) { g__tag_struct_\int_eval:n {\c@g__tag struct_abs_int}_prop }

1226 (debug) \prop_gput :cne

1220 (debug) { g__tag _struct_debug_\int_eval:n {\c@g__tag_struct_abs_int}_prop }
1230 (debug) { parentnum }

1231 (debug) {

1232 (debug) \bool_if:NTF \1__tag struct_elem_stash_bool

1233 (debug) {no~parent:~stashed}

148

1236

1237

1238

1239

1240

1249

1250

1251

1256

1257

1258

1259

1260

1261

1263

1264

1265

1266

1267

1268

1269

1280

1281

1282

1283

1284

1285

1286

}

}

{
\1__tag_struct_stack_parent_tmpa_tl\c_space_tl =~
\prop_item:cn{ g__tag_struct_\1l__tag_struct_stack_parent_tmpa_tl _prop
}
}
\prop_gput:cne
{ g__tag_struct_debug_\int_eval:n {\c@g__tag_struct_abs_int}_prop }
{ NS }
{ \g__tag_struct_tag_NS_t1 }

%\prop_show:c { g__tag_struct_\g__tag_struct_stack_current_tl _prop }
%\seq_show:c {g__tag_struct_kids_\1__tag struct_stack_parent_tmpa_tl _seq}
__tag_debug_struct_begin_insert:n { #1 }

\group_end:

s (debug){ __tag_debug_struct_begin_ignore:n { #1 }}

(package) \cs_set_protected:Nn \tag_struct_end:
(debug)\cs_set_protected:Nn \tag_struct_end:

{ Jtake the current structure num from the stack:
/%the objects are written later, lua mode hasn't all needed info yet
%#\seq_show:N \g__tag_struct_stack_seq
tag_check_if_active_struct:T

5 (package) \
(debug) \

{

tag_check_if_active_struct:TF

\seq_gpop:NN \g__tag_struct_tag_stack_seq \1__tag_tmpa_tl
\seq_gpop:NNTF \g__tag_struct_stack_seq \1__tag_tmpa_t1

{

}

__tag_check_info_closing_struct:o { \g__tag_struct_stack_current_tl }

{ __tag_check_no_open_struct: }
% get the previous one, shouldn't be empty as the root should be there
\seq_get:NNTF \g__tag_struct_stack_seq \1__tag_tmpa_tl

{

}
{

}

\tl_gset:No \g__tag_struct_stack_current_tl { \1__tag tmpa_tl }
__tag_struct_set_attribute:

__tag_check_no_open_struct:

\seq_get:NNT \g__tag_struct_tag_stack_seq \1__tag_tmpa_t1l

{

}

\tl_gset:Ne \g__tag_struct_tag_tl

{ \exp_last_unbraced:No\use_i:nn { \1__tag tmpa_tl } }

\prop_get :NoNT\g__tag_role_tags_NS_prop { \g__tag_struct_tag_tl} \1__tag_tmpa_tl

{

}

\tl_gset:Ne \g__tag_struct_tag NS_tl { \1__tag tmpa_tl }

(debug)__tag_debug_struct_end_insert:

}

(debug){__tag_debug_struct_end_ignore:}

}

149

1267 \cs_set_protected:Npn \tag_struct_end:n #1

88 1

1280 (debug) __tag_check_if_active_struct:T{__tag_debug_struct_end_check:n{#1}}
1290 \tag_struct_end:

201 F

120> (/package | debug)

(End of definition for \tag_struct_begin:n and \tag_struct_end:. These functions are documented
on page 114.)

\tag_struct_use:n This command allows to use a stashed structure in another place. TODO: decide how it
should be guarded. Probably by the struct-check.

1203 {base) \cs_new_protected:Npn \tag struct_use:n #1 {}
1201 (xpackage | debug)
1205 \cs_set_protected:Npn \tag_struct_use:n #1 J#1 is the label

1296 {

1207 __tag_check_if_active_struct:T

1298 {

1299 \prop_if_exist:cTF

1300 { g__tag_struct_\property_ref:enn{tagpdfstruct-#1}{tagstruct}{unknown}_prop } 7
1301 {

1302 __tag_check_struct_used:n {#1}

1303 \tl_set:Ne \1__tag_get_child_tmpa_t1

1304 { \property_ref:enn{tagpdfstruct-#1}{tagstruct}{1} }

add the label structure as kid to the current structure (can be the root)

1305 __tag_struct_kid_struct_gput_right:ee
1306 { \g__tag_struct_stack_current_tl }
1307 { \1__tag_get_child_tmpa_tl }

add the current structure to the labeled one as parents

1308 __tag_prop_gput:cne
1309 { g__tag_struct_ \1__tag_get_child_tmpa_tl _prop }
1310 { parentnum }
1311 {
1312 \g__tag_struct_stack_current_tl
1313 }
debug code
1314 (debug) \prop_gput:cne
1315 (debug) { g__tag_struct_debug_ \1__tag_get_child_tmpa_tl _prop }
1316 (debug) { parentnum }
1317 (debug) {
1315 {debug) \g__tag_struct_stack_current_tl\c_space_tl=~
1319 (debug) \g__tag_struct_tag_tl
1320 (debug) }

check if the tag is allowed as child. If the tag of the child after rolemapping is not one
of Part, Div, NonStruct, then the parentrole field will be identically to the rolemap field
and can be used for a check. Otherwise the parentrole will contain latex:STASHED (if
not changed with the parent-tag key when the structure was stashed) and will produce
a warning.

150

\tag_struct_use_num:

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

\socket_use:nn{tag/check/parent-child}
{
__tag_struct_use_check_parent_child:oo
{ \g__tag_struct_stack_current_tl }
{ \1__tag get_child_tmpa_tl }

\msg_warning:nnn{ tag }{struct-label-unknown}{#1}
}
}
}
(/package | debug)

(End of definition for \tag_struct_use:n. This function is documented on page 114.)

This command allows to use a stashed structure in another place. differently to the
previous command it doesn’t use a label but directly a structure number to find the
parent. TODO: decide how it should be guarded. Probably by the struct-check.

(base)\cs_new_protected:Npn \tag_struct_use_num:n #1 {}
(xpackage | debug)
\cs_set_protected:Npn \tag_struct_use_num:n #1 }#1 is structure number
{
__tag_check_if_active_struct:T
{
\prop_if_exist:cTF
{ g__tag struct_#1_prop } %
{
\prop_get:cnNT
{g__tag_struct_#1_prop}
{parentnum}
\1__tag_tmpa_t1
{
\msg_warning:nnn { tag } {struct-used-twice} {#1}
}

add the #1 structure as kid to the current structure (can be the root)

__tag_struct_kid_struct_gput_right:ee
{ \g__tag_struct_stack_current_tl }
{ #1 }

add the current structure to #1 as parent

__tag_struct_prop_gput:nne

{#1}

{ parentnum }

{

\g__tag_struct_stack_current_tl

}
(debug) \prop_gput :cne
(debug) { g__tag struct_debug_#1_prop }
(debug) { parentnum }

151

1362
1363
1364

1365

1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377

1378

\tag_struct_object_ref:n

1379
1380
1381
1382
1383
1384

1385

\tag_struct_gput:nnn

1386

1387

(debug) {

(debug) \g__tag_struct_stack_current_tl\c_space_tl=~
(debug) \g__tag_struct_tag_tl

(debug) }

check if the tag is allowed as child.

\socket_use:nn{tag/check/parent-child}
{

__tag_struct_use_check_parent_child:oo
{\g__tag_struct_stack_current_tl}

{#1}
}
}
{
\msg_warning:nnn{ tag }{struct-label-unknown}{#1}
}

}
}
(/package | debug)

(End of definition for \tag_struct_use_num:n. This function is documented on page 11}.)

This is a command that allows to reference a structure. The argument is the number
which can be get for the current structure with \tag_get:n{struct_num} TODO check
if it should be in base too.

(xpackage)
\cs_new:Npn \tag_struct_object_ref:n #1
{

\pdf_object_ref_indexed:nn {__tag/struct}{ #1 }
}
\cs_generate_variant:Nn \tag_struct_object_ref:n {e}
(/package)

(End of definition for \tag_struct_object_ref:n. This function is documented on page 114.)

This is a command that allows to update the data of a structure. This often can’t done
simply by replacing the value, as we have to preserve and extend existing content. We
use therefore dedicated functions adjusted to the key in question. The first argument is
the number of the structure, the second a keyword referring to a function, the third the
value. Currently the existing keywords are mostly related to the Ref key (an array). The
keyword ref takes as value an explicit object reference to a structure. The keyword ref _-
label expects as value a label name (from a label set in a \tagstructbegin command).
The keyword ref_dest expects a destination name set with \MakeLinkTarget. It then
will refer to the structure in which this \MakeLinkTarget was used. The keyword ref_-
num expects a structure number. At last there is the keyword attribute which allows
to add or extend the /A key of the structure. The value is the content of one attribute
dictionary, so for example /0 /Layout /BBox [10 10 50 50]. The content is stored in
an object and the object reference is than added to the /A.

(base)\cs_new_protected:Npn \tag_struct_gput:nnn #1 #2 #3{}
(*package)

152

1365 \cs_set_protected:Npn \tag_struct_gput:nnn #1 #2 #3

1380 1

1390 \cs_if_exist_use:cF {__tag_struct_gput_data_#2:nn}
1391 { Jwarning??

1392 \use_none:nn

1393 }

1394 {#1}{#3}

1305 F

1306 \cs_generate_variant:Nn \tag_struct_gput:nnn {ene,nne}
1307 (/package)

(End of definition for \tag_struct_gput:nnn. This function is documented on page 114.)
__tag struct_gput data ref aux:mmn

1306 (xpackage)
1300 \cs_new_protected:Npn __tag_struct_gput_data_ref_aux:nnn #1 #2 #3

1400 % #1 receiving struct num, #2 key word #3 value

1401 {

1402 \prop_get: cnNTF

1403 { g__tag_struct_#1_prop }

1404 {Ref}

1405 \1__tag_get_tmpc_tl

1406 {

1407 \tl_put_right:No \1__tag_get_tmpc_tl

1408 {\cs:w __tag_struct_Ref_#2:nN \cs_end: {#3},}
1409 }

1410 {

1411 \tl_set:No \1__tag get_tmpc_tl

1412 {\cs:w __tag_struct_Ref_#2:nN \cs_end: {#3},}
1413 }

1414 __tag_struct_prop_gput :nno

1415 { #1 }

1416 { Ref }

1417 { \1__tag_get_tmpc_tl }

1418 }

1419 \cs_new_protected:Npn __tag_struct_gput_data_ref:nn #1 #2
1420 {

1421 __tag_struct_gput_data_ref_aux:nnn {#1}{obj}{#2}

1422 }

1423 \cs_new_protected:Npn __tag_struct_gput_data_ref_label:nn #1 #2
1424 {

1425 __tag_struct_gput_data_ref_aux:nnn {#1}{labell}{#2}
1426 }

127 \cs_new_protected:Npn __tag_struct_gput_data_ref_dest:nn #1 #2
1428 {

1429 __tag_struct_gput_data_ref_aux:nnn {#1}{dest}{#2}

1430 }

131 \cs_new_protected:Npn __tag_struct_gput_data_ref_num:nn #1 #2
1432 {

1433 __tag_struct_gput_data_ref_aux:nnn {#1}{num}{#2}

1434 }

1435

1436 \cs_generate_variant:Nn __tag_struct_gput_data_ref:nn {ee,no}

153

(End of definition for __tag_struct_gput_data_ref_aux:nnn.)
__tag_struct_gput_data_attribute:nn

137 \cs_new_protected:Npn __tag_struct_gput_data_attribute:nn #1 #2

1438 {

1439 \pdf_object_unnamed_write:nn {dict} {#2}

1440 \prop_get:cnNTF { g__tag_struct_#1_prop }{A} \1__tag_tmpa_tl
1441 {

1442 \tl_remove_once:Nn\1l__tag_tmpa_tI1{[}

1443 \tl_remove_once:Nn\1l__tag_tmpa_tI1{]}

1444 __tag_prop_gput:cne { g__tag_struct_#1_prop }

1445 { A}

1446 {

1447 [\1__tag tmpa_tl \c_space_tl \pdf_object_ref_last:]
1448 }

1449 }

1450 {

1451 __tag_prop_gput:cne { g__tag_struct_#1_prop }

1452 { A }

1453 { \pdf_object_ref_last: }

1454 I

1455 ¥

(End of definition for __tag_struct_gput_data_attribute:nn.)

\tag_struct_insert_annot:nn This are the user command to insert annotations. They must be used together to get the
\tag_struct_insert_annot:ee numbers right. They use a counter to the StructParent and \tag_struct_insert_-
\tag_struct_insert_annot:ee annot:nn increases the counter given back by \tag_struct_parent_int:.

\tag_struct_parent_int: 1t y .ot he used together with \tag_struct_parent_int: to insert an annotation.

TODO: decide how it should be guarded if tagging is deactivated.

156 \cs_new_protected:Npn \tag_struct_insert_annot:nn #1 #2 J#1 should be an object reference

1457 %#2 struct parent num
1458 {

1459 __tag_check_if_active_struct:T

1460 {

1461 __tag_struct_insert_annot:nn {#1}{#2}

1462 }

1463 }

1464

165 \cs_generate_variant:Nn \tag_struct_insert_annot:nn {xx,ee}

166 \cs_new:Npn \tag_struct_parent_int: {\int_use:c { cO@g__tag_parenttree_obj_int }}
1467

165 (/package)

1469

(End of definition for \tag_struct_insert_annot:nn and \tag_struct_parent_int:. These functions
are documented on page 114.)

7 Attributes and attribute classes

1470 (*header)

154

171 \ProvidesExplPackage {tagpdf-attr-code} {2026-01-12} {0.99x}
172 {part of tagpdf - code related to attributes and attribute classes}
1473 (/header)

7.1 Variables

\g__tag_attr_entries _prop \g_0@_attr_entries_prop will store attribute names and their dictionary content.
\g__tag_attr_class_used _prop \g_0@_attr_class_used_prop will hold the attributes which have been used as class
\g__tag_attr_objref_prop mname. \1_@@_attr_value_tl is used to build the attribute array or key. Every time an
\1__tag_attr_value_tl attribute is used for the first time, and object is created with its content, the name-object
reference relation is stored in \g_0@_attr_objref_prop

174 (xpackage)

175 \prop_new:N \g__tag_attr_entries_prop

1476 \prop_new_linked:N \g__tag_attr_class_used_prop

177 \t1_new:N \1__tag_attr_value_tl

175 \prop_new:N \g__tag_attr_objref_prop /will contain obj num of used attributes

This seq is currently kept for compatibility with the table code.

1470 \seq_new:N\g__tag_attr_class_used_seq

(End of definition for \g__tag_attr_entries_prop and others.)

7.2 Commands and keys

__tag_attr_new_entry:nn This allows to define attributes. Defined attributes are stored in a global property.
role/new-attribute (setup-key) role/mew-attribute expects two brace group, the name and the content. The content
newattribute (deprecated) typically needs an /0 key for the owner. An example look like this.

TODO: consider to put them directly in the ClassMap, that is perhaps more effective.

\tagpdfsetup
{
role/new-attribute =
{TH-co1}{/0 /Table /Scope /Column},
role/new-attribute =
{TH-row}{/0 /Table /Scope /Row},

}
1s0 \cs_new_protected:Npn __tag_attr_new_entry:nn #1 #2 J#1:name, #2: content
1481 {
1482 \prop_gput:Nen \g__tag_attr_entries_prop
1483 {\pdf_name_from_unicode_e:n{#1}}{#2}
1484 }

1485
156 \cs_generate_variant:Nn __tag_attr_new_entry:nn {ee}
1157 \keys_define:nn { __tag / setup }

1488 {

1489 role/new-attribute .code:n =
1490 {

1491 __tag_attr_new_entry:nn #1
1492 }

155

deprecated name

1493 ,newattribute .code:n =

1494 {

1495 __tag_attr_new_entry:nn #1
1496 },

1497 }

(End of definition for __tag_attr_new_entry:nn, role/new-attribute (setup-key), and newattribute
(deprecated). These functions are documented on page 117.)

attribute-class (struct key) attribute-class has to store the used attribute names so that they can be added to the
ClassMap later.

1205 \keys_define:nn { __tag / struct }

1499 {

1500 attribute-class .code:n =

1501 {

1502 \clist_set:Ne \1__tag tmpa_clist { #1 }

1503 \seq_set_from_clist:NN \1__tag_tmpb_seq \1__tag_tmpa_clist

we convert the names into pdf names with slash

1504 \seq_set_map_e:NNn \1__tag_tmpa_seq \1__tag_tmpb_seq

1505 {

1506 \pdf_name_from_unicode_e:n {##1}

1507 }

1508 \seq_map_inline:Nn \1__tag_tmpa_seq

1509 {

1510 \prop_get:NnNF \g__tag_attr_entries_prop {##1}\1__tag_tmpa_tl
1511 {

1512 \msg_error:nnn { tag } { attr-unknown } { ##1 }

1513 }

1514 \prop_gput:Nnn\g__tag_attr_class_used_prop { ##1} {}

1515 }

1516 \tl_set:Ne \1__tag tmpa_tl

1517 {

1518 \int_compare:nT { \seq_count:N \1__tag_tmpa_seq > 1 I [}
1519 \seq_use:Nn \1__tag_tmpa_seq { \c_space_tl }

1520 \int_compare:nT { \seq_count:N \1__tag_tmpa_seq > 1 }I}
1521 }

1522 \int_compare:nT { \seq_count:N \1__tag_tmpa_seq > 0 }

1523 {

1524 __tag_struct_prop_gput:nne

1525 { \int_use:N \c@g__tag_struct_abs_int }

1526 { C }

1527 { \1__tag_tmpa_tl }

1528 %\prop_show:c { g__tag struct_\int_eval:n {\c@g__tag_struct_abs_int}_prop }
1529 }

1530 }

1531 }

attribute (struct key)

156

1532 \keys_define:nn { __tag / struct }

1533 {

1534 attribute .code:n = J, A property (attribute, value currently a dictionary)
1535 {

1536 \clist_set:Ne \1__tag_tmpa_clist { #1 }

1537 \clist_if_empty:NF \1__tag_tmpa_clist

1538 {

1539 \seq_set_from_clist:NN \1__tag_tmpb_seq \1__tag_tmpa_clist

we convert the names into pdf names with slash

1540 \seq_set_map_e:NNn \1__tag_tmpa_seq \1__tag_tmpb_seq

1541 {

1542 \pdf_name_from_unicode_e:n {##1}

1543 }

1544 \tl_set:Ne \1__tag_attr_value_tl

1545 ‘[

1546 \int_compare:nT { \seq_count:N \1__tag_tmpa_seq > 1 }H[}/]
1547 }

1548 \seq_map_inline:Nn \1__tag_tmpa_seq

1549 {

1550 \prop_get:NnNF \g__tag_attr_entries_prop {##1}\1__tag_tmp_unused_tl
1551 {

1552 \msg_error:nnn { tag } { attr-unknown } { ##1 }

1553 }

1554 \prop_get:NnNF \g__tag_attr_objref_prop {##1}\1__tag_tmpa_tl
1555 {/%\prop_show:N \g__tag_attr_entries_prop

1556 \pdf_object_unnamed_write:ne

1557 { dict }

1558 {

1559 \prop_item:Nn\g__tag_attr_entries_prop {##1}

1560 }

1561 \prop_gput :Nne \g__tag_attr_objref_prop {##1} {\pdf_object_ref_last:}
1562 }

1563 \tl_put_right:Ne \1__tag_attr_value_tl

1564 {

1565 \c_space_tl1

1566 \prop_item:Nn \g__tag_attr_objref_prop {##1}

1567 }

1568 VA \tl_show:N \1__tag_attr_value_tl

1569 }

1570 \tl_put_right:Ne \1__tag_attr_value_tl

1571 {70

1572 \int_compare:nT { \seq_count:N \1__tag_tmpa_seq > 1 }HI1}),
1573 }

1574 VA \tl_show:N \1__tag_attr_value_tl

1575 __tag_struct_prop_gput:nne

1576 { \int_use:N \c@g__tag_struct_abs_int }

1577 { A }

1578 { \1__tag_attr_value_tl }

1579 }

1580 1,

1581 }

1552 (/package)

157

The tagpdf-luatex.def
Driver for luatex
Part of the tagpdf package
Ulrike Fischer
Version 0.99x, released 2026-01-12

158

Part IX

1 (@@=tag)

2 (xluatex)

\ProvidesExplFile {tagpdf-luatex.def} {2026-01-12} {0.99x}
+ {tagpdf~driver~for~luatex}

1 Loading the lua

The space code requires that the fall back font has been loaded and initialized, so we
force that first. But perhaps this could be done in the kernel.

{

@

\fontencoding{TU}\fontfamily{lmr}\fontseries{m}\fontshape{n}\fontsize{10pt}{10pt}\selectfont

o

}
s \lua_now:e { tagpdf=require('tagpdf.lua') }

~

The following defines wrappers around prop and seq commands to store the data also
in lua tables. I probably want also lua tables I put them in the 1tx.@Q@.tables namespaces
The tables will be named like the variables but without backslash To access such a table
with a dynamical name create a string and then use ltx.@@Q.tables[string] Old code, I'm
not quite sure if this was a good idea. Now I have mix of table in 1tx.Q@.tables and
ltx.@Q@.mc/struct. And a lot is probably not needed. TODO: this should be cleaned up,
but at least roles are currently using the table!

__tag_prop_new:N
__tag_seq_new:N
__tag_prop_gput:Nnn o \cs_set_protected:Npn __tag_prop_new:N #1
__tag_seq_gput_right:Nn0 1

__tag_seq_gput_left:Nn! \prop_new:N #1

__tag_seq_item:cn® \lua_now:e { ltx.__tag.tables['\cs_to_str:N#1'] = {} }
__tag_prop_item:an }
14
__tag_seq_show:Nw \cs_set_protected:Npn __tag_prop_new_linked:N #1
__tag_prop_show:Nm {
17 \prop_new_linked:N #1
18 \lua_now:e { ltx.__tag.tables['\cs_to_str:N#1'] = {} }
v F
20
21
2> \cs_set_protected:Npn __tag_seq_new:N #1
23 {
2 \seq_new:N #1
25 \lua_now:e { 1ltx.__tag.tables['\cs_to_str:N#1'] = {} }
26 }
27
28
20 \cs_set_protected:Npn __tag_prop_gput:Nnn #1 #2 #3
30 {
31 \prop_gput:Nnn #1 { #2 } { #3 }
32 \lua_now:e { ltx.__tag.tables['\cs_to_str:N#1'] ["#2"] = "\lua_escape:n{#3}" }
33 }

159

&

36

37

38

39

69

70

7.

\cs_set_protected:Npn __tag_seq_gput_right:Nn #1 #2
{
\seq_gput_right:Nn #1 { #2 }
\lua_now:e { table.insert(ltx.__tag.tables['\cs_to_str:N#1'], "#2") }
}

this inserts on the right of the lua table, but as the lua table is not used for kids this is
ignored for now.

\cs_set_protected:Npn __tag_seq_gput_left:Nn #1 #2
{
\seq_gput_left:Nn #1 { #2 }
\lua_now:e { table.insert(ltx.__tag.tables['\cs_to_str:N#1'], "#2") }
}

7%Hm not quite sure about the naming
\cs_set:Npn __tag_seq_item:cn #1 #2
{
\lua_now:e { tex.sprint(\int_use:N\c_document_cctab,ltx.__tag.tables['#1'][#2]) }
}

\cs_set:Npn __tag _prop_item:cn #1 #2

{
\lua_now:e { tex.sprint(\int_use:N\c_document_cctab,ltx.__tag.tables['#1']["#2"]) }
}

%for debugging commands that show both the seq/prop and the lua tables

: \cs_set_protected:Npn __tag_seq_show:N #1

{
\seq_show:N #1
\lua_now:e { ltx.__tag.trace.log ("lua~sequence~array~\cs_to_str:N#1",1) }
\lua_now:e { ltx.__tag.trace.show_seq (ltx.__tag.tables['\cs_to_str:N#1']) }
}

\cs_set_protected:Npn __tag_prop_show:N #1
{
\prop_show:N #1
\lua_now:e {ltx.__tag.trace.log ("lua~property~table~\cs_to_str:N#1",1) }
\lua_now:e {ltx.__tag.trace.show_prop (1tx.__tag.tables['\cs_to_str:N#1']) }
}

(End of definition for __tag_prop_new:N and others.)
(/luatex)

The module declaration

> (xlua)

-- tagpdf.lua
—— Ulrike Fischer

local ProvidesLuaModule = {

name = "tagpdf",
version = "0.99x", —--TAGVERSION
date = "2026-01-12", --TAGDATE

160

o

90

91

92

93

95

96

97

98

99

100

101

102

103

104

105

107

108

109

110

description

license

}

= "tagpdf lua code",
"The LATEX Project Public License 1.3c"

if luatexbase and luatexbase.provides_module then
luatexbase.provides_module (ProvidesLuaModule)

s end

—-1r

The code has quite probably a number of problems

- more variables should be local instead of global

- the naming is not always consistent due to the development of the code

- the traversing of the shipout box must be tested with more complicated setups
- it should probably handle more node types

--11

Some comments about the lua structure.

-l

the main table is named 1tx.__tag. It contains the functions and also the data
collected during the compilation.

1tx.
1tx.
1tx.
1tx.
1tx.

1tx.
1tx.

__tag.mc will contain mc connected data.

__tag.role will contain data related to parent-child relations.
__tag.struct will contain structure related data.

__tag.page will contain page data

__tag.tables contains also data from mc and struct (from older code). This needs cleaning uj

There are certainly dublettes, but I don't dare yet

__tag.func
__tag.trace

local functions
functions meant

functions
Itx.__tag.
1tx.__tag.
1tx.__tag.
Itx.__tag.
1tx.__tag.
1tx.__tag.
Itx.__tag.
1tx.__tag.
Itx.__tag.
Itx.__tag.
1tx.__tag.
Itx.__tag.
Itx.__tag.
1tx.__tag.
1tx.__tag.
Itx.__tag.
1tx.__tag.
Itx.__tag.
Itx.__tag.

func.
func.
func.

func

func

func

func.

func
func
func

will contain (public) functions.

will contain tracing/logging functions.
starts with __
for users will be in ltx.tag

get_num_from (tag): takes a tag (string) and returns the id number
output_num_from (tag): takes a tag (string) and prints (to tex) the id number
get_tag_from (num): takes a num and returns the tag

.output_tag_from (num): takes a num and prints (to tex) the tag
func.
func.
func.
func.

store_mc_data (num,key,data): stores key=data in ltx.__tag.mc[num]
store_mc_label (label,num): stores label=num in Itx.__tag.mc.labels
store_mc_kid (mcnum,kid,page): stores the mc-kids of mcnum on page page
store_mc_in_page (mcnum,mcpagecnt,page): stores in the page table the number of

.store_struct_mcabs (structnum,mcnum): stores relations structnum<->mcnum (abs)
func.
.mark_page_elements (box,mcpagecnt ,mccntprev,mcopen,name,mctypeprev) : the main fi

mc_insert_kids (mcnum): inserts the /K entries for mcnum by wandering through t}

mark_shipout (): a wrapper around the core function which inserts the last EMC

.fill_parent_tree_line (page): outputs the entries of the parenttree for this pag
.output_parenttree(): outputs the content of the parenttree
.pdf_object_ref (name, index): outputs the object reference for the object name
func.

markspaceon(), 1ltx.__tag.func.markspaceoff(): (de)activates the marking of posit

trace.show_mc_data (num,loglevel): shows ltx.__tag.mc[num] is the current log level 1
trace.show_all_mc_data (max,loglevel): shows a maximum about mc's if the current log
trace.show_seq: shows a sequence (array)

161

Iy
N

149

158

159

160

161

162

163

1ltx.__tag.trace.show_struct_data (num): shows data of structure num
1tx.__tag.trace.show_prop: shows a prop

1tx.__tag.trace.log

1tx.__tag.trace.showspaces : boolean

1tx.tag.get_structnum: number, shows the current structure number
Itx.tag.get_structnum_next: number, shows the next structure number

--11

This set-ups the main attribute registers. The mc_type attribute stores the type (P,
Span etc) encoded as a num, The mc_cnt attribute stores the absolute number and
allows so to see if a node belongs to the same mc-chunk. The structnum attribute stores
the structure number. The interwordspace attr is set by the function @@_mark_spaces,
and marks the place where spaces should be inserted. The interwordfont attr is set by
the function @@_mark_spaces too and stores the font, so that we can decide which font
to use for the real space char. The interwordspaceOff attr allows to locally suppress the
insertion of real space chars, e.g. when they are inserted by other means (e.g. with
\char).

local mctypeattributeid = luatexbase.new_attribute ("g__tag mc_type_attr")

> local mccntattributeid = luatexbase.new_attribute ("g__tag _mc_cnt_attr")

local structnumattributeid = luatexbase.new_attribute ("g__tag_structnum_attr")
local iwspaceOffattributeid = luatexbase.new_attribute ("g__tag_interwordspaceOff_attr")

s local iwspaceattributeid = luatexbase.new_attribute ("g__tag_interwordspace_attr")

local iwfontattributeid = luatexbase.new_attribute ("g__tag_interwordfont_attr")

with this token we can query the state of the boolean and so detect if unmarked nodes
should be marked as attributes

local tagunmarkedbool= token.create("g__tag_tagunmarked_bool")

15 local truebool = token.create("c_true_bool")

with this token we can query the state of the softhyphen boolean and so detect if hyphens
from hyphenation should be replaced by soft-hyphens.

local softhyphenbool = token.create("g__tag_softhyphen_bool")

Now a number of local versions from global tables. Not all is perhaps needed, most
node variants were copied from lua-debug.

local catlatex = luatexbase.registernumber ("catcodetable@latex")
local tableinsert = table.insert

> local nodeid = node. id

; local nodecopy = node. copy

4+ local nodegetattribute = node.get_attribute
5 local nodesetattribute = node.set_attribute

local nodehasattribute = node.has_attribute

local nodenew = node.new

local nodetail = node.tail

local nodeslide = node.slide

local noderemove = node.remove

local nodetraverseid = node.traverse_id
local nodetraverse = node.traverse
local nodeinsertafter = node.insert_after

162

16+ local nodeinsertbefore = node.insert_before

165 local pdfpageref = pdf.pageref

166

167 local fonthashes = fonts.hashes

165 local identifiers = fonthashes.identifiers
160 local fontid = font.id

170

171 local HLIST = node.id("hlist")

172 1local VLIST = node.id("vlist")

173 local RULE = node.id("rule")

174 local DISC = node.id("disc")

175 local GLUE = node.id("glue")

176 local GLYPH = node.id("glyph")

177 local KERN = node.id("kern")

17s local PENALTY = node.id("penalty")
179 local LOCAL_PAR = node.id("local_par")
10 local MATH = node.id("math")

152 local NEXT = next
183 local explicit_disc = 1
12 local regular_disc = 3

Now we setup the main table structure. ltx is used by other latex code too!

185 1tx = 1tx or { }

16 1tx.tag = 1tx.tag or { } -- user commands

17 1tx.__tag = 1ltx.__tag or { }

185 1tx.__tag.mc = 1ltx.__tag.mc or { } -- mc data

10 1tx.__tag.role = 1tx.__tag.role or { } -- parent-child data

0 1tx.__tag.role.states = ltx.__tag.role.states or { } -- the states

01 1tx.__tag.role.index = ltx.__tag.role.index or { } -- standard types to index

192 -—— numbers

13 1tx.__tag.role.matrix = ltx.__tag.role.matrix or { } -- implements the matrix

104 1tx.__tag.struct = ltx.__tag.struct or { } -- struct data

105 1tx.__tag.tables = ltx.__tag.tables or { } -- tables created with new prop and new seq.

196 -- wasn't a so great idea ...

197 -- g__tag_role_tags_seq used by tag<-> is in this tables
198 -- used for pure lua tables too now!

199 1tx.__tag.page = 1ltx.__tag.page or { } -- page data, currently only i->{0O->mcnum,1->mcnun
200 1tx.__tag.trace = 1tx.__tag.trace or { } -- show commands

201 1tx.__tag.func = 1ltx.__tag.func or { } -- functions

202 1tx.__tag.conf = 1tx.__tag.conf or { } -- configuration variables

2 User commands to access data

Code like the one in luamml will have to access the current state in some places.

203 local __tag_get_struct_num =

204 function()

205 local a = token.get_macro("g__tag_struct_stack_current_t1")
206 return a

207 end

163

1tx.

1tx.

208
209
210

211

__tag_log
1ltx.__tag.trace.log

__tag.trace.show_seq

__tag_pairs_prop

__tag.trace.show_prop

local __tag_get_struct_counter =

function()
local a = tex.getcount("c@g__tag_struct_abs_int")
return a

end

local __tag_get_struct_num_next =
function()
local a = tex.getcount("c@g__tag_struct_abs_int") + 1

return a

end
Itx.tag.get_struct_num = __tag get_struct_num
Itx.tag.get_struct_counter = __tag_get_struct_counter
Itx.tag.get_struct_num_next = __tag get_struct_num_next

(End of definition for \. This function is documented on page 77.)

3 Logging functions

This rather simple log function takes as argument a message (string) and a number and
will output the message to the log/terminal if the current loglevel is greater or equal than
num.

local __tag log =
function (message,loglevel)
if (loglevel or 3) <= tex.count["l__tag loglevel_int"] then

texio.write_nl("tagpdf: ".. message)
end
end
1tx.__tag.trace.log = __tag_log

(End of definition for __tag_log and ltx.__tag.trace.log.)

This shows the content of a seq as stored in the tables table. It is used by the
\@@_seq_show:N function. It is not used in user commands, only for debugging, and
so requires log level >0.

function 1ltx.__tag.trace.show_seq (seq)

if (type(seq) == "table") then
for i,v in ipairs(seq) do
__tag_log ("[" .. i .. "] => " .. tostring(v),1)
end
else
__tag_log ("sequence " .. tostring(seq) .. " not found",1)
end
end

(End of definition for 1tx.__tag.trace.show_seq.)

This shows the content of a prop as stored in the tables table. It is used by the
\@@_prop_show:N function.

164

221 local __tag_pairs_prop =

242

1tx.__tag.trace.show_mc_data

266
267
268
269
270

271

1tx.__tag.trace.show_all mc_data

281

282

funct

ion (prop)

local a = {}

for n in pairs(prop) do tableinsert(a, n) end
table.sort(a)

Jocal i =0 -- iterator variable
local iter = function () -- iterator function
i=1i+1
if a[i] == nil then return nil
else return ali], proplalil]
end
end
return iter
end
function ltx.__tag.trace.show_prop (prop)
if (type(prop) == "table") then
for i,v in __tag_pairs_prop (prop) do
__tag log ("[" .. i .. "] =>" .. tostring(v),1)
end
else
__tag_log ("prop " .. tostring(prop) .. " not found or not a table",1)
end
end

(End of definition for __tag_pairs_prop and ltx.__tag.trace.show_prop.)

This shows some data for a mc given by num. If something is shown depends on the log
level. The function is used by the following function and then in \ShowTagging

functi

if ltx.__tag and 1ltx.__tag.mc and ltx.__tag.mc[num] then

for k,v in pairs(ltx.__tag.mc[num]) do
__tag_log ("mc"..num..": "..tostring(k).."=>"..tostring(v),loglevel)
end
if 1tx.__tag.mc[num] ["kids"] then
__tag log ("mc" .. num .. " has " .. #ltx.__tag.mc[num]["kids"] .. " kids",loglevel)
for k,v in ipairs(ltx.__tag.mc[num] ["kids"]) do
__tag log ("mc ".. num .. " kid "..k.." =>" .. v.kid.." on page " ..v.page,loglevel)
end
end
else
__tag_log ("mc"..num.." not found",loglevel)
end
end

on 1tx.__tag.trace.show_mc_data (num,loglevel)

(End of definition for 1tx.__tag.trace.show_mc_data.)

This shows data for the mc’s between min and max (numbers).

\ShowTagging function.

function 1tx.__tag.trace.show_all_mc_data (min,max,loglevel)

for i

= min, max do

165

It is used by the

263 1tx.__tag.trace.show_mc_data (i,loglevel)

284 end
265 texio.write_nl("")
256 end

(End of definition for 1tx.__tag.trace.show_all_mc_data.)
ltx. tag.trace.show struct data This function shows some struct data. Unused but kept for debugging.
2s7 function 1tx.__tag.trace.show_struct_data (num)

2ss if 1tx.__tag and 1ltx.__tag.struct and 1ltx.__tag.struct[num] then
250 for k,v in ipairs(ltx.__tag.struct[num]) do

290 __tag_log ("struct "..num..": "..tostring(k).."=>"..tostring(v),1)
291 end

202 else

203 __tag_log ("struct "..num.." not found ",1)

204 end

205 end

(End of definition for 1tx.__tag.trace.show_struct_data.)

4 Helper functions

4.1 Retrieve data functions

__tag_get_mc_cnt_type_tag This takes a node as argument and returns the mc-cnt, the mc-type and and the tag
(calculated from the mc-cnt.

206 local __tag_get_mc_cnt_type_tag = function (n)

207 local mccnt = nodegetattribute(n,mccntattributeid) or -1
203 local mctype = nodegetattribute(n,mctypeattributeid) or -1
200 local tag = Itx.__tag.func.get_tag from(mctype)

0 return mccnt,mctype,tag

501 end
(End of definition for __tag_get_mc_cnt_type_tag.)

__tag_get_mathsubtype This function allows to detect if we are at the begin or the end of math. It takes as
argument a mathnode.

302 local function __tag_get_mathsubtype (mathnode)
503 1f mathnode.subtype == 0 then
04 subtype = "beginmath"

505 else

306 subtype = "endmath"
507 end

08 return subtype

300 end

(End of definition for __tag_get_mathsubtype.)

ltx. tag.tables.role tag attribute The first is a table with key a tag and value a number (the attribute) The second is an
array with the attribute value as key.

166

1tx.__tag.func.alloctag

312
313
314

315

318
319

320

__tag_get_num_from
1tx.__tag.func.get_num_from
1tx. _tag.func.output_num from

329
330
331

332

335
336
337
338

339

__tag_get_tag_from
1tx.__tag.func.get_tag_from
ltx.__tag.func.output_tag from

340

{3
{3

1tx.__tag.tables.role_tag_attribute
1tx.__tag.tables.role_attribute_tag

(End of definition for 1tx.__tag.tables.role_tag_attribute.)

local __tag_alloctag =

function (tag)
if not ltx.__tag.tables.role_tag_attribute[tag] then
table.insert (1tx.__tag.tables.role_attribute_tag, tag)
1tx.__tag.tables.role_tag_attribute[tag]=#ltx.__tag.tables.role_attribute_tag
__tag_log ("Add "..tag.." "..ltx.__tag.tables.role_tag_attribute[tag],3)
end

end
Itx.__tag.func.alloctag = __tag_alloctag

(End of definition for 1tx.__tag.func.alloctag.)

These functions take as argument a string tag, and return the number under which is
it recorded (and so the attribute value). The first function outputs the number for lua,
while the output function outputs to tex.

local __tag_get_num_from =
function (tag)
if 1tx.__tag.tables.role_tag_attribute[tag] then
a= 1tx.__tag.tables.role_tag_attribute[tag]
else
a= -1

return a
end

Itx.__tag.func.get_num_from = __tag_get_num_from

function ltx.__tag.func.output_num_from (tag)

local num = __tag_get_num_from (tag)
tex.sprint (catlatex,num)
if num == -1 then
__tag_log ("Unknown tag "..tag.." used")
end

end

(End of definition for __tag_get_num_from, 1tx.__tag.func.get_num_from, and 1tx.__tag.func.output_-
num_from.)

These functions are the opposites to the previous function: they take as argument a
number (the attribute value) and return the string tag. The first function outputs the
string for lua, while the output function outputs to tex.

local __tag_get_tag_from =

function (num)
if 1tx.__tag.tables.role_attribute_tag[num] then
a = ltx.__tag.tables.role_attribute_tag[num]

167

344 else

345 a= "UNKNOWN"
346 end

347 return a

325 end

0 1tx.__tag.func.get_tag from = __tag get_tag_from

352 function ltx.__tag.func.output_tag_from (num)
353 tex.sprint(catlatex,__tag_get_tag_from (num))
354 end

(End of definition for __tag_get_tag_from, 1tx.__tag.func.get_tag_from, and 1tx.__tag.func.output_-
tag_from.)

1tx.__tag.func.store_mc_data This function stores for key=data for mc-chunk num. It is used in the tagpdf-mc code,
to store for example the tag string, and the raw options.

355 function 1tx.__tag.func.store_mc_data (num,key,data)

356 1tx.__tag.mc[num] = ltx.__tag.mc[num] or { }

557 1tx.__tag.mc[num] [key] = data

356 __tag_log ("INFO TEX-STORE-MC-DATA: "..num.." => "..tostring(key).." => "..tostring(data),3)
350 end

(End of definition for 1tx.__tag.func.store_mc_data.)

Ttx. tag.func.store mc label This function stores the label=num relationship in the labels subtable. TODO: this is
probably unused and can go.

30 function ltx.__tag.func.store_mc_label (label,num)

361 ltx.__tag.mc["labels"] = ltx.__tag.mc["labels"] or { }
362 1tx.__tag.mc.labels[label] = num

363 end

(End of definition for 1tx.__tag.func.store_mc_label.)

ltx.__tag.func.store_mc_kid This function is used in the traversing code. It stores a sub-chunk of a mc mcnum into
the kids table.

364 function ltx.__tag.func.store_mc_kid (mcnum,kid,page)

365 __tag_log("INFO TAG-STORE-MC-KID: "..mcnum.." => " .. kid.." on page " .. page,3)
36 1tx.__tag.mc[mcnum] ["kids"] = 1ltx.__tag.mc[mcnum] ["kids"] or { }

37 local kidtable = {kid=kid,page=page}

s6s tableinsert (1ltx.__tag.mc[mcnum] ["kids"], kidtable)

360 end

(End of definition for 1tx.__tag.func.store_mc_kid.)

Ttx. tag.func.mc mum of kids This function returns the number of kids a mc mcnum has. We need to account for the
case that a mc can have no kids.

s70 function ltx.__tag.func.mc_num_of_kids (mcnum)
371 local num = 0
572 1if 1ltx.__tag.mc[mcnum] and 1tx.__tag.mc[mcnum] ["kids"] then

168

373 num = #ltx.__tag.mc[mcnum] ["kids"]

374 end

375 __tag_log ("INFO MC-KID-NUMBERS: " .. mcnum .. "has " .. num .. "KIDS",4)
376 return num

377 end

(End of definition for 1tx.__tag.func.mc_num_of_kids.)

4.2 Functions to insert the pdf literals

~ tag backend create enc node This insert the emc node. We support also dvips and dvipdfmx backend
__tag_insert_emc_node
s7s local __tag_backend_create_emc_node
370 if tex.outputmode == 0 then

30 1f token.get_macro("c_sys_backend_str") == "dvipdfmx" then
3s1 function __tag_backend_create_emc_node ()

382 local emcnode = nodenew("whatsit",'"special")

383 emcnode.data = "pdf:code EMC"

384 return emcnode

385 end

356 else —— assume a dvips variant

;67 function __tag_backend_create_emc_node ()

388 local emcnode = nodenew("whatsit","special")

389 emcnode.data = "ps:SDict begin mark /EMC pdfmark end"
390 return emcnode

391 end

300 end

303 else —- pdf mode
501 function __tag_backend_create_emc_node ()

305 local emcnode = nodenew("whatsit","pdf_literal")
396 emcnode.data = "EMC"

397 emcnode .mode=1

398 return emcnode

399 end

200 end

w02 local function __tag_insert_emc_node (head,current)
403 local emcnode= __tag_backend_create_emc_node ()

404 head = node.insert_before(head, current,emcnode)
405 return head

206 end

(End of definition for __tag_backend_create_emc_node and __tag_insert_emc_node.)
_tag backend create bnc node This inserts a simple bmc node

__tag_insert_bmc_node
w7 local __tag_backend_create_bmc_node

ws 1f tex.outputmode == O then

w9 1if token.get_macro("c_sys_backend_str") == "dvipdfmx" then
410 function __tag_backend_create_bmc_node (tag)

411 local bmcnode = nodenew("whatsit","special")

412 bmcnode.data = "pdf:code /"..tag.." BMC"

413 return bmcnode

414 end

169

415 else —— assume a dvips variant

416 function __tag_backend_create_bmc_node (tag)

417 local bmcnode = nodenew("whatsit","special")

418 bmcnode.data = "ps:SDict begin mark/"..tag.." /BMC pdfmark end"
419 return bmcnode

420 end

421 end

422 else —— pdf mode
w23 function __tag_backend_create_bmc_node (tag)

424 local bmcnode = nodenew("whatsit","pdf_literal")
425 bmcnode.data = "/"..tag.." BMC"

426 bmcnode.mode=1

427 return bmcnode

428 end

420 end

41 local function __tag_insert_bmc_node (head,current,tag)
42 local bmcnode = __tag_backend_create_bmc_node (tag)

433 head = node.insert_before (head, current, bmcnode)

43¢ return head

435 end

(End of definition for __tag_backend_create_bmc_node and __tag_insert_bmc_node.)

~ tag backend create bdc node This inserts a bed node with a fix dict. TODO: check if this is still used, now that we
__tag_insert_bdc_node create properties.

436 local __tag_backend_create_bdc_node
437

433 1f tex.outputmode == 0 then

10 1if token.get_macro("c_sys_backend_str") == "dvipdfmx" then
440 function __tag_backend_create_bdc_node (tag,dict)

441 local bdcnode = nodenew("whatsit","special")

442 bdcnode.data = "pdf:code /"..tag.."<<"..dict..">> BDC"
443 return bdcnode

444 end

45 else —— assume a dvips variant

446 function __tag_backend_create_bdc_node (tag,dict)

447 local bdcnode = nodenew("whatsit","special")

448 bdcnode.data = "ps:SDict begin mark/"..tag.."<<"..dict..">> /BDC pdfmark end"
449 return bdcnode

450 end

451 end

452 else —— pdf mode
w3 function __tag_backend_create_bdc_node (tag,dict)

454 local bdcnode = nodenew("whatsit","pdf_literal")
455 bdcnode.data = "/"..tag.."<<"..dict..">> BDC"
456 bdcnode.mode=1

457 return bdcnode

458 end

450 end

w1 local function __tag_insert_bdc_node (head,current,tag,dict)

w2 bdcnode= __tag_backend_create_bdc_node (tag,dict)

170

1tx.

463

464

__tag_pdf_object_ref

467

__tag_show_spacemark

IS
N
~N

479
480
481
482

483
485

486

488
489

490

__tag_fakespace

__tag.func.fakespace

491

492

493

494

495

head = node.insert_before (head, current,bdcnode)
return head
end

(End of definition for __tag_backend_create_bdc_node and __tag_insert_bdc_node.)

This allows to reference a pdf object reserved with the 13pdf command by name. The

return value is n 0 R, if the object doesn’t exist, n is 0.

s local function __tag pdf_object_ref (name,index)

local object
if ltx.pdf.object_id then

object = 1tx.pdf.object_id (name,index) ..' O R'
else
local tokenname = 'c__pdf_object_'..name..'/'..index..
object = token.create (tokenname).mode ..' O R'
end
return object
end
1tx.__tag.func.pdf_object_ref = __tag _pdf_object_ref

(End of definition for __tag_pdf_object_ref.)

5 Function for the real space chars

'_int'

A debugging function, it is used to inserts red color markers in the places where space
chars can go, it can have side effects so not always reliable, but ok.

local function __tag_show_spacemark (head,current,color,height)

local markcolor = color or "1 0 0"
local markheight = height or 10
local pdfstring

if tex.outputmode == 0 then

—-- ignore dvi mode for now

else

pdfstring = node.new("whatsit","pdf_literal")

pdfstring.data =

string.format("q "..markcolor.." RG "..markcolor..

3,markheight)
head = node.insert_after(head, current,pdfstring)
return head
end
end

(End of definition for __tag_show_spacemark.)
This is used to define a lua version of \pdffakespace

local function __tag_fakespace()
tex.setattribute (iwspaceattributeid, 1)
tex.setattribute (iwfontattributeid,font.current())
end

1tx.__tag.func.fakespace = __tag fakespace

171

"rg 0.4 wO07Zgm07%glSQ",-

(End of definition for __tag_fakespace and ltx.__tag.func.fakespace.)

__tag_mark_spaces a function to mark up places where real space chars should be inserted. It only sets
attributes, these are then be used in a later traversing which inserts the actual spaces.
When space handling is activated this function is inserted in some callbacks.

--[[a function to mark up places where real space chars should be inserted

S

497 it only sets an attribute.

498 ——]]

499

so0 local function __tag mark_spaces (head)

501 local inside_math = false

s0o for n in nodetraverse(head) do

503 local id = n.id

504 if id == GLYPH then

505 local glyph = n

506 default_currfontid = glyph.font

507 if glyph.next and (glyph.next.id == GLUE)

508 and not inside_math and (glyph.next.width >0)

509 then

510 nodesetattribute(glyph.next,iwspaceattributeid, 1)

511 nodesetattribute(glyph.next,iwfontattributeid,glyph.font)
512 -- for debugging

513 if 1ltx.__tag.trace.showspaces then

514 __tag_show_spacemark (head,glyph)

515 end

516 elseif glyph.next and (glyph.next.id==KERN) and not inside_math then
517 local kern = glyph.next

518 if kern.next and (kern.next.id== GLUE) and (kern.next.width >0)
519 —-- the attribute is also set on the kern in case the kern+glue is
520 -- discarded at a line break tagging issue #1102

521 -- TODO iterate back through all discardable nodes.

522 then

523 nodesetattribute (kern,iwspaceattributeid, 1)

52 nodesetattribute (kern,iwfontattributeid,glyph.font)

525 nodesetattribute (kern.next,iwspaceattributeid, 1)

526 nodesetattribute (kern.next,iwfontattributeid,glyph.font)
527 end

528 end

529 -- look also back

530 if glyph.prev and (glyph.prev.id == GLUE)

531 and not inside_math

532 and (glyph.prev.width >0)

533 and not nodehasattribute(glyph.prev,iwspaceattributeid)
534 then

535 nodesetattribute(glyph.prev,iwspaceattributeid, 1)

536 nodesetattribute(glyph.prev,iwfontattributeid,glyph.font)
537 -- for debugging

538 if 1ltx.__tag.trace.showspaces then

539 __tag_show_spacemark (head,glyph)

540 end

541 end

542 elseif id == PENALTY then

543 local glyph = n

172

544 -- __tag_log ("PENALTY ".. n.subtype.."VALUE"..n.penalty,3)

545 if glyph.next and (glyph.next.id == GLUE)

546 and not inside_math and (glyph.next.width >0) and n.subtype==0
547 then

548 nodesetattribute(glyph.next,iwspaceattributeid, 1)

549 -- changed 2024-01-18, issue #72

550 nodesetattribute(glyph.next,iwfontattributeid,default_currfontid)
551 -- for debugging

552 if Itx.__tag.trace.showspaces then

553 __tag_show_spacemark (head,glyph)

554 end

555 end

556 elseif id == MATH then

557 inside_math = (n.subtype == 0)

558 end

550 end

560 return head

561 end

(End of definition for __tag_mark_spaces.)

__tag_activate_mark_space These functions add/remove the function which marks the spaces to the callbacks
1tx.__tag.func.markspaceon pre_linebreak_filter and hpack_filter
1tx.__tag.func.markspaceoff
s> local function __tag_activate_mark_space ()
563 if not luatexbase.in_callback ("pre_linebreak_filter",'"markspaces") then

564 luatexbase.add_to_callback("pre_linebreak_filter",__tag_mark_spaces, "markspaces")
565 luatexbase.add_to_callback("hpack_filter",__tag_mark_spaces, "markspaces")

s66 end

567 end

ss0 1tx.__tag.func.markspaceon=__tag_activate_mark_space

571 local function __tag_deactivate_mark_space ()

572 if luatexbase.in_callback ("pre_linebreak_filter","markspaces") then
573 luatexbase.remove_from_callback("pre_linebreak_filter", "markspaces")
572 luatexbase.remove_from_callback("hpack_filter", "markspaces")

575 end

576 end

s7s 1tx.__tag.func.markspaceoff=__tag_deactivate_mark_space
(End of definition for __tag_activate_mark_space, l1tx.__tag.func.markspaceon, and 1tx.__tag. func.markspaceoff.)

We need two local variable to setup a default space char.

579 local default_space_char = nodenew(GLYPH)

ss0 local default_fontid fontid ("TU/1mr/m/n/10")
ss1 local default_currfontid = fontid("TU/lmr/m/n/10")
ss2 default_space_char.char = 32

ss3 default_space_char.font default_fontid

And a function to check as best as possible if a font has a space:

173

sss local function __tag_font_has_space (fontid)
55 t= fonts.hashes.identifiers[fontid]
sss if luaotfload.aux.slot_of_name(fontid, "space")

587 or t and t.characters and t.characters[32] and t.characters[32]["unicode"]==32
585 then

589 return true

s00 else

591 return false

502 end

503 end

__tag_space_chars_shipout These is the main function to insert real space chars. It inserts a glyph before every glue
Itx. tag.func.space chars shipout which has been marked previously. The attributes are copied from the glue, so if the
tagging is done later, it will be tagged like it.

s0s local function __tag_space_chars_shipout (box)
50 local head = box.head
596 if head then

597 for n in node.traverse (head) do

508 local spaceattr = -1

599 if not nodehasattribute (n,iwspaceOffattributeid) then

600 spaceattr = nodegetattribute(n,iwspaceattributeid) or -1
601 end

602 if n.id == HLIST then -- enter the hlist

603 __tag_space_chars_shipout (n)

604 elseif n.id == VLIST then -- enter the vlist

605 __tag_space_chars_shipout (n)

606 elseif n.id == GLUE then

607 if 1tx.__tag.trace.showspaces and spaceattr==1 then

608 __tag_show_spacemark (head,n,"0 1 0")

609 end

610 if spaceattr==1 then

611 local space

612 local space_char = node.copy(default_space_char)

613 local curfont = nodegetattribute(n,iwfontattributeid)
614 __tag_log ("INFO SPACE-FUNCTION-FONT: ".. tostring(curfont),3)
615 if curfont and

616 -- luaotfload.aux.slot_of_name (curfont, "space")

617 __tag_font_has_space (curfont)

618 then

619 space_char.font=curfont

620 end

621 head, space = node.insert_before(head, n, space_char) --
622 n.width = n.width - space.width

623 space.attr = n.attr

624 end

625 end

626 end

627 box.head = head

628 end

620 end

630
631 function 1tx.__tag.func.space_chars_shipout (box)
62 __tag_space_chars_shipout (box)

174

633

1tx.__tag.func.mc_insert _kids

644
645
646
647

648

656
657

658

559
660
661
662
663
664

665

1tx.__tag.func.store_struct_mcabs

666
667
668

669

end

(End of definition for __tag_space_chars_shipout and ltx.__tag.func.space_chars_shipout.)

6 Function for the tagging

This is the main function to insert the K entry into a StructElem object. It is used in
tagpdf-mc-luacode module. The single attribute allows to handle the case that a single
mc on the tex side can have more than one kid after the processing here, and so we get
the correct array/non array setup.

+ function ltx.__tag.func.mc_insert_kids (mcnum,single)

if 1tx.__tag.mc[mcnum] then
__tag_log("INFO TEX-MC-INSERT-KID-TEST: " .. mcnum,4)
if 1tx.__tag.mc[mcnum] ["kids"] then
if #ltx.__tag.mc[mcnum] ["kids"] > 1 and single==1 then
tex.sprint(catlatex,"[")
end
for i,kidstable in ipairs(1tx.__tag.mc[mcnum] ["kids"]) do
local kidnum = kidstable["kid"]
local kidpage = kidstable["page"]
local kidpageobjnum = pdfpageref (kidpage)

__tag_log("INFO TEX-MC-INSERT-KID: " .. mcnum ..

" insert KID " ..i..

" with num " .. kidnum ..

" on page " .. kidpage.."/"..kidpageobjnum,3)
tex.sprint(catlatex, "<</Type /MCR /Pg "..kidpageobjnum .. " O R /MCID "..kidnum. .
end

if #1ltx.__tag.mc[mcnum] ["kids"] > 1 and single==1 then
tex.sprint (catlatex,"]")
end
else
-- this is typically not a problem, e.g. empty hbox in footer/header can
-- trigger this warning.
__tag_log("WARN TEX-MC-INSERT-NO-KIDS: "..mcnum.." has no kids",2)
if single==1 then
tex.sprint (catlatex, "null")
end
end
else
__tag_log("WARN TEX-MC-INSERT-MISSING: "..mcnum.." doesn't exist",0)
end
end

(End of definition for 1tx.__tag.func.mc_insert_kids.)

This function is used in the tagpdf-mc-luacode. It store the absolute count of the mc
into the current structure. This must be done ordered.

function 1tx.__tag.func.store_struct_mcabs (structnum,mcnum)
1tx.__tag.struct[structnum]=1tx.__tag.struct[structnum] or { }
1tx.__tag.struct[structnum] ["mc"]=1tx.__tag.struct[structnum] ["mc"] or { }

-- a structure can contain more than on mc chunk, the content should be ordered

175

Ny n)

670 tableinsert(ltx.__tag.struct[structnum] ["mc"],mcnum)

o1 __tag log("INFO TEX-MC-INTO-STRUCT: "..

672 mcnum. ." inserted in struct "..structnum,3)
673 —— but every mc can only be in one structure

o4 1ltx.__tag.mc[mcnum]= ltx.__tag.mc[mcnum] or { }

o75 1ltx.__tag.mc[mcnum] ["parent"] = structnum

676 end

(End of definition for 1tx.__tag.func.store_struct_mcabs.)

Ttx. tag.func.store nc in page This is used in the traversing code and stores the relation between abs count and page

count.
67 —— pay attention: lua counts arrays from 1, tex pages from one
679 —— mcid and arrays in pdf count from O.

ss0 function 1tx.__tag.func.store_mc_in_page (mcnum,mcpagecnt,page)
e ltx.__tag.pagel[page] = ltx.__tag.pagelpage] or {}
6> 1tx.__tag.pagel[page] [mcpagecnt] = mcnum

es3 __tag_log("INFO TAG-MC-INTO-PAGE: page " .. page
684 ": inserting MCID " .. mcpagecnt .. " => " .. mcnum,3)
6s5 end

(End of definition for 1tx.__tag.func.store_mc_in_page.)

Itx. tag.func.update nc attributes This updates the mc-attributes of a box. It should only be used on boxes which don’t
contain structure elements. The arguments are a box, the mc-num and the type (as a
number)

e local function __tag_update_mc_attributes (head,mcnum,type)
6s7 for n in node.traverse (head) do

688 node.set_attribute(n,mccntattributeid,mcnum)

689 node.set_attribute (n,mctypeattributeid, type)

690 if n.id == HLIST or n.id == VLIST then

691 __tag_update_mc_attributes (n.list,mcnum,type)

692 end

693 end

60+ return head

605 end

o6 1tx.__tag.func.update_mc_attributes = __tag_update_mc_attributes

(End of definition for 1tx.__tag.func.update_mc_attributes.)

Itx. tag.func.mark page elements This is the main traversing function. See the lua comment for more details.

697 ——[[

698 Now follows the core function

699 It wades through the shipout box and checks the attributes

700 ARGUMENTS

701 box: is a box,

702 mcpagecnt: num, the current page cnt of mc (should start at -1 in shipout box), needed for 1
703 mccntprev: num, the attribute cnt of the previous node/whatever - if different we have a cht
704 mcopen: num, records if some bdc/emc is open

705 These arguments are only needed for log messages, if not present are replaces by fix strings

176

706 name: string to describe the box
707 mctypeprev: num, the type attribute of the previous node/whatever

709 there are lots of logging messages currently. Should be cleaned up in due course.
710 One should also find ways to make the function shorter.

1 —=]1]

715 function ltx.__tag.func.mark_page_elements (box,mcpagecnt,mccntprev,mcopen,name,mctypeprev)
712 local name = name or ("SOMEBOX")
715 local mctypeprev = mctypeprev or -1

76 local abspage = status.total_pages + 1 -- the real counter is increased
717 -- inside the box so one off
718 -- if the callback is not used. (777)
70 __tag_log ("INFO TAG-ABSPAGE: " .. abspage,3)

720 __tag_log ("INFO TAG-ARGS: pagecnt".. mcpagecnt..

721 " prev "..mccntprev ..

722 " type prev "..mctypeprev,4)

723 __tag_log ("INFO TAG-TRAVERSING-BOX: ".. tostring(name)..

724 " TYPE ".. node.type (node.getid(box)),3)

725 local head = box.head -- ShipoutBox is a vlist?

726 1f head then

727 mccnthead, mctypehead,taghead = __tag_get_mc_cnt_type_tag (head)
728 __tag_log ("INFO TAG-HEAD: " ..

729 node. type (node.getid(head)) . .

730 " MC"..tostring(mccnthead). .

731 " => TAG " .. tostring(mctypehead)..

732 " => ", tostring(taghead),3)

733 else

734 __tag_log ("INFO TAG-NO-HEAD: head is "..

735 tostring (head),3)

736 end

737 for n in node.traverse(head) do

738 local mccnt, mctype, tag = __tag_get_mc_cnt_type_tag (n)

739 local spaceattr = nodegetattribute(n,iwspaceattributeid) or -1
740 __tag_log ("INFO TAG-NODE: "..

741 node. type(node.getid(n)) ..

742 " MC".. tostring(mccnt)..

743 " => TAG ".. tostring(mctype)..

744 " =>" . tostring(tag),3)

745 if n.id == HLIST

746 then -- enter the hlist

747 mcopen,mcpagecnt ,mccntprev,mctypeprev=

748 1tx.__tag.func.mark_page_elements (n,mcpagecnt,mccntprev,mcopen, "INTERNAL HLIST",mctypepre
749 elseif n.id == VLIST then -- enter the vlist

750 mcopen,mcpagecnt ,mccntprev,mctypeprev=

751 1tx.__tag.func.mark_page_elements (n,mcpagecnt,mccntprev,mcopen, "INTERNAL VLIST",mctypepre
752 elseif n.id == GLUE and not n.leader then -- at glue real space chars are inserted, but thizs
753 -- been done if the previous shipout wandering, so here it 1is
754 elseif n.id == LOCAL_PAR then -- local_par is ignored

755 elseif n.id == PENALTY then -- penalty is ignored

756 elseif n.id == KERN then -- kern is ignored

757 __tag_log ("INFO TAG-KERN-SUBTYPE: "..

758 node. type (node.getid(n)).." "..n.subtype,4)

759 else

177

791

794

795

796

797

798

799

800

801

802

803

808

809

810

811

812

813

-- math is currently only logged.
-- we could mark the whole as math
-- for inner processing the mlist_to_hlist callback is probably needed.
if n.id == MATH then
__tag_log("INFO TAG-MATH-SUBTYPE: "..
node.type (node.getid(n)).." "..__tag_get_mathsubtype(n),4)
end
—-- endmath

__tag_log("INFO TAG-MC-COMPARE: current "..

mcent.." prev "..mccntprev,4)
if mccnt~=mccntprev then -- a new mc chunk
__tag_log ("INFO TAG-NEW-MC-NODE: "..
node. type(node.getid(n)) ..
" MC"..tostring(mccnt). .
" <=> PREVIOUS "..tostring(mccntprev),4)
if mcopen~=0 then -- there is a chunk open, close it (hope there is only one ...
box.list=__tag_insert_emc_node (box.list,n)
mcopen = mcopen - 1
__tag_log ("INFO TAG-INSERT-EMC: " ..

mcpagecnt .. " MCOPEN = " .. mcopen,3)
if mcopen ~=0 then

__tag_log ("WARN TAG-OPEN-MC: " .. mcopen,1)
end
end

if 1tx.__tag.mc[mccnt] then
if I1tx.__tag.mc[mccnt] ["artifact"] then
__tag_log("INFO TAG-INSERT-ARTIFACT: "..
tostring(1tx.__tag.mc[mcent] ["artifact"]),3)

if 1tx.__tag.mc[mcent] ["artifact"] == "" then

box.list = __tag_insert_bmc_node (box.list,n,"Artifact")

else

box.list = __tag_insert_bdc_node (box.list,n,"Artifact", "/Type /"..ltx.__tag.mc[mccnt]
end
else
__tag_log("INFO TAG-INSERT-TAG: "..

tostring(tag),3)

mcpagecnt = mcpagecnt +1
__tag_log ("INFO TAG-INSERT-BDC: "..mcpagecnt,3)
local dict= "/MCID "..mcpagecnt
if 1tx.__tag.mc[mccnt] ["raw"] then
__tag_log("INFO TAG-USE-RAW: "..
tostring(1tx.__tag.mc[mcent] ["raw"]),3)
dict= dict .. " " .. ltx.__tag.mc[mccnt] ["raw"]
end
if 1tx.__tag.mc[mccnt] ["alt"] then
__tag_log("INFO TAG-USE-ALT: "..
tostring (1tx.__tag.mc[mccnt] ["alt"]),3)
dict= dict .. " " .. ltx.__tag.mc[mccnt]["alt"]
end
if 1tx.__tag.mc[mccnt] ["lang"] then
__tag_log("INFO TAG-USE-LANG: "..
tostring (1tx.__tag.mc[mccnt] ["1lang"]),3)
dict= dict .. " " .. ltx.__tag.mc[mccnt]["lang"]
end

178

814

815

817

818

832
833
834
835

836

1tx.__tag.func.mark_shipout

855

%
aQ

56

858

859

860

if 1tx.__tag.mc[mccnt] ["actualtext"] then
__tag_log("INFO TAG-USE-ACTUALTEXT: "..
tostring (1tx.__tag.mc[mccnt] ["actualtext"]),3)

dict= dict .. " " .. 1tx.__tag.mc[mccnt] ["actualtext"]
end
box.list = __tag_insert_bdc_node (box.list,n,tag, dict)

1tx.__tag.func.store_mc_kid (mccnt,mcpagecnt,abspage)
1ltx.__tag.func.store_mc_in_page (mccnt,mcpagecnt,abspage)
1tx.__tag.trace.show_mc_data (mccnt,3)

end
mcopen = mcopen + 1
else
if tagunmarkedbool.mode == truebool.mode then
__tag_log("INFO TAG-NOT-TAGGED: this has not been tagged, using artifact",2)
box.list = __tag_insert_bmc_node (box.list,n,"Artifact")
mcopen = mcopen + 1
else
__tag_log("WARN TAG-NOT-TAGGED: this has not been tagged",1)
end
end
mccntprev = mccnt
end
end -- end if
end -- end for
if head then
mccnthead, mctypehead,taghead = __tag_get_mc_cnt_type_tag (head)

__tag_log ("INFO TAG-ENDHEAD: " ..
node. type (node.getid(head)) ..
" MC"..tostring(mccnthead) ..
" => TAG "..tostring(mctypehead). .
" => ", . tostring(taghead),4)

else
__tag_log ("INFO TAG-ENDHEAD: ".. tostring(head),4)
end
__tag_log ("INFO TAG-QUITTING-BOX "..
tostring (name). .
" TYPE ".. node.type(node.getid(box)),4)

return mcopen,mcpagecnt,mccntprev,mctypeprev

end

(End of definition for 1tx.__tag.func.mark_page_elements.)

This is the function used in the callback. Beside calling the traversing function it also
checks if there is an open MC-chunk from a page break and insert the needed EMC
literal.

function 1tx.__tag.func.mark_shipout (box)

mcopen = ltx.__tag.func.mark_page_elements (box,-1,-100,0,"Shipout",-1)
if mcopen~=0 then -- there is a chunk open, close it (hope there is only one ...
local emcnode = __tag_backend_create_emc_node ()
local list = box.list
if list then
list = node.insert_after (list,node.tail(list),emcnode)

179

861 mcopen = mcopen - 1

562 __tag_log ("INFO SHIPOUT-INSERT-LAST-EMC: MCOPEN " .. mcopen,3)
863 else

864 __tag_log ("WARN SHIPOUT-UPS: this shouldn't happen",0)

865 end

ss6 ~ 1f mcopen ~=0 then

867 __tag_log ("WARN SHIPOUT-MC-OPEN: " .. mcopen,1)

868 end

s60 end

g70 end

(End of definition for 1tx.__tag.func.mark_shipout.)

7 Parenttree

ltx. tag.func.fill parent tree line These functions create the parent tree. The second, main function is used in the tagpdf-
ltx. tag.func.output parenttree tree code. TODO check if the tree code can move into the backend code.

s72 function 1tx.__tag.func.fill_parent_tree_line (page)
872 -- we need to get page-> i=kid -> mcnum -> structnum

873 -- pay attention: the kid numbers and the page number in the parent tree start with 0!
874 local numsentry =""

875 local pdfpage = page-1

876 if 1tx.__tag.pagelpage] and ltx.__tag.pagelpage] [0] then

877 mcchunks=#1tx.__tag.page [page]

878 __tag_log("INFO PARENTTREE-NUM: page "..

879 page.." has "..mcchunks.."+1 Elements ",4)

880 for i=0,mcchunks do

881 -- what does this log??

882 __tag_log("INFO PARENTTREE-CHUNKS: "..

883 1tx.__tag.pagel[page] [i],4)

884 end

885 if mcchunks == O then

886 -- only one chunk so no need for an array

887 local mcnum = ltx.__tag.pagelpagel [0]

888 local structnum = ltx.__tag.mc[mcnum] ["parent"]

889 local propname = "g__tag_struct_"..structnum.."_prop"

890 --local objref = 1tx.__tag.tables[propname] ["objref"] or "XXXX"
891 local objref = __tag_pdf_object_ref('__tag/struct',structnum)
892 __tag_log("INFO PARENTTREE-STRUCT-OBJREF: =====>"_.

893 tostring(objref),5)

894 numsentry = pdfpage .. " [".. objref .. "]"

595 __tag_log("INFO PARENTTREE-NUMENTRY: page " ..

896 page.. " num entry = ".. numsentry,3)

897 else

898 numsentry = pdfpage .. " ["

899 for i=0,mcchunks do

900 local mcnum = ltx.__tag.pagel[page] [i]

901 local structnum = 1tx.__tag.mc[mcnum] ["parent"] or O

902 local propname = "g__tag_struct_"..structnum.."_prop"

903 --local objref = 1tx.__tag.tables[propname]["objref"] or "XXXX"
904 local objref = __tag pdf_object_ref('__tag/struct',structnum)
905 numsentry = numsentry .. " ".. objref

180

913
914
915
916
917
918
919

920

s_softhyphen pre process_softhyphen_post

924

5

N

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

942

943

945

946

end

func
for
1i
te
end
end

(End

end

numsentry = numsentry .. "] "
__tag_log("INFO PARENTTREE-NUMENTRY: page " ..
page.. " num entry = ".. numsentry,3)
end
else

__tag log ("INFO PARENTTREE-NO-DATA: page "..page,3)
numsentry = pdfpage.." []"

end

return numsentry

tion 1tx.__tag.func.output_parenttree (abspage)
i=1,abspage do

ne = ltx.__tag.func.fill_parent_tree_line (i) .. "~~J"

x.sprint (catlatex,line)

of definition for 1tx.__tag.func.fill_parent_tree_line and ltx.__tag.func.output_parenttree.)

First some local definitions. Since these are only needed locally everything gets wrapped

into

do
lo
lo

Ilo
lo

Alo

1o

en

a block.

cal properties = node.get_properties_table()

cal is_soft_hyphen_prop = 'tagpdf.rewrite-softhyphen.is_soft_hyphen'
cal hyphen_char = 0x2D

cal soft_hyphen_char = 0xAD

okup table to test if the font supports the soft hyphen glyph.
cal softhyphen_fonts = setmetatable({}, {__index = function(t, fid)

local fdir = identifiers[fid]
local format = fdir and fdir.format

local result = (format == 'opentype' or format == 'truetype')
local characters = fdir and fdir.characters
result = result and (characters and characters[soft_hyphen_char]) ~= nil

t[fid] = result
return result

ar)

A pre shaping callback to mark hyphens as being hyphenation hyphens. This runs before
shaping to avoid affecting hyphens moved into discretionaries during shaping.

lo

cal function process_softhyphen_pre(head, _context, _dir)
if softhyphenbool.mode ~= truebool.mode then return true end
for disc, sub in node.traverse_id(DISC, head) do
if sub == explicit_disc or sub == regular_disc then
for n, _ch, _f in node.traverse_char(disc.pre) do
local props = properties[n]
if not props then
props = {}
properties[n] = props

181

947 end

948 props[is_soft_hyphen_prop] = true
949 end

950 end

951 end

952 return true

953 end

Finally do the actual replacement after shaping. No checking for double processing here
since the operation is idempotent.

g

55 local function process_softhyphen_post(head, _context, _dir)

956 if softhyphenbool.mode ~= truebool.mode then return true end
957 for disc, sub in node.traverse_id(DISC, head) do

958 for n, ch, fid in node.traverse_glyph(disc.pre) do

959 local props = properties[n]

960 if softhyphen_fonts[fid] and ch == hyphen_char and props and props[is_soft_hyphen_prop]
961 n.char = soft_hyphen_char

962 props.glyph_info = nil

963 end

964 end

965 end

966 return true

967 end

968

o0 luatexbase.add_to_callback('pre_shaping_filter', process_softhyphen_pre, 'tagpdf.rewrite-
softhyphen')

oo luatexbase.add_to_callback('post_shaping filter', process_softhyphen_post, 'tagpdf.rewrite-
softhyphen')

971 end

(End of definition for process_softhyphen_pre process_softhyphen_post. This function is docu-
mented on page 77.)

8 parent-child rules

role_get_parent_child_rule

1tx. tag.func.role get parent child rule
072 local function role_get_parent_child_rule (parent,child)
973 Jocal state=
974 1ltx.__tag.role.matrix[ltx.__tag.role.index[parent]]
975 and 1tx.__tag.role.matrix[ltx.__tag.role.index[parent]] [1tx.__tag.role.index[child]] or O
976 return state
977 end
ozs 1tx.__tag.func.role_get_parent_child_rule=role_get_parent_child_rule

(End of definition for role_get_parent_child_rule and ltx.__tag.func.role_get_parent_child_rule.
This function is documented on page ?7.)

check_update_stashed These function allows to check the parent-child rules for the current set of structures.
check_parent_child_rules It should normally be used at the end of the document. Some stashed structures can
ltx. tag.func.check parent child rules still have a parentrole setting containing the STASHED keyword, there must be updated

182

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

first, this is done with a helper command. To avoid that a faulty structure (where e.g.
two structures point to each other) creates an endless loop we check for the real parent
only for 10 loops.

function check_update_stashed (struct,loglevel,loop)
loop = (loop or 0) + 1
if loop > 10 then
__tag_log ('Warning: Too deeply nested stashed structures',0)
return
end
__tag_log ('updating parentrole for stashed structure '..struct,loglevel)
local parent = ltx.__tag.tables['g__tag struct_'..struct..'_prop']['parentnum']
if parent then
local ptag =
string.match(ltx.__tag.tables['g__tag struct_'..parent..'_prop']['parentrole'], "{(.-
DHO-)F"M)
if ptag == 'STASHED' then
-- look at the parent and update it first
check_update_stashed (parent,loglevel,loop)
end
-- now copy the parent role from the parent
ltx.__tag.tables['g _tag_struct_'..struct..'_prop']['parentrole']

ltx.__tag.tables['g__tag struct_'..parent..'_prop']['parentrole']

__tag_log
('new parentrole: ' .. ltx.__tag.tables['g _tag struct_'..struct..'_prop']['parentrole'], Ic
else
__tag_log ('Warning: structure '..struct.. 'has no parent.',0)
end
end

function check_parent_child_rules (loglevel)
texio.write_nl('\n')
__tag_log ('checking parent-child rules ...' ,0)
for i=2,1tx.tag.get_struct_counter() do
local t,tNS=
string.match(ltx.__tag.tables['g__tag struct_'..i..'_prop'l['tag'], "{(.-)} (.-
DR,
local r,rNS=
string.match(ltx.__tag.tables['g__tag struct_'..i..'_prop']['rolemap'], "{(.-)}{(.-
D}
local p,pNS=
string.match(ltx.__tag.tables['g__tag struct_'..i..'_prop']['parentrole'], "{(.-
DHC. =)
local parent=1tx.__tag.tables['g__tag struct_'..i..'_prop']['parentnum']
if parent then

__tag_ log (i..': '.. t..':'..tNS,loglevel)
__tag_ log (i..': '.. r..':'..rNS,loglevel)
__tag log (i..': '.. p..':'..pNS,loglevel)
__tag_log ('parent of ' ..i..': '.. parent,loglevel)
if p == 'STASHED' then

check_update_stashed (i,loglevel,0)

p,pNS=

string.match(ltx.__tag.tables['g__tag struct_'..i..'_prop']['parentrole'], "{(.-

183

DHC M

1025 end

1026 local pt,ptNS=

1027 string.match(ltx.__tag.tables['g _tag struct_'..parent..'_prop']['tag'], "{(.-
DHO. =)™

1028 local pr,prNS=

1029 string.match(ltx.__tag.tables['g _tag_struct_'..parent..'_prop']['rolemap'], "{(.-
DHO. -

1030 local pp,ppNS=

1031 string.match(ltx.__tag.tables['g _tag _struct_'..parent..'_prop']['parentrole'], "{(.-
DHO. -

1032 if pp == 'STASHED' then

1033 check_update_stashed (parent,loglevel,0)

1034 pp,ppNS=

1035 string.match(ltx.__tag.tables['g__tag_struct_'..parent..'_prop']['parentrole'], "{(.-
DHO-)F")

1036 end

1037 __tag _log (parent..': '.. pt..':'..ptNS,loglevel)

1038 __tag_log (parent..': '.. pr..':'..prNS,loglevel)

1039 __tag_log (parent..': '.. pp..':'..ppNS,loglevel)

1040 -- now check the rule.

1041 -- at first rolemap of child against rolemap of parent.

1042 local state=1tx.__tag.func.role_get_parent_child_rule (pr,r)

1043 __tag log ('rule of '..pr.."->"..r..' is '..state,loglevel)

1044 -- if the state is 7 we check against parentrole of the parent

1045 if state == 7 then

1046 state=1tx.__tag.func.role_get_parent_child_rule (pp,r)

1047 __tag_log ('Parent-Child relation '..pp.."->"..r..' is '..state,loglevel)

1048 end

1049 if state == 0 then

1050 __tag_log

1051 ('Warning: Parent-Child relation '

1052 ..ptNS..':'..pt..'" => '..tNS..':'..t..' is unknown',0)

1053 __tag_log

1054 ('Structure ' ..parent..' -> '..1,0)

1055 end

1056 if state == -1 then

1057 __tag_log

1058 ('Warning: Parent-Child relation '

1059 L.ptNS..':'o.pt.. ' => 'LUtNS..':'..t.."' is not allowed',0)

1060 __tag_log

1061 ('Structure ' ..parent..' -> '..1,0)

1062 end

1063 -- check also for MC

1064 state =ltx.__tag.func.role_get_parent_child_rule (r ,'MC')

1065 local curtag=r

1066 if state == 7 then

1067 state =ltx.__tag.func.role_get_parent_child_rule (p ,'MC')

1068 local curtag=p

1069 end

1070 if state == -1 then

1071 if 1tx.__tag.struct[i] and NEXT(ltx.__tag.struct[i]) then

1072 __tag _log

1073 ('Warning: Real content (MC) is not allowed in ' ..curtag,0)

184

1074 end

1075 end

1076 __tag_log("' ',loglevel)
1077 end

1078 end -- end for

w70 end

1080
ws1 1tx.__tag.func.check_parent_child_rules=check_parent_child_rules

1082

(End of definition for check_update_stashed, check_parent_child_rules, and 1tx.__tag.func.check_-
parent_child_rules. These functions are documented on page 77.)

9 Link annotations

If the linksplit code has been loaded we use it to add the OBJR of links to the structure
tree.

wsz if luatexbase.callbacktypes['linksplit'] then
1084 luatexbase.add_to_callback('linksplit', function(start_link, position)

1085 if start_link == nil then return end

1086 local structnum =

1087 node.get_attribute(start_link,luatexbase.attributes.g__tag_structnum_attr)

1088 if structnum and structnum > -1 then

1089 local s = ltx.__tag.tables['g _tag struct_'..structnum..'_prop']['rolemap']

1090 if s and (string.find(s, 'Link') or string.find(s, 'Reference')) then

1001 local struct_insert_annot_shipout = token.create'__tag_struct_insert_annot_shipout:nr
1092 local parentnum = tex.count['c@g__tag parenttree_obj_int']

1093 start_link.link_attr =

1094 start_link.link attr ..

1095 ' /LTEX_position /' .. position

1096 '/StructParent ' .. parentnum

1007 tex.sprint (catlatex,struct_insert_annot_shipout, '{'..

1098 structnum..'}H'..

1099 start_link.objnum..' 0O RM'..

1100 parentnum ..'}')

1101 -- the counter must be set explicitly as struct_insert_annot_shipout doesn't do it!
1102 tex.setcount('global’, 'c@g__tag _parenttree_obj_int',parentnum +1)

1103 __tag _log(position .. " link part has object id " .. start_link.objnum .. " and stri
1104 else

1105 __tag_log('Warning: Link not in Link or Reference structure element',0)

1106 __tag_log('OBJR not created',0)

1107 __tag_log('',0)

1108 end

1109 end

1110 end, 'tagpdf')

1111 end

1112 (/Iua)

The tagpdf-roles module
Tags, roles and namespace code
Part of the tagpdf package
Ulrike Fischer
Version 0.99x, released 2026-01-12

185

Part X

add-new-tag (setup-key)

tag (rolemap-key)

namespace (rolemap-key)

role (rolemap-key)
role-namespace (rolemap-key)

\tag_check_child:nnTF

AW N e

@

The add-new-tag key can be used in \tagpdfsetup to declare and rolemap new tags. It
takes as value a key-value list or a simple new-tag/old-tag.
The key-value list knows the following keys:

tag This is the name of the new tag as it should then be used in \tagstructbegin.

namespace This is the namespace of the new tag. The value should be a shorthand of a
namespace. The allowed values are currently pdf, pdf2, mathml,latex, latex-book
and user. The default value (and recommended value for a new tag) is user. The
public name of the user namespace is tag/NS/user. This can be used to reference
the namespace e.g. in attributes.

role This is the tag the tag should be mapped too. In a PDF 1.7 or earlier this is
normally a tag from the pdf set, in PDF 2.0 from the pdf, pdf2 and mathml set.
It can also be a user tag. The tag must be declared before, as the code retrieves
the class of the new tag from it. The PDF format allows mapping to be done
transitively. But tagpdf can’t/won’t check such unusual role mapping.

role-namespace If the role is a known tag the default value is the default namespace of
this tag. With this key a specific namespace can be forced.

Namespaces are mostly a PDF 2.0 property, but it doesn’t harm to set them also in
a PDF 1.7 or earlier.

\tag_check_child:nnTF {(tag)} {(namespace)} {(true code)} {(false code)}
This checks if the tag (tag) from the name space (namespace) can be used at the current

position. In tagpdf-base it is always true.

(eo=tag)
(xheader)
\ProvidesExplPackage {tagpdf-roles-code} {2026-01-12} {0.99x}
{part of tagpdf - code related to roles and structure names}
(/header)

1 Code related to roles and structure names
(*package)

1.1 Variables

Tags are used in structures (\tagstructbegin) and mc-chunks (\tagmcbegin).
They have a name (a string), in lua a number (for the lua attribute), and in PDF
2.0 belong to one or more name spaces, with one being the default name space.

186

\g__tag_role_tags_NS_prop

\g__tag_role_tags_class_prop

<

Tags of structures are classified, e.g. as grouping, inline or block level structure (and a
few special classes like lists and tables), and must follow containments rules depending on
their classification (for example a inline structure can not contain a block level structure).
New tags inherit their classification from their rolemapping to the standard namespaces
(pdf and/or pdf2). We store this classification as it will probably be needed for tests but
currently the data is not much used. The classification for math (and the containment
rules) is unclear currently and so not set.

The attribute number is only relevant in lua and only for the MC chunks (so tags
with the same name from different names spaces can have the same number), and so only
stored if luatex is detected.

Due to the namespaces the storing and processing of tags and there data are different
in various places for PDF 2.0 and PDF <2.0, which makes things a bit difficult and leads
to some duplications. Perhaps at some time there should be a clear split.

This are the main variables used by the code:

\g__tag_role_tags_NS_prop This is the core list of tag names. It uses tags as keys and
the shorthand (e.g. pdf2, or mathml) of the default name space as value.

In pdf 2.0 the value is needed in the structure dictionaries.

\g__tag_role_tags_class_prop This contains for each tag a classification type. It is
used in pdf <2.0.

\g__tag_role_NS_prop This contains the names spaces. The values are the object ref-
erences. They are used in pdf 2.0.

\g__tag_role_rolemap_prop This contains for each tag the role to a standard tag. It
is used in pdf<2.0 for tag checking and to fill at the end the RoleMap dictionary.

g_00_role/RoleMap_dict This dictionary contains the standard rolemaps. It is relevant
only for pdf <2.0.

\g__tag_role_NS_<ns>_prop This prop contains the tags of a name space and their role.
The props are also use for remapping. As value they contain two brace groups: tag
and namespace. In pdf <2.0 the namespace is empty.

\g__tag_role_NS_<ns>_class_prop This prop contains the tags of a name space and
their type. The value is only needed for pdf 2.0.

\g__tag_role_index_prop This prop contains the standard tags (pdf in pdf<2.0,
pdf,pdf2 + mathml in pdf 2.0) as keys, the values are a two-digit number. These
numbers are used to get the containment rule of two tags from the intarray.

This is the core list of tag names. It uses tags as keys and the shorthand (e.g. pdf2, or
mathml) of the default name space as value. We store the default name space also in pdf
<2.0, even if not needed: it doesn’t harm and simplifies the code. There is no need to
access this from lua, so we use the standard prop commands.

\prop_new_linked:N \g__tag_role_tags_NS_prop
(End of definition for \g__tag_role_tags_NS_prop.)

With pdf 2.0 we store the class in the NS dependent props. With pdf <2.0 we store for
now the type(s) of a tag in a common prop. Tags that are rolemapped should get the
type from the target.

187

8

\g__tag_role_NS_prop

\g__tag_role_index_prop

10

\1__tag_role_debug_prop

\1__tag_role_tag_tmpa_tl

\l tag role tag namespace tmpa tl
\l__tag role tag namespace tmpb t1 12
\1__tag_role_role_tmpa_t1l13
\1 tag role role namespace tmpa t1*
\1__tag_role_tmpa_seq”
16

17

\prop_new:N \g__tag_role_tags_class_prop
(End of definition for \g__tag_role_tags_class_prop.)

This holds the list of supported name spaces. The keys are the name tagpdf will use, the
values the object reference. The urls identifier are stored in related dict object.

mathml http://www.w3.org/1998/Math/MathML

pdf2 http://iso.org/pdf2/ssn

pdf http://iso.org/pdf/ssn (default)

user \c__tag_role_userNS_id_str (random id, for user tags)
latex https://www.latex-project.org/ns/dflt

latex-book https://www.latex-project.org/ns/book

More namespaces are possible and their objects references and their rolemaps must be
collected so that an array can be written to the StructTreeRoot at the end (see tagpdf-
tree). We use a prop to store the object reference as it will be needed rather often.

\prop_new:N \g__tag_role_NS_prop
(End of definition for \g__tag_role_NS_prop.)

This prop contains the standard tags (pdf in pdf<2.0, pdf,pdf2 + mathml in pdf 2.0) as
keys, the values are a two-digit number. These numbers are used to get the containment
rule of two tags from the intarray.

\prop_new:N \g__tag_role_index_prop

(End of definition for \g__tag_role_index_prop.)

This variable is used to pass more infos to debug messages.
\prop_new:N \1__tag_role_debug_prop

(End of definition for \1__tag_role_debug_prop.)

We need also a bunch of temporary variables.

\tl_new:N \1__tag_role_tag_tmpa_tl

\tl_new:N \1__tag_role_tag_namespace_tmpa_t1
\tl_new:N \1__tag_role_tag_namespace_tmpb_tl
\tl_new:N \1__tag_role_role_tmpa_tl

\tl_new:N \1__tag_role_role_namespace_tmpa_t1l
\seq_new:N\1__tag_role_tmpa_seq

(End of definition for \1__tag_role_tag_tmpa_t1l and others.)

188

g__tag_role/RoleMap_dict

1.2 Namespaces

The following commands setups a name space. With pdf version <2.0 this is only a
prop with the rolemap. With pdf 2.0 a dictionary must be set up. Such a name space
dictionaries can contain an optional /Schema and /RoleMapNS entry. We only reserve the
objects but delay the writing to the finish code, where we can test if the keys and the
name spaces are actually needed. This commands setups objects for the name space and
its rolemap. It also initialize a dict to collect the rolemaps if needed, and a property with
the tags of the name space and their rolemapping for loops. It is unclear if a reference
to a schema file will be ever needed, but it doesn’t harm

This is the object which contains the normal RoleMap. It is probably not needed in pdf

\g__tag_role_rolemap_prop 2.0 but currently kept.

18

19

\pdfdict_new:n {g__tag _role/RoleMap_dict}
__tag_prop_new:N \g__tag_role_rolemap_prop

(End of definition for g__tag_role/RoleMap_dict and \g__tag_role_rolemap_prop.)

__tag_role_NS_new:nnn __tag_role_NS_new:nnn {(shorthand)} {(URI-ID)} {(Schema)}

__tag_role_NS_new:nnn

20

\pdf_version_compare:NnTF < {2.0}

{
\cs_new_protected:Npn __tag_role_NS_new:nnn #1 #2 #3
{
__tag_prop_new:c { g__tag role_NS_#1_prop }
\prop_new:c { g__tag_role_NS_#1_class_prop }
\prop_gput:Nne \g__tag_role_NS_prop {#1}{}
}
}
{

\cs_new_protected:Npn __tag role_NS_new:nnn #1 #2 #3
{
__tag_prop_new:c { g__tag_role_NS_#1_prop }
\prop_new:c { g__tag_role_NS_#1_class_prop }
\pdf_object_new:n {tag/NS/#1}

\pdfdict_new:n {g__tag_role/Namespace_#1_dict}
\pdf_object_new:n {__tag/RoleMapNS/#1}
\pdfdict_new:n {g__tag_role/RoleMapNS_#1_dict}

\pdfdict_gput:nnn
{g__tag_role/Namespace_#1_dict}
{Type}

{/Namespace}

\pdf_string from_unicode:nnN{utf8/string}{#2}\1__tag tmpa_str

\tl_if_empty:NF \1__tag_tmpa_str
{

\pdfdict_gput:nne
{g__tag_role/Namespace_#1_dict}
{NS}

{\1__tag_tmpa_str}

189

\c__tag_role_userNS_id_str

65

66

68

69

70

N
N

79

}
%#RoleMapNS is added in tree
\tl_if_empty:nF {#3}
{
\pdfdict_gput:nne{g__tag role/Namespace_#1_dict}
{Schema}{#3}
}
\prop_gput :Nne \g__tag_role_NS_prop {#1}{\pdf_object_ref:n{tag/NS/#1}~}

}
(End of definition for __tag_role_NS_new:nnn.)

We need an id for the user space. For the tests it should be possible to set it to a fix
value. So we use random numbers which can be fixed by setting a seed. We fake a sort
of GUID but do not try to be really exact as it doesn’t matter ...

\str_const:Ne \c__tag role_userNS_id_str
{ data:,
\int_to_Hex:n{\int_rand:n {65535}}
\int_to_Hex:n{\int_rand:n {65535}}

\int_to_Hex:n{\int_rand:n {65535}}

\int_to_Hex:n{\int_rand:n {65535}}

\int_to_Hex:n{\int_rand:n {65535}}

\int_to_Hex:n{\int_rand:n {16777215}}

\int_to_Hex:n{\int_rand:n {16777215}}
}

(End of definition for \c__tag_role_userNS_id_str.)

Now we setup the standard names spaces. The mathml space is loaded also for pdf < 2.0
but not added to RoleMap unless a boolean is set to true with tagpdf-setup{mathml-
tags}.

\bool_new:N \g__tag_role_add_mathml_bool
_tag_role_NS_new:nnn {pdf} {http://iso.org/pdf/ssn}{}
_tag_role_NS_new:nnn {pdf2} {http://iso.org/pdf2/ssn}{}
_tag_role_NS_new:nnn {mathml}{http://www.w3.org/1998/Math/MathML}{}
_tag_role_NS_new:nnn {latex} {https://www.latex-project.org/ns/df1t}{}
_tag_role_NS_new:nnn {latex-book} {https://www.latex-project.org/ns/book}{}
exp_args:Nne

__tag_role_NS_new:nnn {user}{\c__tag_role_userNS_id_str}{}

\
\
\
\
\
\

1.3 Adding a new tag

Both when reading the files and when setting up a tag manually we have to store data
in various places.

190

__tag_role_alloctag:nnn This command allocates a new tag without role mapping. In the lua backend it will also
record the attribute value.

51 \pdf_version_compare:NnTF < {2.0}

82 {

83 \sys_if_engine_luatex:TF

84 {

85 \cs_new_protected:Npn __tag role_alloctag:nnn #1 #2 #3 Jj#1 tagname, ns, type
86 {

87 \lua_now:e { ltx.__tag.func.alloctag ('#1') }

88 \prop_gput:Nnn \g__tag_role_tags_NS_prop {#1}{#2}

80 __tag_prop_gput:cnn {g__tag role_NS_#2 prop} {#1}{}}}

% \prop_gput:Nnn \g__tag_role_tags_class_prop {#1}{#3}

91 \prop_gput:cnn {g__tag_role_NS_#2_class_prop} {#1}{--UNUSED--}
92 }

93 }

94 {

95 \cs_new_protected:Npn __tag_role_alloctag:nnn #1 #2 #3

96 {

o7 \prop_gput:Nnn \g__tag_role_tags_NS_prop {#1}{#2}

%8 __tag_prop_gput:cnn {g__tag _role_NS_#2_prop} {#1}{{MH}}

99 \prop_gput:Nnn \g__tag_role_tags_class_prop {#1}{#3}

100 \prop_gput:cnn {g__tag_role_NS_#2_class_prop} {#1}{--UNUSED--}
101 }

102 }

103 }

104 {

105 \sys_if_engine_luatex:TF

106 {

107 \cs_new_protected:Npn __tag _role_alloctag:nnn #1 #2 #3 J#1 tagname, ns, type
108 {

109 \lua_now:e { 1tx.__tag.func.alloctag ('#1') }

110 \prop_gput:Nnn \g__tag_role_tags_NS_prop {#1}{#2}

111 __tag_prop_gput:cnn {g__tag role_NS_#2_prop} A{#1}{{}}}

112 \prop_gput:Nnn \g__tag_role_tags_class_prop {#1}{--UNUSED--}
113 \prop_gput:cnn {g__tag role_NS_#2_class_prop} {#1}{#3}

114 }

115 }

116 {

117 \cs_new_protected:Npn __tag _role_alloctag:nnn #1 #2 #3

118 {

119 \prop_gput:Nnn \g__tag_role_tags_NS_prop {#1}{#2}

120 __tag prop_gput:cnn {g__tag_role_NS_#2_prop} {#1MH{}{}}

121 \prop_gput:Nnn \g__tag_role_tags_class_prop {#1}{--UNUSED--}
122 \prop_gput:cnn {g__tag_role_NS_#2_class_prop} {#1}{#3}

123 F

124 }

125 }

126 \cs_generate_variant:Nn __tag_role_alloctag:nnn {nno}

(End of definition for __tag_role_alloctag:nnn.)

191

1.3.1 pdf 1.7 and earlier

__tag_role_add_tag:nn The pdf 1.7 version has only two arguments: new and rolemap name. The role must be
an existing tag and should not be empty. We allow to change the role of an existing tag:
as the rolemap is written at the end not confusion can happen.

127 \cs_new_protected:Nn __tag_role_add_tag:nn J, (new) name, reference to old

128 {

checks and messages

129 __tag_check_add_tag_role:nn {#1}{#2}

130 \prop_get:NnNF \g__tag_role_tags_NS_prop {#1}\1__tag_ tmp_unused_tl
131

132 \int_compare:nNnT {\1__tag loglevel_int} > { 0 }

133 {

134 \msg_info:nnn { tag }{new-tagl{#1}

135 }

136 }

now the addition

137 \prop_get:NnNF \g__tag_role_tags_class_prop {#2}\1__tag_tmpa_tl
138 {

139 \tl_set:Nn\1__tag_tmpa_t1{--UNKNOWN--}

140 }

141 __tag_role_alloctag:nno {#1}{user} { \1__tag_tmpa_tl }

We resolve rolemapping recursively so that all targets are stored as standard tags.

142 \tl_if_empty:nF { #2 }

143 {

144 \prop_get :NnNTF \g__tag_role_rolemap_prop {#2}\1__tag_tmpa_tl

145 {

146 __tag_prop_gput:Nno \g__tag role_rolemap_prop {#1}{\1__tag_tmpa_t1}

148 {
149 __tag_prop_gput:Nne \g__tag role_rolemap_prop {#1}{\tl_to_str:n{#2}}
150 }

152 }

153 \cs_generate_variant:Nn __tag _role_add_tag:nn {oo,ne}
(End of definition for __tag_role_add_tag:nn.)

For the parent-child test we must be able to get the role. We use the same number of
arguments as for the 2.0 command. If there is no role, we assume a standard tag. Note:
this is quite fast and a move to lua doesn’t improve speed.

__tag_role_get:nnNN
15 \pdf_version_compare:NnT < {2.0}

155 {
156 \cs_new:Npn __tag_role_get:nnNN #1#2#3#4 J#1 tag, #2 NS, #3 tlvar which hold the role tag #4

192

157 {

158 \prop_get :NnNF \g__tag_role_rolemap_prop {#1}#3
159 {

160 \tl_set:Nn #3 {#1}

161 }

162 \tl_set:Nn #4 {}

163 }

164 \cs_generate_variant:Nn __tag_role_get:nnNN {ooNN}
65 F

166

(End of definition for __tag_role_get:nnNN.)

1.3.2 The pdf 2.0 version

__tag_role_add_tag:nnnn The pdf 2.0 version takes four arguments: tag/namespace/role/namespace

167 \cs_new_protected:Nn __tag_role_add_tag:nnnn jtag/namespace/role/namespace

168 {

169 __tag_check_add_tag_role:nnn {#1/#2}{#3}{#4}

170 \int_compare:nNnT {\1__tag_loglevel_int} > { 0 }

171 {

172 \msg_info:nnn { tag }{new-tagt{#1}

173 }

174 \prop_if_exist:cTF

175 { g__tag _role_NS_#4_class_prop }

176 {

177 \prop_get:cnN { g__tag_role_NS_#4_class_prop } {#3}\1__tag_tmpa_tl
178 \quark_if_no_value:NT \1__tag_tmpa_tl

179 {

180 \tl_set:Nn\1__tag_tmpa_t1{--UNKNOWN--}

181 }

182 }

183 { \tl_set:Nn\l__tag_tmpa_t1{--UNKNOWN--} }

184 __tag_role_alloctag:nno {#1}{#2}{ \1__tag_tmpa_tl }

Do not remap standard tags. TODO add warning?

185 \tl_if_in:nnF {-pdf-pdf2-mathml-}{-#2-}
186 {

187 \pdfdict_gput:nne {g__tag role/RoleMapNS_#2_dict}{#1}
188 {

189 [

190 \pdf_name_from_unicode_e:n{#3}
191 \c_space_t1

192 \pdf_object_ref:n {tag/NS/#4}
193 J

194 ¥

195 }

We resolve rolemapping recursively so that all targets are stored as standard tags for the
tests.

193

19 \tl_if_empty:nF { #2 }

197 {

198 \prop_get:cnN { g__tag _role_NS_#4_prop } {#3}\1__tag_tmpa_tl
199 \quark_if_no_value:NTF \1__tag_tmpa_tl

200 {

201 __tag_prop_gput:cne { g__tag role_NS_#2 prop } {#1}

202 {{\tl_to_str:n{#3}}{\tl_to_str:n{#4}}}

203 }

204 {

205 __tag_prop_gput:cno { g__tag _role_NS_#2_prop } {#1}{\1__tag_tmpa_t1}
206 }

207 }

We also store into the pdf 1.7 rolemapping so that we can add that as fallback for pdf
1.7 processor

208 \bool_if:NT \1__tag_role_update_bool
209 {
210 \tl_if_empty:nF { #3 }
211 {
212 \tl_if_eq:nnF{#1}{#3}
213 {
214 \prop_get:NnN \g__tag role_rolemap_prop {#3}\1__tag tmpa_tl
215 \quark_if_no_value:NTF \1__tag_tmpa_t1l
216 {
217 __tag_prop_gput:Nne \g__tag_role_rolemap_prop {#1}{\tl_to_str:n{#3}}
218 }
219 {
220 __tag_prop_gput:Nno \g__tag_role_rolemap_prop {#1}{\1__tag tmpa_tl}
221 }
222 }
3 }
224 }
225 }

26 \cs_generate_variant:Nn __tag _role_add_tag:nnnn {oooo}
(End of definition for __tag_role_add_tag:nnnn.)

For the parent-child test we must be able to get the role. We use the same number
of arguments as for the <2.0 command. Note: this is quite fast and a move to lua doesn’t
improve speed.

__tag_role_get:nnNN

227 \pdf_version_compare:NnF < {2.0}

228 {

229 \cs_new:Npn __tag role_get:nnNN #1#2#3#4

230 %#1 tag, #2 NS,

231 /#3 tlvar which hold the role tag

232 %#4 tlvar which hold the name of the target NS

233 {

234 \prop_if_exist:cTF {g__tag_role_NS_#2_prop}

235 {

236 \prop_get:cnNTF {g__tag_role_NS_#2_prop} {#1}\1__tag get_tmpc_tl

194

237 {
238 \tl_set:Ne #3 {\exp_last_unbraced:No\use_i:nn {\1__tag_get_tmpc_tl}}

239 \tl_set:Ne #4 {\exp_last_unbraced:No\use_ii:nn {\1__tag_get_tmpc_t1l}}
240 }

241 {

242 \msg_warning:nnn { tag } {role-unknown-tag} { #1 }
243 \tl_set:Nn #3 {#1}

244 \tl_set:Nn #4 {#2}

245 }

246 }

247 {

248 \msg_warning:nnn { tag } {role-unknown-NS} { #2 }
249 \tl_set:Nn #3 {#1}

250 \tl_set:Nn #4 {#2}

251 }

252 }

253 \cs_generate_variant:Nn __tag_role_get:nnNN {ooNN}

51 F

(End of definition for __tag_role_get:nnNN.)

1.4 Helper command to read the data from files

In this section we setup the helper command to read namespace files.

~ tag role read namespace line:ny This command will process a line in the name space file. The first argument is the name
of the name space. The definition differ for pdf 2.0. as we have proper name spaces
there. With pdf<2.0 special name spaces shouldn’t update the default role or add to the
rolemap again, they only store the values for later uses. We use a boolean here.

255 \bool_new:N\1__tag_role_update_bool
256 \bool_set_true:N \1__tag_role_update_bool

257 \pdf_version_compare:NnTF < {2.0}

258 {

250 \cs_new_protected:Npn __tag role_read_namespace_line:nw #1#2,#3,#4,#5,#6\q_stop 7,
260 % #1 NS, #2 tag, #3 rolemap, #4 NS rolemap #5 type

261 {

262 \tl_if_empty:nF { #2 }

263 {

264 \bool_if:NTF \1__tag_role_update_bool

265 {

266 \tl_if_empty:nTF {#5}

267 {

268 \prop_get:NnN \g__tag role_tags_class_prop {#3}\1__tag_tmpa_tl
269 \quark_if_no_value:NT \1__tag_tmpa_tl

270 '(

271 \tl_set:Nn\1__tag_tmpa_t1{--UNKNOWN--}

272 }

273 }

274 {

275 \tl_set:Nn \1__tag_tmpa_tl {#5}

276 }

277 __tag _role_alloctag:nno {#2} {#1} { \1__tag _tmpa_tl }

195

278 \tl_if_eq:nnF {#2}{#3}

279 {

280 __tag_role_add_tag:nn {#2}{#3}

281 }

282 __tag_prop_gput:cnn {g__tag role_NS_#1_prop} {#2}{{#3}{}}
283 }

284 {

285 __tag _prop_gput:cnn {g__tag_role_NS_#1_prop} {#2H{#3}}}
286 \prop_gput:cnn {g__tag_role_NS_#1_class_prop} {#2}{--UNUSED--}
287 }

288 }

289 }

200 F

291 {

202 \cs_new_protected:Npn __tag_role_read_namespace_line:nw #1#2,#3,#4,#5,#6\q_stop 7
293 % #1 NS, #2 tag, #3 rolemap, #4 NS rolemap #5 type

294 {

295 \tl_if_empty:nF {#2}

296 {

207 \tl_if_empty:nTF {#5}

298 {

299 \prop_get:cnN { g__tag_role_NS_#4_class_prop } {#3}\1__tag_tmpa_tl
300 \quark_if_no_value:NT \1__tag_tmpa_tl

301 {

302 \tl_set:Nn\l__tag_tmpa_t1{--UNKNOWN--}

303 }

304 }

305 {

306 \tl_set:Nn \1__tag tmpa_tl {#5}

307 }

308 __tag_role_alloctag:nno {#2} {#1} { \1__tag_tmpa_tl }

309 \bool_lazy_and:nnT

310 { ! \tl_if_empty_p:n {#3} }! \str_if_eq_p:nn {#1}{pdf2}}
311 {

312 __tag_role_add_tag:nnnn {#2}{#1}{#3}{#4}

313 }

314 __tag_prop_gput:cnn {g__tag_role_NS_#1_prop} {#2}{{#3}{#4}}
315 }

316 F

17 F

(End of definition for __tag_role_read_namespace_line:nw.)

_tag role read namespace:nn This command reads a namespace file in the format tagpdf-ns-XX.def

;15 \cs_new_protected:Npn __tag role_read_namespace:nn #1 #2 Jname of namespace #2 name of file

319 {

320 \prop_if_exist:cF {g__tag role_NS_#1_prop}

321 { \msg_warning:nnn {tag}{namespace-unknown}{#1} }
322 \file_if_exist:nTF { tagpdf-ns-#2.def }

323 {

324 \ior_open:Nn \g_tmpa_ior {tagpdf-ns-#2.def}

325 \msg_info:nnn {tag}{read-namespace}{#2}

326 \ior_map_inline:Nn \g_tmpa_ior

196

327 {

328 __tag _role_read_namespace_line:nw {#1} ##1,,,,\q_stop

329 }

330 \ior_close:N\g_tmpa_ior

331 }

332 {

333 \msg_info:nnn{tag}{namespace-missing}{#2}
334 }

335 }

336
(End of definition for __tag_role_read_namespace:nn.)
__tag_role_read_namespace:n This command reads the default namespace file.

337 \cs_new_protected:Npn __tag_role_read_namespace:n #1 J)name of namespace
338 {

339 __tag_role_read_namespace:nn {#1}{#1}

E R

(End of definition for __tag_role_read_namespace:n.)

1.5 Reading the default data

The order is important as we want pdf2 and latex as default: if two namespace define the
same tag, the last one defines which one is used if the namespace is not explicitly given.

321 __tag_role_read_namespace:n {pdf}
322 __tag_role_read_namespace:n {pdf2}
23 __tag_role_read_namespace:n {mathml}

in pdf 1.7 the following namespaces should only store the settings for later use:

322 \bool_set_false:N\1__tag role_update_bool

35 __tag_role_read_namespace:n {latex-book}

326 \bool_set_true:N\1__tag_role_update_bool

37 __tag_role_read_namespace:n {latex}

35 __tag_role_read_namespace:nn {latex} {latex-labl}
320 __tag_role_read_namespace:n {pdf}

350 __tag_role_read_namespace:n {pdf2}

But is the class provides a \chapter command then we switch

351 \pdf_version_compare:NnTF < {2.0}

352 {

353 \hook_gput_code:nnn {begindocument}{tagpdf}
354 {

355 \bool_lazy_and:nnT

356 {

357 \cs_if_exist_p:N \chapter
358 }

359 {

360 \cs_if_exist_p:N \c@chapter
361 }

362 {

197

363 \prop_map_inline:cn{g__tag role_NS_latex-book_prop}

364 {

365 __tag_role_add_tag:ne {#1}{\use_i:nn #2\c_empty_tl\c_empty_t1l}
366 }

367 }

368 }

60 F

370 {

371 \hook_gput_code:nnn {begindocument}{tagpdf}

372 {

373 \bool_lazy_and:nnT

374 {

375 \cs_if_exist_p:N \chapter

376 }

377 {

378 \cs_if_exist_p:N \c@chapter

379 }

380 {

381 \prop_map_inline:cn{g__tag role_NS_latex-book_prop}

382 {

383 \prop_gput:Nnn \g__tag_role_tags_NS_prop { #1 }{ latex-book }
384 __tag_prop_gput :Nne

385 \g__tag_role_rolemap_prop {#1}{\use_i:nn #2\c_empty_tl\c_empty_tl1l}
386 }

387 3

388 }

389 }

1.6 Parent-child rules

PDF define various rules about which tag can be a child of another tag. The following
code implements the matrix to allow to use it in tests.

\g__tag role parent child intarray This intarray will store the rule as a number. For parent nm and child ij (n,m,i,j digits)
the rule is at position nmij. As we have around 56 tags, we need roughly a size 6000.

300 \intarray_new:Nn \g__tag_role_parent_child_intarray {6000}
(End of definition for \g__tag_role_parent_child_intarray.)

\c__tag_role_rules_prop These two properties map the rule strings to numbers and back. There are in tagpdf-
\c__tag role_rules_num_prop data.dtx near the csv files for easier maintenance.

(End of definition for \c__tag_role_rules_prop and \c__tag_role_rules_num_prop.)

_ tag store parent child rule:nmn The helper command is used to store the rule. It assumes that parent and child are given
as 2-digit number!

301 \sys_if_engine_luatex:TF

392 {

393 \cs_new_protected:Npn __tag store_parent_child_rule:nnn #1 #2 #3 J, num parent, num child, #3
394 {

305 \prop_get :NeNTF \c__tag_role_rules_prop{#3} \1__tag_tmp_unused_tl

396 {

397 \intarray_gset:Nnn \g__tag role_parent_child_intarray

198

308 { #1#2 }{0\1__tag_tmp_unused_t1}
399 \lua_now:e

400 {

401 1tx.__tag.role.matrix[#1] = 1ltx.__tag.role.matrix[#1] or {}
402 ltx.__tag.role.matrix[#1] [#2] = O\1l__tag_tmp_unused_tl

403 }

404 }

405 {

406 \intarray_gset:Nnn \g__tag_role_parent_child_intarray

407 { #1#2 }O0}

408 \lua_now:e

409 {

410 1tx.__tag.role.matrix[#1] = 1ltx.__tag.role.matrix[#1] or {}
411 ltx.__tag.role.matrix[#1][#2] = O

412 }

413 }

14 }

415 F

a6 {

417 \cs_new_protected:Npn __tag_store_parent_child_rule:nnn #1 #2 #3 J), num parent, num child, #3
418 {

419 \prop_get :NeNTF \c__tag_role_rules_prop{#3} \1__tag_tmp_unused_tl
420

421 \intarray_gset:Nnn \g__tag_role_parent_child_intarray
422 { #1#2 }{0\1__tag_tmp_unused_t1}

23 }

424 {

425 \intarray_gset:Nnn \g__tag role_parent_child_intarray
426 { #1#2 } 0}

427 F

428 }

429 }

(End of definition for __tag_store_parent_child_rule:nnn.)

1.6.1 Reading in the csv-files

This counter will be used to identify the first (non-comment) line
40 \int_zero:N \1__tag_tmpa_int

Open the file depending on the PDF version
451 \pdf_version_compare:NnTF < {2.0}

432 {
433 \ior_open:Nn \g_tmpa_ior {tagpdf-parent-child.csv}

434 }
435 {
436 \ior_open:Nn \g_tmpa_ior {tagpdf-parent-child-2.csv}
437 }

Now the main loop over the file

¢ \ior_map_inline:Nn \g_tmpa_ior

439 {

199

ignore lines containing only comments

440 \tl_if_empty:nF{#1}
441 {

count the lines ...
442 \int_incr:N\1__tag_tmpa_int
put the line into a seq. Attention! empty cells are dropped.

443 \seq_set_from_clist:Nn\l__tag_tmpa_seq { #1 }
444 \int_compare:nNnTF {\1__tag_tmpa_int}=1

This handles the header line. It gives the tags 2-digit numbers.

445 {

446 \seq_map_indexed_inline:Nn \1__tag_tmpa_seq
447 {

448 \prop_gput:Nne\g__tag _role_index_prop
149 {##2}

450 {\int_compare:nNnT{##1}<{10}{0} t#1}
451 }

452 }

now the data lines.

453 {
454 \seq_set_from_clist:Nn\1l__tag tmpa_seq { #1 }

get the name of the child tag from the first column

455 \seq_pop_left:NN\1__tag_tmpa_seq\l__tag_tmpa_tl
get the number of the child, and store it in \1__tag_tmpb_t1l

456 \prop_get:NoN \g__tag_role_index_prop { \1__tag_tmpa_tl } \1__tag_tmpb_tl
remove column 2+3

457 \seq_pop_left:NN\1__tag_tmpa_seq\l__tag_tmpa_tl
458 \seq_pop_left:NN\1__tag_tmpa_seq\l__tag_tmpa_tl

Now map over the rest. The index ##1 gives us the number of the parent, ##2 is the
data.

459 \seq_map_indexed_inline:Nn \1__tag_tmpa_seq

460 {

461 \exp_args:Nne

462 __tag_store_parent_child_rule:nnn {##1}{\1__tag tmpb_t1}{ ##2 }
463 }

464 }

465 }

466 }

close the read handle.

47 \ior_close:N\g_tmpa_ior

200

The Root, Hn and mathml tags are special and need to be added explicitly

s \prop_get:NnN\g__tag_role_index_prop{StructTreeRoot}\1__tag_tmpa_tl
w0 \prop_gput:Nne\g__tag_role_index_prop{Root}{\1__tag_tmpa_tl}

470 \prop_get:NnN\g__tag_role_index_prop{Hn}\1__tag tmpa_tl

471 \pdf_version_compare:NnTF < {2.0}

472 {

473 \int_step_inline:nn{6}

474 {

475 \prop_gput :Nne\g__tag_role_index_prop{H#1}{\1__tag tmpa_tl1l}
476 }

477 }

478 {

479 \int_step_inline:nn{10}

480 {

481 \prop_gput :Nne\g__tag_role_index_prop{H#1}{\1__tag _tmpa_t1l}
482 }

all mathml tags are currently handled identically with the exception of math and mtext

483 \prop_get :NnN\g__tag_role_index_prop {mathml}\1__tag_tmpa_tl
484 \prop_get:NnN\g__tag_role_index_prop {math}\1__tag tmpb_tl

485 \prop_get:NnN\g__tag_role_index_prop {mtext}\1__tag_tmpc_tl
486 \prop_map_inline:Nn \g__tag_role_NS_mathml_prop

487 {

488 \prop_gput:Nno\g__tag_role_index_prop {#1} {\1__tag_tmpa_t1}
489 }

490 \prop_gput :Nno\g__tag_role_index_prop{math}{\1__tag_ tmpb_tl}
401 \prop_gput :Nno\g__tag_role_index_prop{mtext}{\1__tag_ tmpc_t1l}
492 }

13 \sys_if_engine_luatex:T

wi

495 \prop_map_inline:Nn\g__tag role_index_prop

496 {

497 \lua_now:e { ltx.__tag.role.index['#1']=#2 }

498 F

w9}

1.6.2 Retrieving the parent-child rule

__tag role get parent child rule:mnll This command retrieves the rule (as a number) and stores it in the tl-var. It assumes
that the tags in #1 and #2 are standard tags after role mapping for which a rule exist.
If the parent is one of Part, Div, NonStruct the result can be state 7, which means that
a check must be repeated for the “real parent”.

TODO check temporary variables. Check if the tl-var should be fix.

s0 \tl_new:N \1__tag_parent_child_check_tl
s01 \sys_if_engine_luatex:TF

500 o{

503 \cs_new_protected:Npn __tag_role_get_parent_child_rule:nnN #1 #2 #3
504 % #1 parent (string, standard tag after rolemapping!)

505 % #2 child (string, standard tag after rolemapping!)

506 % #3 tl for state

507 {

201

508 \tl_set:Ne#3

509 {
510 \lua_now:e{tex.print (\int_use:N\c_document_cctab,ltx.__tag.func.role_get_parent_chilc
511 }

Debugging messages, this can perhaps go into debug mode.

512 \int_compare:nNnT {\1__tag loglevel_int} > { 0 }

513 {

514 \prop_get :NoNF\c__tag_role_rules_num_prop {#3} \1__tag tmpa_tl
515 {

516 \tl_set:Nn \1__tag_tmpa_tl {unknown}

517 }

518 \tl_set:Nn \1__tag_tmpb_tl {#1}

519 \msg_note:nneee

520 { tag }

521 { role-parent-child-result }

522 { #1 }

523 {#2 }

524 {

525 #3~(='\1__tag_tmpa_t1')

526 }

527 }

528 \int_compare:nNnT {#3} = { 0 }

529 {

530 \msg_warning:nneee

531 { tag }

532 {role-parent-child-result}

533 { #1 }

534 { #2 }

535 { unknown! }

536 }

537

538 }

530 F

540 {

541 \cs_new_protected:Npn __tag_role_get_parent_child_rule:nnN #1 #2 #3
542 % #1 parent (string, standard tag after rolemapping)

543 % #2 child (string, standard tag after rolemapping)

544 % #3 tl for state

545 {

546 \prop_get:NnN \g__tag_role_index_prop{#1}\1__tag_tmpa_tl
547 \prop_get:NnN \g__tag _role_index_prop{#2}\1__tag_tmpb_tl
548 \bool_lazy_and:nnTF

549 { ! \quark_if_no_value_p:N \1__tag_tmpa_tl }

550 { ! \quark_if_no_value_p:N \1__tag tmpb_tl }

551 {

Get the rule from the intarray

\tl_set:Ne#3
553 {

554 \intarray_item:Nn

o
a
0

202

__tag role check parent child:nnnnll

590
591
592
593
594

595

\g__tag_role_parent_child_intarray
{\1__tag_tmpa_t1\1l__tag tmpb_t1}
}

}
{

\tl_set:Nn#3 {0}
}

Debugging messages, this can perhaps go into debug mode.

\int_compare:nNnT {\1__tag_loglevel_int} > { 0 }

{
\prop_get :NoNF\c__tag_role_rules_num_prop {#3} \1__tag_tmpa_tl
{
\tl_set:Nn \1__tag tmpa_tl {unknown}
}

\tl_set:Nn \1__tag tmpb_tl {#1}
\msg_note:nneee

{ tag }
{ role-parent-child-result }
{ #1 }
{#2}
{
#3~(='\1__tag_tmpa_t1')
}
}
\int_compare:nNnT {#3} = { 0 }
{
\msg_warning:nneee
{ tag }
{role-parent-child-result}
{#1}
{#2 }
{ unknown! }
}

}
}

\cs_generate_variant:Nn__tag role_get_parent_child_rule:nnN {ooN}
(End of definition for __tag_role_get_parent_child_rule:nnN.)

This command rolemaps its arguments and then calls __tag_role_get_parent_-
child_rule:nnN to retrieve the parent-child rule between both. It does not try to resolve
inheritation rules of Part, Div and NonStruct but instead gives back the state 7. It is
then the task of the caller command to find the real parent and run the check again. In
pdf 2.0 the name spaces of the tags are relevant, so we have arguments for them, but in
pdf <2.0 they are ignored and can be left empty.

\pdf_version_compare:NnTF < {2.0}
{
\cs_new_protected:Npn __tag_role_check_parent_child:nnnnN #1 #2 #3 #4 #5
% #1 parent tag,], not necessarly rolemapped, but often the case
% #2 NS (empty in pdf 1.x)
% #3 child tag, 7 not necessarly rolemapped, but often the case

203

596

597

598

600

601

602

603

604

605

606

607

609

610

611

613

614

616

617

632

633

634

635

637

638

% #4 NS (empty in pdf 1.x)
% #5 tl var: to give the result back.
{

get the standard tags through rolemapping if needed at first the parent

\prop_get :NnNTF \g__tag_role_index_prop {#1}\1__tag_tmpa_t1
{
\tl_set:Nn \1__tag tmpa_tl {#1}
}
{
\prop_get:NnNF \g__tag_role_rolemap_prop {#1}\1__tag_tmpa_t1l
{
\tl_set:Nn \1__tag tmpa_tl {\q_no_value}
}
}

now the child

\prop_get :NnNTF \g__tag_role_index_prop {#3}\1__tag_tmpb_tl
{
\tl_set:Nn \1__tag tmpb_tl {#3}
}
{
\prop_get:NnNF \g__tag_role_rolemap_prop {#3}\1__tag_tmpb_tl
{
\tl_set:Nn \1__tag tmpb_tl {\q_no_value}
}
}

if we got tags for parent and child we call the checking command

\bool_lazy_and:nnTF
{ ! \quark_if_no_value_p:N \1__tag_tmpa_tl }
{ ! \quark_if_no_value_p:N \1__tag_tmpb_tl }
{
__tag_role_get_parent_child_rule:ooN

{ \1__tag_tmpa_tl}

{ \1__tag tmpb_tl1}

#5

-~ N

\tl_set:Nn #5 {0}
\msg_warning:nneee

{ tag }
{role-parent-child-result}
{ #1}

{ #3 }

{ unknown! }

}

and now the pdf 2.0 version

204

639 {
640 \cs_new_protected:Npn __tag_role_check_parent_child:nnnnN #1 #2 #3 #4 #5 Jjtag,NS,tag,NS, tl
641 {

642

If the namespace is empty, we assume a standard tag, otherwise we retrieve the rolemap-
ping from the namespace

643 \tl_if_empty:nTF {#2}

644 {

645 \tl_set:Nn \1__tag tmpa_tl {#1}

646 }

647 {

648 \prop_if_exist:cTF { g__tag_role_NS_#2_prop }
649 {

650 \prop_get : cuNTF

651 { g__tag_role_NS_#2_prop }

652 {#1}

653 \1__tag_tmpa_t1

654 {

655 \tl_set:Ne \1__tag_tmpa_tl {\tl_head:N\1__tag_tmpa_t1}
656 \tl_if_empty:NT\1__tag_tmpa_t1

657 {

658 \tl_set:Nn \1__tag tmpa_tl {#1}
659 }

660 }

661 {

662 \tl_set:Nn \1__tag_tmpa_tl {\q_no_value}
663 }

664 }

665 {

666 \msg_warning:nnn { tag } {role-unknown-NS} { #2}
667 \tl_set:Nn \1__tag_tmpa_tl {\q_no_value}

668 }

669 }

and the same for the child If the namespace is empty, we assume a standard tag, otherwise
we retrieve the rolemapping from the namespace

670 \tl_if_empty:nTF {#4}

671 {

672 \tl_set:Nn \1__tag tmpb_tl {#3}

673 }

674 {

675 \prop_if_exist:cTF { g__tag_role_NS_#4_prop }
676 {

677 \prop_get : cuNTF

678 { g__tag role_NS_#4_prop }

679 {#3}

680 \1__tag_tmpb_tl

681 {

682 \tl_set:Ne \1__tag tmpb_tl { \tl_head:N\1__tag_tmpb_tl }
683 \tl_if_empty:NT\1__tag_tmpb_t1l

684 {

205

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

704

705

706

707

708

709

710

711

712

\tl_set:Nn \1__tag_tmpb_tl {#3}
}
}
{
\tl_set:Nn \1__tag_tmpb_tl {\q_no_value}

}
}
{

\msg_warning:nnn { tag } {role-unknown-NS} { #4}

\tl_set:Nn \1__tag_tmpb_tl {\q_no_valuel}

}
}

and now get the relation

\bool_lazy_and:nnTF
{ ! \quark_if_no_value_p:N \1__tag_tmpa_tl }
{ ! \quark_if_no_value_p:N \1__tag tmpb_tl }
{
__tag_role_get_parent_child_rule:ooN
{ \1__tag_tmpa_tl }
{ \1__tag_tmpb_tl }
#5
}
{
\tl_set:Nn #5 {0}
\msg_warning:nneee
{ tag }
{role-parent-child-result}
{ #2 : #1 }
{ #4 : #3 }
{ unknown! }

}
}

7 \cs_generate_variant:Nn__tag_role_check_parent_child:nnnnN {oonnN,oooolN}
+ {/package)

(End of definition for __tag_role_check_parent_child:nnnnN.)

(base) \prg_new_protected_conditional:Npnn \tag_check_child:nn #1 #2 {T,F,TF} \prg_return_true:}
(xpackage)
\prg_set_protected_conditional:Npnn \tag_check_child:nn #1 #2 {T,F,TF} J#1 tag, #2 NS
{
\seq_get:NN\g__tag_struct_stack_seq\l__tag_tmpa_tl
__tag_struct_get_role:enlNN
{\1__tag_tmpa_tl}
{rolemap}
\1__tag _get_parent_tmpa_tl
\1__tag_get_parent_tmpb_t1l
__tag_role_check_parent_child:oonnN
{ \1__tag get_parent_tmpa_tl }

206

731 { \1__tag_get_parent_tmpb_tl }

732 {#1 } {#2}

733 \1__tag_parent_child_check_tl

734 \int_compare:nNnT {\1__tag parent_child_check_t1} = { \c__tag role_rule_checkparent_tl }
735 {

736 \seq_get:NN\g__tag_struct_stack_seq\l__tag_tmpa_tl

737 __tag_struct_get_role:enNN

738 {\1__tag_tmpa_t1}

739 {parentrole}

740 \1__tag_get_parent_tmpa_tl

741 \1__tag_get_parent_tmpb_tl

742 __tag_role_check_parent_child:oonnN

743 { \1__tag_get_parent_tmpa_tl }

744 { \1__tag get_parent_tmpb_tl }

745 {#1}{#2}

746 \1__tag_parent_child_check_tl

747 }

748 \int_compare:nNnTF { \1__tag _parent_child_check_tl } < {0}
749 {\prg_return_false:}

750 {\prg_return_true:}
751 }

(End of definition for \tag_check_child:nnTF. This function is documented on page 186.)

1.7 Key-val user interface

The user interface uses the key add-new-tag, which takes either a keyval list as argument,
or a tag/role.

tag (rolemap-key)
tag-namespace (rolemap-key)
role (rolemap-key)s> \keys_define:nn { __tag / tag-role }

role-namespace (rolemap-key)” {
,tag .tl_set:N = \1__tag role_tag tmpa_tl

role/new-tag (setup-key)”
,tag-namespace .tl_set:N = \1__tag _role_tag _namespace_tmpa_t1l

add-new-tag (deprecated)”

756 ,role .tl_set:N = \1__tag _role_role_tmpa_tl

757 ,role-namespace .tl_set:N = \1__tag_role_role_namespace_tmpa_tl
758 }

759

70 \keys_define:nn { __tag / setup }

761 {

762 role/mathml-tags .bool_gset:N = \g__tag role_add_mathml_bool
763 ,role/new-tag .code:n =

764 {

765 \keys_set_known:nnnN

766 {__tag/tag-rolel}

767 {

768 tag-namespace=user,

769 role-namespace=, jso that we can test for it.

770 #1

771 H__tag/tag-role}\1__tag_tmpa_tl

772 \tl_if_empty:NF \1__tag tmpa_tl

773 {

774 \exp_args:NNno \seq_set_split:Nnn \1__tag_tmpa_seq { / } {\1__tag_tmpa_tl/}

207

802

803

805

806

808

809

810

811

813

\tl_set:Ne \1__tag role_tag_tmpa_tl { \seq_item:Nn \1__tag_tmpa_seq {1} }
\tl_set:Ne \1__tag _role_role_tmpa_tl { \seq_item:Nn \1__tag tmpa_seq {2} }
}
\tl_if_empty:NT \1__tag role_role_namespace_tmpa_tl
{
\prop_get :NoNTF
\g__tag_role_tags_NS_prop
{ \1__tag role_role_tmpa_tl }
\1__tag_role_role_namespace_tmpa_tl
{
\prop_get :NoNF
\g__tag_role_NS_prop
{ \1__tag_role_role_namespace_tmpa_tl }
\1__tag tmp_unused_tl
{
\tl_set:Nn \1__tag role_role_namespace_tmpa_tl {user}
}
}
{
\tl_set:Nn \1__tag_role_role_namespace_tmpa_tl {user}
}
}
\pdf_version_compare:NnTF < {2.0}
{
%TODO add check for emptyness?
__tag_role_add_tag:oo
{ \1__tag_role_tag_tmpa_tl }
{ \1__tag_role_role_tmpa_tl }

}
{
__tag_role_add_tag:oo00
{ \1__tag role_tag_tmpa_tl }
{ \1__tag_role_tag_namespace_tmpa_tl }
{ \1__tag_role_role_tmpa_tl }
{ \1__tag_role_role_namespace_tmpa_tl }
}
}
,role/map-tags .choice:
,role/map-tags/false .code:n = { \socket_assign_plug:nn { tag/struct/tag } {latex-—
tags} }
,role/map-tags/pdf .code:n = { \socket_assign_plug:nn { tag/struct/tag } {pdf-
tags} }

,role/user-NS .code:n =

{

\pdf_version_compare:NnF < {2.0}
{
\pdf_string from_unicode:nnN{utf8/string}{https://www.latex-project.org/ns/local/#1}\1_
\tl_if_empty:NF \1__tag_tmpa_str
{
\pdfdict_gput :nne
{g__tag_role/Namespace_user_dict}
{NS}
{\1__tag_tmpa_str}

208

826 }
827 }
828 }

deprecated names

829 , mathml-tags .bool_gset:N = \g__tag_role_add_mathml_bool
830 , add-new-tag .meta:n = {role/new-tag={#1}}

831 }

222 (/package)

(End of definition for tag (rolemap-key) and others. These functions are documented on page 186.)

The tagpdf-space module
Code related to real space chars
Part of the tagpdf package
Ulrike Fischer
Version 0.99x, released 2026-01-12

209

Part XI

activate/space (setup-key)
interwordspace (deprecated)

This key allows to activate/deactivate the real space chars if the engine supports it. The
allowed values are true, on, false, off. The old name of the key interwordspace is
still supported but deprecated.

show-spaces (deprecated) This key is deprecated. Use debug/show=spaces instead. This key works only with
luatex and shows with small red bars where spaces have been inserted. This is only for
debugging and is not completely reliable (and change affect other literals and tagging),
so it should be used with care.

1 (@@=tag)

2> (xheader)

\ProvidesExplPackage {tagpdf-space-code} {2026-01-12} {0.99x}
+ {part of tagpdf - code related to real space chars}

(/header)

1 Code for interword spaces

The code is engine/backend dependent. Basically only pdftex and luatex support real
space chars. Most of the code for luatex which uses attributes is in the lua code, here
are only the keys.

activate/spaces (setup-key)
interwordspace (deprecated)
show-spaces (deprecated) s (*package)
7 \bool_new:N\1__tag_showspaces_bool
s \keys_define:nn { __tag / setup }

9 {

10 activate/spaces .choice:,

11 activate/spaces/true .code:n =

12 { \msg_warning:nne {tag}{sys-no-interwordspace}{\c_sys_engine_str} },

13 activate/spaces/false .code:n=

14 { \msg_warning:nne {tag}{sys-no-interwordspace}{\c_sys_engine_str} 1},

15 activate/spaces .default:n = true,

16 debug/show/spaces .code:n = {\bool_set_true:N \1__tag_showspaces_bool},
17 debug/show/spacesOff .code:n = {\bool_set_false:N \1__tag_showspaces_bool},

deprecated versions:

18 interwordspace .choices:nn = {true,on}{\keys_set:nn{__tag/setup}{activate/spaces={truel}}},
19 interwordspace .choices:nn = {false,off}{\keys_set:nn{__tag/setup}{activate/spaces={false}}]
20 interwordspace .default:n = {truel},

21 show-spaces .choice:,

22 show-spaces/true .meta:n = {debug/show=spaces},

23 show-spaces/false .meta:n = {debug/show=spacesOff},

24 show-spaces .default:n = true

210

__tag_fakespace:

N
N

}

\sys_if_engine_pdftex:T

{

\sys_if_output_pdf:TF

{

\pdfglyphtounicode{space}{0020}
\AddToHook{shipout/firstpage} [tagpdf/space]{}
\keys_define:nn { __tag / setup }

{
activate/spaces/true .code:n = { \AddToHook{shipout/firstpagel}[tagpdf/space]{\pdfir
activate/spaces/false .code:n = { \RemoveFromHook{shipout/firstpage}[tagpdf/space]]
activate/spaces .default:n = true,
}
}
{
\keys_define:nn { __tag / setup }
{
activate/spaces .choices:nn = { true, false }
{ \msg_warning:nnn {tag}{sys-no-interwordspace}{dvi} },
activate/spaces .default:n = true,
}
}

\sys_if_engine_luatex:T

{

}

\keys_define:nn { __tag / setup }

{

activate/spaces .choice:,
activate/spaces/true .code:n =
{
\bool_gset_true:N \g__tag_active_space_bool
\lua_now:e{ltx.__tag.func.markspaceon()}
},
activate/spaces/false .code:n =
{
\bool_gset_false:N \g__tag_active_space_bool
\lua_now:e{ltx.__tag.func.markspaceoff ()}

}J
activate/spaces .default:n = true,
debug/show/spaces .code:n =

{\lua_now:e{ltx.__tag.trace.showspaces=truel}},
debug/show/spacesOff .code:n =
{\lua_now:e{ltx.__tag.trace.showspaces=nil}},

(End of definition for activate/spaces (setup-key), interwordspace (deprecated), and show-spaces
(deprecated). These functions are documented on page ?7.)

For luatex we need a command for the fake space as equivalent of the pdftex primitive.

> \sys_if_engine_luatex:T

{

211

\tag_spacechar_on:
\tag_spacechar_off :s

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112

113

\cs_new_protected:Nn __tag_fakespace:
{
\group_begin:
\lua_now:e{ltx.__tag.func.fakespace()}
\skip_horizontal :n{\c_zero_skip}
\group_end:

}

We need also a command to interrupt the insertion of real space chars in places
where we want to insert manually special spaces. In pdftex this can be done with
\pdfinterwordspaceoff and \pdfinterwordspaceon. These commands insert what-
sits and this mean they act globally. In luatex a attribute is used to this effect, for
consistency this is also set globally.

The off command sets the attributes in luatex.

\cs_new_protected:Npn \tag_spacechar_off: {}
\cs_new_protected:Npn \tag_spacechar_on: {}

s \sys_if_engine_luatex:T

{
\cs_set_protected:Npn \tag_spacechar_off:
{
\lua_now:e
{
tex.setattribute
(
"global",
luatexbase.attributes.g__tag_interwordspaceOff_attr,
1
)
}
}
\cs_set_protected:Npn \tag_spacechar_on:
{
\lua_now:e
{
tex.setattribute
(
"global",
Juatexbase.attributes.g__tag_interwordspaceOff_attr,
-2147483647
)
}
}
}
\sys_if_engine_pdftex:T
{
\sys_if_output_pdf:T
{
\cs_set_protected:Npn \tag_spacechar_off:
{

\pdfinterwordspaceoff

212

126

}

\cs_set_protected:Npn \tag_spacechar_on:

{
\pdfinterwordspaceon

}

{/package)

(End of definition for __tag_fakespace:, \tag_spacechar_on:, and \tag_spacechar_off:.

functions are documented on page ?77.)

213

These

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols

A\ 10, 23,

27, 28, 44, 49, 50, 51, 56, 58, 60, 67,

70, 72, 78, 80, 93, 96, 97, 106, 107

113, 114, 166, 222, 223, 557, 620, 628
L e 437, 448

A

activate,(setup-key) 41, 285
activate-all (deprecated) (key) 1

activate-mc (deprecated) (key) 1
activate-struct (deprecated) (key) ... 1
activate-tree (deprecated) (key) 1

activate/all (key) 1,219
activate/mc (key) 1,219
activate/socket(setup-key) 285
activate/softhyphen (key) 1,253
activate/space(setup-key) 210
activate/spaces (key) 1
activate/spaces, (setup-key) 6
activate/struct (key) 1,219
activate/struct-dest (key) 1,219
activate/tagunmarked (key) 1, 250
activate/tree (key) 1,219
actualtext (key) 1,722
actualtext,(mc-key) 84, 238, 384
add-new-tag,(deprecated) 752
add-new-tag,(setup-key) 186
\AddToHook 13,

16, 31, 34, 44, 57, 58, 238, 303,
395, 528, 529, 530, 534, 538, 545, 585

\AddToHookNext 750
AF (key) ... 1, 920
AFinline (key) 1, 920
AFinline-o (key) 1, 920
AFref (key) 1, 920
alt (key) 1,722
alt,(mec-key) 84, 238, 384
artifact,(mc-key) 84, 238, 384
artifact-bool internal commands:
__artifact-bool 182
artifact-type internal commands:
__artifact-type 182

\AssignTaggingSocketPlug
526, 527, 602, 609, 715, 716, 778, 787

\AtBeginDocument 695
attr-unknown 21, 84
attribute (key) 1, 1532

attribute-class (key) 1, 1498
B
benchmark commands:
\benchmark_tic: 637, 639
\benchmark_toc: 640

bool commands:
\bool_gset_eq:NN
619, 634, 646, 664, 723, 737
\bool_gset_false:N
62, 221, 372, 620, 647, 724
\bool_gset_true:N
.......... 36, 57, 88, 175, 313, 999
\bool_if:NTF 9, 13, 18, 31,
40, 40, 68, 75, 80, 85, 91, 96, 111,
135, 146, 196, 203, 208, 228, 248,
264, 265, 273, 282, 314, 317, 323,
339, 351, 389, 434, 445, 459, 461,
466, 478, 486, 511, 518, 614, 629,
641, 659, 718, 732, 1169, 1201, 1232
\bool_if :nTF 507
\bool_lazy_all:nTF
\bool_lazy_and:nnTF
292, 302, 305, 309,
355, 373, 548, 619, 697, 735, 790, 1002
\bool_new:N 7, 16, 20,
21, 35, 73, 83, 84, 85, 85, 86, 87, 89,
91, 93, 94, 95, 255, 323, 324, 610, 998
\bool_set_false:N
17, 164, 165, 166, 176, 188, 189,
190, 222, 344, 406, 574, 613, 640, 717
\bool_set_true:N 16, 90, 92, 174, 175,
176, 199, 200, 201, 256, 346, 405, 573
box commands:

\box_dp:N 180, 184
\box_ht:N 170
\box_new:N 78, 79
\box_set_dp:Nn 178, 180
\box_set_eq:NN 193
\box_set_ht:Nn 177, 179
\box_use_drop:N 182, 186
\boxmaxdepth 97, 181

c@g internal commands:
\c@g__tag_MCID_abs_int
11, 15, 28, 37, 50, 57, 60, 68, 74,
133, 138, 178, 242, 245, 288, 295, 346

\c@g__tag_parenttree_obj_int 155, 500
\c@g__tag_struct_abs_int .. 6, 18,
40, 58, 91, 114, 115, 118, 124, 127,
149, 166, 259, 393, 550, 727, 740,
785, 797, 811, 827, 842, 850, 904,
915, 934, 937, 942, 978, 980, 985,
997, 999, 1004, 1095, 1106, 1107,
1108, 1109, 1110, 1112, 1114, 1120
1125, 1132, 1135, 1145, 1153, 1157
1172, 1185, 1195, 1208, 1211, 1226
1227, 1229, 1240, 1525, 1528, 1576
catalog-supplemental-file (key) ... 1075
cctab commands:
49, 54, 75, 155, 510

\c_document_cctab

\chapter 197, 357, 375
check commands:
check_parent_child_rules 979
check_update_stashed 979
clist commands:
\clist_const:Nn 80, 81
\clist_if_empty:NTF 1537
\clist_map_inline:nn ... 106, 419, 901
\clist_new:N 76
\clist_set:Nn 1502, 1536
color commands:
\color_select:n 437, 448

cs commands:

756, 1408, 1412
756, 1408, 1412

\cs:w
\cs_end:
\cs_generate_variant:Nn
44,79, 98, 99, 100, 101, 101,
103, 104, 105, 106, 107, 107,
115, 116, 117, 126, 134, 150,
152, 153, 153, 154, 155, 156,
164, 168, 181, 194, 214, 226,
247, 253, 263, 265, 276, 279, 304,
314, 335, 589, 633, 681, 717, 921,
949, 970, 1384, 1396, 1436, 1465, 1486
\cs_gset_eq:NN 432
\cs_if_exist:NTF 249, 587, 637, 752, 759
\cs_if_exist_p:N 357, 360, 375, 378
\cs_if_exist_use:NTF 400, 1390
\cs_if_free:NTF 48
\cs_new:Nn
83, 109, 131, 136, 293, 409, 410, 411
\cs_new:Npn 9, 15, 23, 27, 105,
118, 149, 156, 215, 229, 235, 237,
391, 528, 536, 542, 548, 754, 1380, 1466
\cs_new_eq:NN 37
\cs_new_protected:Nn
74, 127, 167, 296, 412, 416
\cs_new_protected:Npn 13,
17, 20, 22, 23, 30, 31, 36, 42, 43, 45,
60, 61, 63, 65, 67, 78, 79, 80, 81, 82,

102,
107,
151,
163,

83, 84, 85, 86, 93, 94, 95, 107, 108,
108, 117, 120, 122, 126, 137, 142,
147, 153, 161, 163, 167, 169, 171,
172, 175, 189, 195, 210, 211, 212,
213, 214, 215, 227, 233, 246, 248,
255, 259, 260, 263, 264, 266, 277,
280, 281, 285, 286, 292, 295, 305,
310, 315, 318, 320, 322, 327, 336,
337, 340, 349, 349, 350, 353, 357
361, 365, 369, 384, 388, 393, 395,
396, 403, 415, 417, 428, 429, 431,
434, 442, 453, 462, 503, 503, 527,
534, 541, 541, 548, 554, 568, 576,
578, 581, 582, 583, 583, 584, 591,
592, 598, 611, 625, 633, 634, 634,
635, 638, 640, 654, 713, 729, 855,
863, 876, 889, 922, 950, 1095, 1096
1097, 1293, 1334, 1386, 1399, 1419

1423, 1427, 1431, 1437, 1456, 1480
\cs_set:Nn 679, 680, 744, 745
\cs_set:Npn 47, 52, 89, 109
\cs_set_eq:NN 14, 20

66, 80, 81, 82, 139, 140, 141, 142,
143, 144, 145, 146, 148, 181,
182, 193, 207, 216, 225, 230,
235, 236, 237, 238, 386, 387, 388,
389, 639, 640, 672, 673, 674, 675,
681, 682, 686, 687, 688, 689, 746, TAT
\cs_set_protected:Nn
169, 216, 242, 359, 365, 1250, 1251
\cs_set_protected:Npn 9,
15, 16, 22, 29, 35, 38, 40, 48, 49, 52,
58, 63, 65, 71, 73, 78, 83, 83, 87, 94,
95, 99, 102, 116, 120, 143, 160, 169,
183, 194, 220, 228, 228, 240, 249,
265, 283, 299, 305, 367, 371, 375,
379, 1099, 1100, 1287, 1295, 1336, 1388
\cs_to_str:N
. 12, 18, 25, 32, 38, 43, 61, 62, 68, 69

\cs_undefine:N 57
D

debug/log (key) 1, 237
debug/show (key) 236
debug/structures,,(show-key) 42, 254
debug/uncompress (key) 237
\DebugSocketsOn 44
\DeclareOption 37, 38
dim commands:

\c_max_dim 169, 194

\c_zero_dim 177, 178, 179
\documentclass 16
\DocumentMetadata 15

215

E(key) ... 1, 722, 897
\endinput 22
\ERRORusetaggingsocket 106, 121

exclude-header-footer ,(deprecated) 667
exp commands:
\exp_args:Ne 122, 530

86, 89, 195, 215
79, 337, 341, 427, 461

\exp_args:NNe
\exp_args:Nne ..

\exp_args:NNno 774
\exp_args:No 291, 326
\exp_last_unbraced:Ne ... 99, 102, 109

\exp_last_unbraced:No .. 135, 138,
152, 154, 157, 159, 206, 207, 238,
239, 594, 597, 605, 606, 608, 610, 1276

\exp_not:n 186, 205
F
file commands:
\file_if_exist:nTF 322
\file_input:n 269
firstkid (key) 1, 722
flag commands:
\flag_clear:n 239
\flag_height:n 137, 251
\flag new:n 135
\flag_raise:n 252
\fontencoding 6
\fontfamily 6
\fontseries 6
\fontshape 6
\fontsize, 6
G
group commands:
\group_begin: 67, 76, 173
311, 927, 1019, 1027, 1062, 1079, 1105
\group_end: 74,79, 213

350, 945, 1023, 1033, 1072, 1090, 1246

H
\halign 44
hbox commands:
\hbox_set:Nn 171, 172

hook commands:
\hook_gput_code:nnn . 7, 11, 33, 57
66, 80, 156, 239, 288, 289, 353, 371,
387, 391, 802, 809, 816, 823, 830,
837, 843, 850, 856, 863, 871, 884,
895, 908, 919, 932, 943, 956, 966, 979

\hook_new:n 348
\hook_use:n 353

I
\IfFormatAtLeastTF 336

\IfPDFManagementActiveF 6
\ignorespaces 41
int commands:
\int_abs:n 154
\int_case:nnTF 99, 114, 329

\int_compare :nNnTF
22, 58, 70, 98, 116, 124, 125, 132,
142, 148, 157, 170, 173, 173, 279,
329, 359, 378, 405, 408, 436, 442,
444, 450, 512, 528, 529, 536, 543,
550, 551, 560, 562, 570, 578, 578,
583, 585, 593, 600, 619, 734, 748, 1136
\int_compare:nTF
180, 476, 1518, 1520, 1522, 1546, 1572

\int_compare_p:nNn 740

\int_decr:N 171, 196

\int_eval:n 118, 138, 166,
197, 396, 621, 629, 737, 742, 745,
942, 985, 1004, 1107, 1108, 1109,
1110, 1226, 1227, 1229, 1240, 1528

\int_gincr:N ... 178, 242, 288, 295,
351, 355, 359, 363, 369, 373, 377,
381, 500, 928, 1064, 1081, 1095, 1106

\int_gset:Nn 7, 82, 158

\int_if_zero:nTF

171, 172, 196, 197, 617, 625

\int_incr:N 93, 163, 187, 442

\int_new:N 6, 77, 78
82, 96, 155, 159, 326, 327, 328, 329, 920

\int_rand:n .. 61, 62, 64, 66, 68, 70, 71

\int_set:Nn 238, 241, 244, 245, 246

\int_step_inline:nn 473, 479

\int_step_inline:nnn 25, 91, 259

\int_step_inline:nnnn

149, 174, 177, 200, 461, 467
\int_to_arabic:n 154, 156
\int_to_Hex:n 61, 62, 64, 66, 68, 70, 71
\int_use:N 11, 15, 18, 28, 37

40, 49, 50, 54, 57, 58, 60, 68, 74, 75,
100, 115, 124, 131, 133, 155, 162,
179, 186, 205, 234, 241, 245, 277,
279, 346, 393, 437, 448, 510, 515,
550, 556, 557, 565, 566, 727, 785,
797, 811, 827, 842, 850, 904, 915,
931, 934, 937, 978, 980, 997, 999,
1068, 1071, 1085, 1089, 1114, 1120
1125, 1132, 1135, 1157, 1172, 1185
1195, 1208, 1211, 1466, 1525, 1576
\int_zero:N 90, 105, 430
intarray commands:
\intarray_gset:Nnn

397, 406, 421, 425, 439

441, 444, 554

390, 431

\intarray_item:Nn
\intarray_new:Nn

interwordspace (deprecated) 210, 6
ior commands:
\ior_close:N 330, 467
\ior_map_inline:Nn 326, 438
\ior_open:Nn 324, 433, 436

\g_tmpa_ior
. 324, 326, 330, 433, 436, 438, 467
iow commands:

\iow_newline: 205, 303
\iow_term:n 198, 211, 214, 220, 224,
242, 355, 359, 363, 367, 371, 375, 379

K
kernel internal commands:
__kernel_pdfdict_name:n 45
\g__kernel_pdfmanagement_end_-
run_code_tl 1000

keys commands:
\keys_define:nn
8, 32, 34, 40, 52, 131, 143, 182,
195, 203, 220, 238, 246, 255, 291,
385, 402, 411, 418, 424, 577, 667,
722, 740, 752, 760, 897, 971, 1011,
1036, 1058, 1075, 1487, 1498, 1532
\keys_set:nn 10,
18, 18, 19, 128, 187, 190, 296, 318,
321, 338, 342, 428, 1006, 1069, 1130

\keys_set_known:nnnN 765
L

label (key) 1, 722
\label 12
label, (mc-key) 84, 238, 384
lang (key) 1,722
lang ,(mc-key= 238
legacy commands:

\legacy_if:nTF 480, 483, 484
NLLAD o« v 437
log (deprecated) (key) 237
[tx. internal commands:

1ltx.__tag.func.alloctag 312

1tx.__tag.func.check_parent_-

child_rules 979
1tx.__tag.func.fakespace 491
1tx.__tag.func.fill_parent_tree_-

line 871

1tx.__tag.func.get_num_from 321

1tx.__tag.func.get_tag_from 340

1tx.__tag.func.mark_page_-

elements 697

1tx.__tag.func.mark_shipout 854

1tx.__tag.func.markspaceoff 562

1tx.__tag.func.markspaceon 562

1tx.__tag.func.mc_insert_kids .. 634

1tx.__tag.func.mc_num_of_kids .. 370
1tx.__tag.func.output_num_from 321
1tx.__tag.func.output_parenttree 871
1tx.__tag.func.output_tag_from 340
1tx.__tag.func.role_get_parent_-

child_rule 972
1tx.__tag.func.space_chars_-

shipout 594
1tx.__tag.func.store_mc_data ... 355
1ltx.__tag.func.store_mc_in_page 678
1ltx.__tag.func.store_mc_kid 364
1tx.__tag.func.store_mc_label .. 360
1tx.__tag.func.store_struct_-

MCabs . .. vttt 666
1tx.__tag.func.update_mc_-

attributes 686
1tx.__tag.tables.role_tag_-

attribute 310
ltx.__tag.trace.log 224
1tx.__tag.trace.show_all_mc_data 281
1tx.__tag.trace.show_mc_data ... 266
1tx.__tag.trace.show_prop 241
1tx.__tag.trace.show_seq 232
1tx.__tag.trace.show_struct_data 287

lua commands:

\lua_escape:n 32

\lua_now:n 8,
12, 15, 18, 25, 25, 26, 32, 35, 38,
42, 43, 49, 50, 54, 58, 59, 61, 62,
63, 67, 68, 69, 69, 73, 77, 86, 87,
87, 89, 96, 101, 109, 111, 120, 133,
137, 138, 152, 158, 161, 173, 181,
189, 230, 237, 244, 252, 268, 282,
303, 317, 327, 399, 408, 497, 510, 795

M

\MakeLinkTarget 152
mathml (key) 1, 920
\maxdimen 192
mc-current 20, 16
mc-current,,(show-key) 42, 143
mc-datay,(show-key) 42, 131
mc-label-unknown 20, 9
mc-marks,,(show-key) 42, 203
mc-nested 20, 6
mc-not-open 20, 13
mc-popped 20, 14
mc-pushed 20, 14
mc-tag-missing 20, 8
mc-used-twice 20, 12
\MessageBreak 10, 14, 15
mode commands:

\mode_leave_vertical: 772

217

msg commands:
\msg_error:nn
\msg_error:nnn
354, 365, 373, 384, 459, 1512, 1552
\msg_error:nnnn 242
\msg_error:nnnnn
\msg_info:nnn
134, 172, 325, 331, 333, 407, 411
\msg_info:nnnn 361, 380, 420
\msg_line_context: 93, 97, 107
114, 524, 525, 557, 561, 565, 621, 629
\g_msg_module_name_prop 24, 28
\g_msg_module_type_prop
\msg_new:nnn 7,8,9,12, 13
14, 15, 16, 22, 24, 25, 32, 35, 36, 38
40, 42, 47, 54, 65, 74, 85, 86, 87, 88,
89, 90, 92, 94, 104, 111, 164, 213,
215, 216, 217, 218, 219, 220, 226,
228, 524, 525, 555, 559, 563, 615, 623
\msg_new:nnnn 231
\msg_note:nn
\msg_note:nnn

317, 338, 473, 1142

162, 179, 545, 552, 587, 595
\msg_note:nnnn

128, 185, 204, 531, 538, 572, 580, 587

\msg_note:nnnnn 519, 569
\msg_redirect_name:nnn 549
\msg_show_item_unbraced:n 276
\msg_show_item_unbraced:nn 267
\msg_term:nnnnnn 261, 270
\msg_warning:nn 24, 222

\msg_warning:nnn

12, 14, 43, 45, 54, 242, 248,
321, 324, 347, 392, 400, 425, 449,
666, 693, 873, 886, 1329, 1348, 1374

\msg_warning:nnnn 440, 608, 744

\msg_warning:nnnnn

126, 175, 530, 580, 630, 708

\msg_warning:nnnnnn 146
N

R < 1006
namespace, (rolemap-key) 186
new-tag 21, 215
newattribute ,(deprecated) . 117, 1480
\newcommand 570, 571
\newcounter 8

\NewDocumentCommand 6,

23, 29, 34, 40, 46, 51, 56, 126, 316, 575
\newmarks 13
\NewTaggingSocket 454, 455, 767, 768
\NewTaggingSocketPlug 457,

476, 509, 595, 603, 699, 705, 770, 780
no-struct-dest (deprecated) (key) 1

\nointerlineskip 185
P
\PackageError 8
\PackageWarning 22
page/exclude-header-footer, (setup-
key) ... 43, 667
page/tabsorder (key) 1, 255
para-flattened, (deprecated) 402
para-hook-count-wrong 21, 231
para/flattened, (tool-key) 402
para/maintag,(setup-key) 402
para/maintag,(tool-key) 402
para/tag (setup-key) 402
para/tag (tool-key) 402
para/tagging, (setup-key) 48, 402
para/tagging,,(tool-key) 402
\PARALABEL 504
paratag,(deprecated) 402
paratagging (deprecated) 48, 402
paratagging-show,,(deprecated) .. 43, 402
parent (key) 1, 722
pdf commands:
\pdf_activate_indexed_structure_-
destination: 311
\pdf_bdc:nn 237
\pdf_bdc_shipout:nn 238
\pdf_bmc:n 235
\1_pdf_current_structure_-
destination_tl 309
\pdf_emc: 236

\pdf_name_from_unicode_e:n

105, 114, 119, 167,
180, 190, 278, 1031, 1483, 1506, 1542

\pdf_object_if_exist:n 97

\pdf_object_if_exist:nTF .. 975, 1040

\pdf_object_new:n

116, 34, 36, 154, 262, 310, 321

\pdf_object_new_indexed:nn 31, 1111

\pdf_object_ref:n 116, 56, 98, 131,
135, 141, 192, 318, 335, 978, 1042, 1089

\pdf_object_ref_indexed:nn .

57, 74, 96, 127,
211, 255, 271, 414, 435, 496, 524, 1382

\pdf_object_ref_last: 116
104, 118, 124, 294, 1447, 1453, 1561

\pdf_object_unnamed_write:nn ...

100, 111, 120, 244, 286, 1439, 1556
\pdf_object_write:nnn
257, 281, 311, 330, 337, 342
\pdf_object_write_indexed:nnnn .

...................... 139, 449
\pdf_pageobject_ref:n .. 221, 486, 514
\pdf_string_from_unicode:nnN 42, 819

218

\pdf_uncompress:
\pdf_version:
\pdf_version_compare:NnTF
20, 81, 136, 154, 159, 227,
257, 324, 351, 431, 471, 590, 797, 817
\pdf_version_gset:n 243
pdfannot commands:
\pdfannot_dict_put:nnn
99, 877, 901, 925, 949, 972
\pdfannot_link_ref_last:
891, 915, 939, 963, 986

247, 249
237, 240, 242

pdfdict commands:
\pdfdict_gput:nnn
38, 45, 53, 187, 276, 334, 822

\pdfdict_if_empty:nTF 328
\pdfdict_new:n 18, 35, 37
\pdfdict_put:nnn 1020,
1021, 1028, 1029, 1030, 1063, 1080
\pdfdict_use:n 283, 332, 339
\pdffakespace 42, 314

pdffile commands:
\pdffile_embed_file:nnn

107, 1065, 1082

\pdffile_embed_stream:nnN 921, 929
\pdffile_embed_stream:nnn 100
\pdfglyphtounicode 30
\pdfinterwordspaceoff 212, 118
\pdfinterwordspaceon 212, 34, 122

pdfmanagement commands:
\pdfmanagement_add:nnn
52, 70, 71, 257, 259, 261, 393, 1086
\pdfmanagement_remove:nn 263
phoneme (key)
prg commands:
\prg_do_nothing:
37, 82, 102, 117, 386,
387, 388, 389, 432, 686, 687, 688, 689
\prg_generate_conditional -
variant:Nnn

\prg_new_conditional:Nnn ... 68,226
\prg_new_conditional:Npnn
. 251, 275, 290, 300, 499, 505, 516
\prg_new_eq_conditional:NNn . 82,233
\prg_new_protected_conditional:Npnn
719

\prg_replicate:nn

\prg_return_false: 78, 230, 252, 270,
281, 284, 297, 307, 502, 514, 520, 749

\prg_return_true: 79, 229, 267
280, 294, 304, 503, 513, 519, 719, 750

\prg_set_conditional:Npnn 256
\prg_set_protected_conditional:Npnn
.......................... 721

process commands:
process_softhyphen_pre . process_-

softhyphen_post 924
\ProcessOptions 39
prop commands:

\prop_clear:N 176
\prop_count:N 203
\prop_gclear:N 1017

\prop_get :NoN 127, 144, 145,
177, 198, 214, 268, 299, 456, 468,
470, 483, 484, 485, 546, 547, 585, 586

\prop_get : NnNTF 44, 96, 130
137, 144, 158, 183, 201, 205,
236, 295, 312, 342, 357, 376,
395, 419, 423, 514, 564, 599,
604, 609, 614, 677, 685, 701,
752, 780, 785, 865, 878, 1179, 1277
1343, 1402, 1440, 1510, 1550, 1554

\prop_gput:Nnn

24, 26, 27, 28, 31, 56, 88, 90, 91,
97, 98, 99, 99, 100, 101, 101, 103,
110, 112, 113, 119, 121, 122, 142,
145, 269, 272, 286, 291, 383, 434,
436, 437, 448, 469, 475, 481, 488,
490, 491, 726, 1018, 1020, 1228,
1239, 1314, 1359, 1482, 1514, 1561

\prop_gremove:Nn 137, 147, 1021

\prop_gset_eq:NN 146, 1225

\prop_gset_from_keyval:Nn 991

\prop_if_exist:NTF 174,
209, 234, 320, 430, 648, 675, 1299, 1340

\prop_if_exist_p:N 737

\prop_item:Nn 41, 99, 102, 103, 109,
115, 146, 244, 533, 1236, 1559, 1566

\prop_map_function:NN 265

\prop_map_inline:Nn 267, 272
293, 326, 363, 381, 398, 486, 495, 1004

\prop_map_tokens:Nn 344

\prop_new:N 8 9,10, 11, 11, 25
33, 73, 139, 144, 990, 1108, 1475, 1478

\prop_new_linked:N

7,17, 84, 89, 91, 140, 1476

102, 188

\prop_put :Nnn
\prop_show:N
67, 95, 148, 1222, 1243, 1528, 1555

property commands:

\property_new:nnnn
122, 125, 129, 132, 136
59, 111
115,116

\property_record:nn
\property_ref:nn
\property_ref :nnn
42, 115, 120, 181, 190,
221, 222, 343, 478, 487, 489, 1300, 1304
\providecommand 62, 63, 64, 65, 66, 69, 70, 321

219

\ProvidesExplFile
\ProvidesExplPackage
3,3,3,3,3,3,3,3, 7,7, 20, 31, 1471

\quad 233, 234
quark commands:
\q_no_value 606, 616, 662, 667, 689, 694
\quark_if_no_value:NTF
132, 178, 199, 215, 269, 300, 591, 602
\quark_if_no_value_p:N
549, 550, 620, 621, 698, 699

\Q_stop ... 259, 292, 328
R

raw,(mc-key) 84, 238, 384
ref (key) ... 1, 722, 897
\RemoveFromHook 35, 532, 533
\renewcommand 573, 574
\RenewDocumentCommand 8
\RequirePackage ... 40, 275, 278, 284, 287
\rlap 448
role,(rolemap-key) 186, 752

role commands:

role_get_parent_child_rule 972
role-MC-child-forbidden 104
role-missing 21, 86
role-namespace (rolemap-key) 186, 752
role-parent-child-check 90
role-parent-child-forbidden 111
role-parent-child-result 21, 92
role-parent-child-unresolved 164
role-remapping 21, 213

role-struct-parent-child-forbidden . 94

role-tag 21, 215
role-unknown 21, 86
role-unknown-NS 21, 86
role-unknown-tag 21, 86

role/new-attribute (setup-key) 117, 1480

role/new-tag,,(setup-key) 752
root-AF (key) 1, 1036
root-supplemental-file (key) 1058
S
\selectfont 6
seq commands:
\seq_clear:N 319, 466
\seq_const_from_clist:Nn 39, 52

\seq_count:N 22, 25, 58
331, 444, 1518, 1520, 1522, 1546, 1572
\seq_get:NN 723, 736
\seq_get :NNTF 469, 602, 1138, 1265, 1273
\seq_gpop:NN 1258
\seq_gpop: NNTF 106, 1259

\seq_gpop_left:NN 307
\seq_gpush:Nn 13, 15, 89, 96, 1145, 1151
\seq_gput_left:Nn 42, 144, 273, 311
\seq_gput_right:Nn

37, 143, 146, 152, 236, 257, 296, 486
\seq_gset_eq:NN 159, 221, 326
\seq_if_empty:NTF 200, 438
\seq_item:Nn

59, 116, 118, 125, 129, 136, 140,

145, 348, 355, 368, 509, 511, 518,
694, 695, 710, 711, 761, 762, 775, 776

\seq_log:N 175,199, 249, 412, 573, 588
\seq_map_function:NN 274
\seq_map_indexed_inline:Nn 446, 459

\seq_map_inline:Nn 289, 320, 1508, 1548

\seq_new:N
. 12/ 14, 14, 15, 16, 17, 18, 19,

21, 22, 24, 74, 75, 141, 145, 1110, 1479

\seq_pop_left:NN 455, 457, 458
\seq_put_right:Nn 321
\seq_remove_all:Nn 324
\seq_set_eq:NN 207, 208
\seq_set_from_clist:NN ... 1503, 1539

\seq_set_from_clist:Nn
87, 90, 196, 216, 443, 454
\seq_set_map_e:NNn 1504, 1540

\seq_set_split:Nnn 51,
104, 687, 691, 703, 707, 754, 758, 774
\seq_show:N

60, 147, 216, 217, 250, 322,
323, 325, 496, 1155, 1223, 1244, 1254
\seq_use:Nn
50, 110, 111, 205, 233, 234, 383, 1519

Setup keys:

activate-all (deprecated) 1
activate-mc (deprecated) 1
activate-struct (deprecated) 1
activate-tree (deprecated) 1
activate/all 1, 219
activate/mc 1, 219
activate/softhyphen 1, 253
activate/spaces 1
activate/struct 1, 219
activate/struct-dest 1, 219
activate/tagunmarked 1, 250
activate/tree 1, 219
catalog-supplemental-file 1075
debug/log 1, 237
debug/show 236
debug/uncompress 237
log (deprecated) 237
no-struct-dest (deprecated) 1
page/tabsorder 1, 255
root-AF 1, 1036

220

root-supplemental-file
tabsorder (deprecated)
tagunmarked (deprecated) 1,250
uncompress (deprecated)
shipout commands:
\g_shipout_readonly_int
152, 131, 241, 396, 515

show-kids 21, 64
show-spaces|,(deprecated) 210, 6
show-struct 21, 64
\ShowTagging 18, 42, 125
skip commands:

\skip_horizontal:n 78

\c_zero_skip 78
socket commands:

\socket_assign_plug:nn 200,

204, 205, 209, 210, 542, 721, 813, 814

\socket_if_exist:nTF ... 452, 697, 765
\socket_new:nn 183, 184, 682
\socket_new_plug:nnn ... 185, 683, 699

\socket_use:n
\socket_use:nn
81, 205, 341, 775, 1204, 1321, 1366

28, 76, 536, 540

\socket_use:nnn 86
\socket_use:nw 97
\socket_use_expandable:n 92

\socket_use_expandable:nw .. 66, 112

stash (key) 1, 722
stash (mc-key) 85, 182
str commands:
\str_case:nnTF 46, 643, 1162
\str_const:Nn 59

\str_if_eq:nnTF 117, 127, 518, 604, 655
\str_if_eq_p:nn 310, 509, 511
\str_new:N 72
\str_set_convert:Nnnn 105, 261, 296,
398, 415, 779, 791, 805, 821, 836, 909

\str_use:N 67, 272, 309

\c_tilde_str 57, 59
\string 15, 16
struct-faulty-nesting 20, 32
struct-label-unknown 20, 38
struct-missing-tag 20, 35
struct-no-objnum 20, 24
struct-orphan 20, 25
struct-Ref-unknown 42
struct-show-closing 20, 40
struct-stack,(show-key) 42, 246
struct-unknown 20, 22
struct-used-twice 20, 36
Structure keys:

actualtext 1, 722

AF 1, 920

AFinline 1, 920

AFref 1, 920
alt ... 1, 722
attribute 1, 1532
attribute-class 1, 1498
E o 1, 722, 897
firstkid 1, 722
label, 1, 722
lango 1, 722
mathml 1, 920
parent 1, 722
phoneme 722
ref 1, 722, 897
stash 1, 722
tag ..o 1, 722
texsource 1, 920
title 1, 722
title-o 1, 722
\SuspendTagging 44
sys commands:
\c_sys_backend_str 46
\c_sys_engine_str 12, 14

\sys_if_engine_luatex:TF
............... 21, 36, 50, 72,
83, 85, 105, 187, 267, 343, 391, 493, 501

\sys_if_engine_luatex_p: 791
\sys_if_engine_pdftex:TF 26, 112
\sys_if_output_pdf:TF 11, 28, 114
sys-no-interwordspace 21, 228
T
tabsorder (deprecated) (key) 1,255
tag (key) 1, 722
tag (mc-key) 84, 238, 384
tag (rolemap-key) 186, 752
tag commands:
\tag_check_benchmark_on: 635
\tag_check_child:nn 719, 721
\tag_check_child:nnTF 186, 719
\tag_get:n 18, 85, 114,
115, 132, 133, 89, 92, 235, 235, 557, 726
\tag_if_active: 251, 256
\tag_if_active:TF 18, 18, 248, 249, 547
\tag_if_active_p: 18, 248, 1002
\tag_if_box_tagged:N 275
\tag_if_box_tagged:NTF 18, 274
\tag_if_box_tagged_p:N 18, 274

\tag_mc_add_missing_to_stream:Nn

84, 66, 189, 225
\tag_mc_artifact_group_begin:n

83, 60, 60, 63
\tag_mc_artifact_group_end:

83, 60, 61, 71

\tag_mc_begin:n 10, 83, 25, 66
114, 169, 169, 295, 295, 299, 305,
436, 447, 473, 505, 622, 650, 702, 775

\tag_mc_begin_pop:n 83
76, 80, 81, 102, 631, 661, 734, 785
\tag_mc_end: 83,

31, 75, 93, 216, 216, 295, 296, 359,
365, 438, 449, 515, 628, 657, 707, 783
\tag_mc_end_push:
83, 65, 80, 80, 83, 616, 643, 720, 773

\tag_mc_if_in: 82, 233
\tag_mc_if_in:TF 83, 42, 68, 226
\tag_mc_if_in_p: 83, 68, 226

\tag_mc_new_stream:n &4, 17, 17, 67, 67
\tag_mc_reset_box:N 83, 79, 79, 228, 228
\tag_mc_use:n 83, 36, 36, 36, 38
\1_tag_para_attr_class_tl 397, 399
\tag_resume:n
7, 73, 158, 194, 207, 217, 627, 656
\tag_socket_use:n
........ 44, 45, 62, 72, 73, 528, 529
\tag_socket_use:nn . 44, 45, 63, 72, 78
44, 45, 64, 72, 83
\tag_socket_use_expandable:n . ..

............... 44, 45, 65, 72, 89

\tag_socket_use:nnn

\tag_spacechar_off: ... 82, 82, 87, 116
\tag_spacechar_on: . 82, 83,99, 120
\tag_start: 7, 158, 169, 182, 211
\tag_start:n 7 158, 207, 215, 217
\tag_stop: . 7, 54, 158, 160, 181, 210
\tag_stop:n 7, 158, 193, 214, 216

\tag_struct_begin:n
114, 48, 464, 471, 489, 499, 649,
701, 726, 774, 1095, 1095, 1099, 1100
\tag_struct_end:
114, 26, 53, 517, 521, 658, 708,
731, 784, 1095, 1096, 1250, 1251, 1290
\tag_struct_end:n 114, 1097, 1287
\tag_struct_gput:nnn

114, 903, 1386, 1386, 1388, 1396
\tag_struct_gput_ref:nnn 115
\tag_struct_insert_annot:nn

............... 114, 154, 890,
914, 938, 962, 985, 1456, 1456, 1465
\tag_struct_object_ref:n
114, 869, 882, 893, 1379, 1380, 1384
\tag_struct_parent_int:
114, 154, 880, 891, 904, 915,
928, 939, 952, 963, 975, 986, 1456, 1466
\tag_struct_use:n
...... 114, 115, 58, 1293, 1293, 1295
\tag_struct_use_num:n

............ 114, 1334, 1334, 1336

222

\tag_suspend:n
7, 68, 158, 183, 193, 216, 623, 651
\tag_tool:n 41, 13, 13, 14, 16, 20

tag internal commands:

__tag_activate_mark_space 562
\g__tag_active_mc_bool

......... 40, 83, 222, 229, 261, 292
\1__tag_active_mc_bool

..... 89, 165, 175, 189, 200, 264, 292
\1__tag_active_socket_bool

.................. 75, 80, 85,

89, 91, 96, 111, 166, 176, 190, 201, 293
\g__tag_active_space_bool

.................. 13, 57, 62, 83
\g__tag_active_struct_bool

..... 83, 224, 231, 260, 302, 307, 466
\1__tag_active_struct_bool

..... 89, 164, 174, 188, 199, 263, 302
\g__tag_active_struct_dest_bool

................ 83, 228, 235, 306
\g__tag_active_tree_bool

. 9, 68, 83, 223, 230, 262, 351, 389

__tag_add_missing mcs:Nn

............. 98, 99, 167, 167, 219
__tag_add_missing mcs_to_-

stream:Nn 65, 65, 66, 189, 189, 225
\g__tag_attr_class_used_prop ...

............. 291, 293, 1474, 1514
\g__tag_attr_class_used_seq 289, 1479
\g__tag_attr_entries_prop

295, 1474, 1482, 1510, 1550, 1555, 1559
__tag_attr_new_entry:nn

637, 1480, 1480, 1486, 1491, 1495

\g__tag_attr_objref_prop

........... 1474, 1554, 1561, 1566

\1__tag_attr_value_tl 1474,
1544, 1563, 1568, 1570, 1574, 1578
__tag_backend_create_bdc_node .. 436
__tag_backend_create_bmc_node .. 407
__tag_backend_create_emc_node .. 378
__tag_check_add_tag_role:nn ...
.................. 129, 350, 350
__tag_check_add_tag_role:nnn ..
...................... 169, 369

__tag_check_benchmark_tic: . 356
360, 364, 368, 372, 376, 380, 633, 639
__tag_check_benchmark_toc: . 358
362, 366, 370, 374, 378, 382, 634, 640
__tag_check_forbidden_parent_-
child:nnnn 120, 120, 134, 171
__tag_check_if_active_mc: 290
__tag_check_if_active_mc:TF ...
.................... 85, 104,
171, 191, 218, 289, 301, 307, 361, 367

__tag_check_if_active_struct: . 300

__tag_check_if_active_struct:TF
........... 40, 289, 1102, 1103,
1255, 1256, 1289, 1297, 1338, 1459

__tag_check_if_mc_in_galley: .. 499

__tag_check_if_mc_in_galley:TF

...................... 209, 230
__tag_check_if_mc_tmb_missing: 505
__tag_check_if_mc_tmb_missing:TF

............... 112, 218, 235, 505
__tag_check_if_mc_tmb_missing_ -

Pl e 505
__tag_check_if_mc_tme_missing: 516
__tag_check_if_mc_tme_missing:TF

............... 155, 222, 239, 516
__tag_check_if_mc_tme_missing -

Pl 516
__tag_check_info_closing_-
struct:n 327, 327, 335, 1261

__tag_check_init_mc_used:
............... 429, 429, 432, 438
__tag_check_mc_if_nested:
............... 174, 312, 388, 388
__tag_check_mc_if_open:
............... 220, 371, 388, 396
__tag_check_mc_in_galley:TF ... 499
__tag_check_mc_in_galley_p: ... 499
__tag_check_mc_pushed_popped:nn
...... 90, 97, 110, 113, 118, 403, 403
__tag_check_mc_tag:N
............... 193, 330, 415, 415
__tag_check_mc_used:n
............... 145, 268, 434, 434
\g__tag_check_mc_used_intarray
............... 429, 439, 441, 444
__tag_check_no_open_struct:
............. 336, 336, 1263, 1271
__tag_check_para_begin_show:nn
.................. 431, 472, 504
__tag_check_para_end_show:nn ..
...................... 442, 516
\c__tag_check_pdfversion_tl
............... 237, 240, 242, 243
__tag_check_show_MCID_by_page:
...................... 453, 453
__tag_check_struct_forbidden_-
parent_child:nnn 137, 163, 628
__tag_check_struct_used:n ..
................. 340, 340, 1302
__tag_check_structure_has_tag:n
................. 310, 310, 1135
__tag_check_structure_tag:N ...
........... 320, 320, 696, 719, 770

223

__tag_check_typeout_v:n
110, 111, 114, 149, 157, 164,

202, 211, 230, 230, 242, 482, 498, 514
__tag_check_unresolved_parent_-

child:nnnn 169, 169
\g__tag_css_bool . 998, 999, 1002, 1013
\g__tag_css_prop

990, 991, 1004, 1017, 1018, 1020, 1021
__tag_debug_mc_begin_ignore:n .

...................... 354, 534
__tag_debug_mc_begin_insert:n .

...................... 309, 527
379, 548
369, 541

__tag_debug_mc_end_ignore:
__tag_debug_mc_end_insert:
__tag_debug_struct_begin_-
ignore:n 576, 1248
__tag_debug_struct_begin_-
insert:n 568, 1245
__tag_debug_struct_end_check:n
..................... 598, 1289
__tag_debug_struct_end_ignore:
..................... 591, 1284
__tag_debug_struct_end_insert:
..................... 583, 1282
__tag_exclude_headfoot_begin:
.................. 611, 672, 673
__tag_exclude_headfoot_end:
.................. 625, 674, 675
__tag_exclude_struct_headfoot_-
begin:n 638, 679, 680
__tag_exclude_struct_headfoot_-
end: 654, 681, 682
__tag_fakespace 491
__tag_fakespace: 72,74, 318
__tag_finish_structure:
................ 13, 16, 348, 349
\1__tag_get_child_tmpa_tl
..... 60, 569, 574, 641, 643, 653,
656, 667, 1303, 1307, 1309, 1315, 1325
\1__tag_get_child_tmpb_tl
............ 60, 570, 575, 642, 654
\1__tag_get_child_tmpc_tl
................ 60, 145, 157, 159
__tag_get_data_mc_counter: 9,9
__tag_get_data_mc_tag:
............... 237, 237, 293, 293
__tag_get_data_struct_counter:
...................... 547, 548
__tag_get_data_struct_id: 536, 536
__tag_get_data_struct_num: 541, 542
__tag_get_data_struct_tag: 528, 528
__tag_get_mathsubtype 302
__tag_get_mc_abs_cnt:
........... 14, 15, 19, 20, 102,

137, 166, 177, 183, 210, 246, 254,
272, 286, 307, 321, 331, 392, 400, 420
__tag_get_mc_cnt_type_tag 296
__tag_get_num_from 321
\1__tag_get_parent_tmpa_tl ..
60, 127, 132, 136, 139, 149, 152,
162, 165, 175, 564, 572, 585, 591,
595, 598, 665, 667, 727, 730, 740, 743
\1__tag_get_parent_tmpb_tl
.................... 60, 150,
153, 163, 166, 175, 565, 573, 586,
602, 606, 609, 666, 728, 731, 741, 744
\1__tag_get_parent_tmpc_tl .
................ 60, 144, 152, 154
__tag_get_tag_from 340
\1__tag_get_tmpc_tl 60,
181, 186, 204, 206, 207, 236, 238,
239, 1182, 1188, 1405, 1407, 1411, 1417
__tag_gincr_para_begin_int: .
....... 349, 353, 371, 387, 470, 497
__tag_gincr_para_end_int:
........... 349, 361, 379, 389, 513
__tag_gincr_para_main_begin_-
int: .. 349, 349, 367, 386, 463, 488
__tag_gincr_para_main_end_int:
........... 349, 357, 375, 388, 520
__tag_headfoot_tagged_begin:n .
.................. 713, 744, 745
__tag_headfoot_tagged_end:
.................. 729, 746, 747
__tag_hook_kernel_after_foot:
. 584, 592, 607, 675, 682, 689, 747
__tag_hook_kernel_after_head:
. 582, 590, 599, 674, 681, 688, 746
__tag_hook_kernel_before_foot:
. 583, 591, 605, 673, 680, 687, 745
__tag_hook_kernel_before_head:
. 581, 589, 597, 672, 679, 686, 744
\g__tag_in_mc_bool 16,
18, 175, 221, 228, 313, 372, 619,
620, 634, 646, 647, 664, 723, 724, 737

__tag_insert_bdc_node 436
__tag_insert_bmc_node 407
__tag_insert_emc_node 378
__tag log, 224

\1__tag_loglevel_int
..... 82, 125, 132, 170, 173, 238,
241, 244, 245, 246, 329, 359, 378,
406, 409, 436, 512, 529, 536, 543,
550, 562, 570, 578, 583, 585, 593, 600

__tag mark_spaces 496

__tag_mc_artifact_begin_marks:n
................. 23, 45, 81, 327

224

\1__tag_mc_artifact_bool
........ 20, 176, 185, 196, 222, 323
\1__tag_mc_artifact_type_tl
............ 19, 189, 193, 197,
201, 205, 209, 213, 217, 325, 327, 344
__tag_mc_bdc:nn 234, 237, 283
__tag_mc_bdc_mcid:n ... 123, 239, 255
__tag_mc_bdc_mcid:nn
............... 239, 240, 257, 262
__tag_mc_bdc_shipout:nn 238, 248
__tag_mc_begin_marks:nn
.............. 23, 23, 44, 80, 334
__tag_mc_bmc:n 234, 235, 279
__tag_mc_bmc_artifact: 277, 277, 290
__tag_mc_bmc_artifact:n 277, 281, 291
\1__tag_mc_botmarks_seq
.............. 98, 21, 90, 111,
161, 208, 216, 217, 221, 234, 501, 518
__tag_mc_check_parent_child:n .
........... 122, 122, 181, 207, 343
__tag_mc_disable_marks: 78,78
__tag_mc_emc: 158, 234, 236, 374
__tag_mc_end_marks: .. 23, 63, 82, 375
\1__tag_mc_firstmarks_seq
....... 98, 21, 87, 110, 196, 199,
200, 207, 208, 216, 233, 501, 509, 511
\g__tag_mc_footnote_marks_seq ... 14
__tag_mc_get_marks: . 84, 84, 208, 229
__tag_mc_handle_artifact:N
............... 119, 277, 285, 325
__tag_mc_handle_mc_label:n
................ 27, 27, 200, 337
__tag_mc_handle_mcid:nn
............... 239, 260, 265, 331
__tag_mc_handle_stash:n 50, 140,
142, 143, 168, 210, 266, 266, 276, 346
__tag_mc_if_in: 68, 82, 226, 233
__tag_mc_if_in:TF 68, 87, 226, 390, 398
__tag_mc_if_in_p: 68, 226
__tag_mc_insert_extra_tmb:n RN
.................. 108, 108, 171
__tag_mc_insert_extra_tme:n RN
.................. 108, 153, 172
__tag_mc_insert_mcid_kids:n ...
............... 131, 131, 150, 309
__tag_mc_insert_mcid_single_-
kids:n 131, 136, 310
\1__tag_mc_key_label_tl
23, 198, 200, 316, 334, 335, 337, 424
\1__tag_mc_key_properties_tl ...
23, 177, 251, 266, 267, 281, 301,
302, 333, 394, 403, 404, 409, 420, 421
\1__tag_mc_key_stash_bool
.......... 20, 31, 40, 184, 203, 339

\g__tag_mc_key_tag_tl 19, 23

180, 225, 237, 243, 293, 315, 373, 390
\1__tag_mc_key_tag_tl 23, 179, 193

195, 224, 242, 314, 330, 332, 334, 389
\1__tag_mc_lang tl

............ 22, 185, 190, 316, 321
__tag_mc_lua_set_mc_type_attr:n

................ 83, 83, 107, 195
__tag_mc_lua_unset_mc_type_-

attr: ... 83, 109, 223
\g__tag_mc_main_marks_seq 14
\g__tag_mc_marks 13,

25, 34, 47, 54, 65, 71, 88, 91, 197, 217
\g__tag_mc_multicol_marks_seq ... 14
\g__tag_mc_parenttree_prop .

............. 17, 18, 103, 184, 272
\1__tag_mc_ref_abspage_tl 11
__tag_mc_set_label_used:n 31, 31, 51
\g__tag_mc_stack_seq

.............. 18, 89, 96, 106, 412
__tag_mc_store:nnn .. 93, 93, 107, 134
\1__tag_mc_tmpa_tl 12
g__tag MCID_abs_int 7
\g__tag_mode_lua_bool

35, 36, 135, 146, 248, 273, 282,

314, 317, 614, 629, 641, 659, 718, 732
759, 761, 762
tag_pairs_prop 241

\1__tag_name_link_tl ...
\1__tag_para_attr_class_tl ..
.................. 322, 399, 502
\g__tag_para_begin_int
....... 322, 355, 373, 437, 560, 565
\1__tag_para_bool
........ 322, 404, 413, 420, 426,
459, 478, 511, 573, 574, 613, 640, 717
\g__tag_para_end_int
....... 322, 363, 381, 448, 560, 566
\1__tag_para_flattened_bool
. 322, 409, 416, 429, 461, 486, 518
\1__tag_para_main_attr_class_tl
...................... 322, 492
\g__tag_para_main_begin_int
........... 322, 351, 369, 551, 556
\g__tag_para_main_end_int
........... 322, 359, 377, 551, 557
__tag_para_main_store_struct:
............... 391, 391, 468, 494
\g__tag_para_main_struct_tl 322, 393
\1__tag_para_main_tag_tl
....... 322, 408, 415, 428, 466, 491
\1__tag_para_show_bool
....... 322, 405, 406, 421, 434, 445
\1__tag_para_tag_default_tl 322

225

\1__tag_para_tag_tl
. 322,407, 414, 422, 427, 471, 501
\1__tag_parent_child_check_tl ..
........ 156, 157, 169, 172, 500,
618, 619, 626, 629, 733, 734, 746, 748
__tag_parenttree_add_objr:nn ..
............... 163, 163, 491, 519
\1__tag_parenttree_content_tl ..
. 170, 195, 207, 227, 235, 256, 259
\g__tag_parenttree_objr_tl ..
.................. 162, 165, 256

__tag_pdf_name_e:n 105, 105
__tag pdf_object_ref 466

__tag_prop_gput:Nnn
......... 9, 29, 89, 97, 98, 111,
120, 121, 128, 132, 139, 142, 146,
149, 150, 201, 205, 217, 220, 282,
285, 314, 315, 384, 1308, 1444, 1451

__tag_prop_item:Nn ... 9, 52, 139, 146

__tag_prop_new:N 9,9,

11, 19, 24, 32, 108, 139, 139, 153, 1107

__tag_prop_new_linked:N
................ 15, 17, 139, 140

__tag_prop_show:N 9, 65, 139, 148, 156

\c__tag_property_mc_clist 80, 247

__tag_property_record:nn
..... 29, 108, 108, 117, 243, 477, 728

__tag_property_ref_lastpage:nn

83, 118, 118, 160, 174, 177, 457, 471

\c__tag_property_struct_clist 80, 730

\1__tag Ref_tmpa_tl 64

g__tag_role/RoleMap_dict 18

\g__tag_role_add_mathml_bool ...
................ 73, 265, 762, 829

__tag_role_add_tag:nn
....... 127, 127, 153, 280, 365, 800

__tag_role_add_tag:nnnn
........... 167, 167, 226, 312, 805

__tag_role_alloctag:nnn 81,
85, 95, 107, 117, 126, 141, 184, 277, 308

__tag_role_check_parent_-

child:nnnnN 151,

164, 571, 590, 592, 640, 717, 729, 742
\1__tag_role_debug prop 11
__tag_role_get:nnNN 154,

156, 164, 227, 229, 253, 712, 763, 1146
__tag_role_get_parent_child_-

rule:nnN

. 203, 500, 503, 541, 589, 623, 701

\g__tag_role_index_prop

......... 187, 10, 448, 456, 468,

469, 470, 475, 481, 483, 484, 485,

488, 490, 491, 495, 546, 547, 599, 609
\g__tag_role_NS_<ns>_class_prop 187

\g__tag_role_NS_<ns>_prop 187
\g__tag_role_NS_mathml_prop 267, 486
__tag_role_NS_new:nnn

. 189, 20, 22, 30, 74, 75, 76, 77, 78, 80
\g__tag_role NS_prop

. 187, 9, 26, 56, 181, 326, 344, 786

\g__tag_role_parent_child_-

intarray 390, 397, 406, 421, 425, 555
__tag_role_read_namespace:n 337,

337, 341, 342, 343, 345, 347, 349, 350
__tag_role_read_namespace:nn ..

............... 318, 318, 339, 348
__tag_role_read_namespace_-

line:nw 255, 259, 292, 328
\1__tag_role_role_namespace_-
tmpa_tl 12

757, 778, 783, 787, 790, 794, 809
\1__tag_role_role_tmpa_tl
........ 12, 756, 776, 782, 802, 808
\g__tag_role_rolemap_prop
..... 187, 18, 144, 146, 149, 158,
214, 217, 220, 269, 272, 385, 604, 614
\c__tag_role_rule_checkparent_tl
............... 157, 173, 619, 734
\c__tag_role_rules_num_prop
.................. 391, 514, 564
\c__tag_role_rules_prop 391, 395, 419
\1__tag_role_tag_namespace_tmpa_-

tl 12, 755, 807
\1__tag_role_tag_namespace_tmpb_-

Tl e 14
\1__tag_role_tag_namespace_tmpb_-

tloiiiinh e e 12

\1__tag_role_tag_tmpa_tl
............ 12, 754, 775, 801, 806
\g__tag_role_tags_class_prop ...
. 187, 8,90, 99, 112, 121, 137, 268
\g__tag_role_tags_NS_prop
187, 7, 88, 97, 110, 119, 130, 322,
357, 383, 423, 685, 701, 752, 781, 1277
\1__tag_role_tmpa_seq 12
\1__tag_role_update_bool
....... 208, 255, 256, 264, 344, 346
\c__tag_role_userNS_id_str .
.................... 188, 59, 80
\g__tag_root_default_tl 285
\g__tag_saved_in_mc_bool
. 610, 619, 634, 646, 664, 723, 737
__tag_seq_gput_left:Nn
.............. 9, 40, 144, 152, 268
__tag_seq_gput_right:Nn 9,
35, 139, 143, 151, 231, 241, 252, 291
__tag_seq_item:Nn .09,47, 139, 145

226

__tag_seq new:N

...+ 99,22 109, 139, 141, 154, 1109
__tag_seq_show:N 9, 58, 139, 147, 155
__tag_show_spacemark 477
\1__tag_showspaces_bool 7, 16, 17
\g__tag_softhyphen_bool 95, 253
__tag_space_chars_shipout 594
__tag_start_para_ints:

............... 177, 202, 365, 365
__tag_stop_para_ints:

............... 167, 191, 365, 384
__tag_store_parent_child_-

rule:nnn 391, 393, 417, 462
g__tag_struct_1 _prop 107
__tag_struct_add_AF:nn

....... 933, 950, 970, 977, 997, 1042
__tag_struct_add_inline_AF:nn .

922, 949, 1011, 1015, 1022, 1032
\1__tag_struct_addkid_tl 86, 772, 1219
\g__tag_struct_AFobj_int 920, 928, 931
__tag_struct_check_parent_-

child:nn 578, 578, 633, 669, 678, 1206
__tag_struct_check_parent_-

child_aux:nnnnN . 553, 554, 613, 621
\g__tag_struct_cont_mc_prop

........... 11, 95, 96, 98, 101, 244
\g__tag_struct_dest_num_prop 88, 878
\1__tag_struct_elem_stash_bool

......... 85, 732, 1169, 1202, 1232
__tag_struct_exchange_kid_-

command:N 305, 305, 314, 345
__tag_struct_£fill_kid_key:n ...

............... 136, 315, 315, 447

__tag_struct_format_P:nnN 409
__tag_struct_format_parentnum:nnN
...................... 412, 412
__tag_struct_format_parentrole:nnN
...................... 409, 410
__tag_struct_format_Ref 140

__tag_struct_format_Ref:nnN 416, 416
__tag_struct_format_rolemap:nnN
...................... 409, 409
__tag_struct_format_tag:nnN 409, 411
__tag_struct_get_dict_content:nN
............... 138, 395, 395, 448
__tag_struct_get_id:n
96, 101, 114, 115, 148, 149, 454, 538
__tag_struct_get_role:nnNN
........... 146, 159, 195, 195,
214, 561, 566, 638, 650, 662, 724, 737
__tag_struct_gput_data_attribute:nn
.................... 1437, 1437
__tag_struct_gput_data_ref:nn .
.................... 1419, 1436

__tag_struct_gput_data_ref_-
QUXINNN . . ot

1398, 1399, 1421, 1425, 1429, 1433
__tag_struct_gput_data_ref_-

dest:nn 1427
__tag_struct_gput_data_ref_-

label:nn 1423
__tag_struct_gput_data_ref_-

NUMEINN . ..o e e e e e e e e 1431

__tag_struct_insert_annot:nn ..
................. 462, 462, 1461
__tag_struct_insert_annot_-

shipout:nnn 503, 503
__tag_struct_kid_mc_gput_-
right:nn ... 215, 227, 228, 247, 269

__tag_struct_kid_OBJR_gput_-
right:nnn 280, 280, 283, 304, 478, 506
__tag_struct_kid_struct_gput_-
left:nn 264, 264, 265, 279
__tag_struct_kid_struct_gput_-
right:nn
...... 248, 248, 249, 263, 1305, 1350
g__tag_struct_kids_1_seq 107
\g__tag_struct_label_num_prop . .
................... 84, 726, 865
\1__tag_struct_lang tl
............ 579, 1093, 1117, 1122
__tag_struct_mcid_dict:n
................ 98, 101, 215, 234
\c__tag_struct_null_tl 10, 349
\g__tag_struct_objR_seq 8
\1__tag_struct_parenttag NS_tl
........... 76, 762, 765, 769, 1175
\1__tag_struct_parenttag_tl
....... 76, 761, 764, 768, 770, 1175
__tag_struct_prop_gput:nnn .. 93
94, 95, 101, 111, 116, 121, 126,
131, 138, 164, 168, 177, 183, 188,
351, 364, 378, 784, 796, 810, 826,
841, 849, 914, 936, 979, 998, 1043,
1113, 1119, 1124, 1156, 1171, 1184,
1194, 1210, 1353, 1414, 1524, 1575
\g__tag_struct_ref_by_dest_prop . 91

__tag_struct_Ref_dest:nN 855, 876
__tag_struct_Ref_label:nN 855, 863
__tag_struct_Ref_num:nN 855, 889
__tag_struct_Ref_obj:nN 855, 855

\g__tag_struct_roletag NS_tl 76
\1__tag_struct_roletag NS_tl ...
............. 79, 1150, 1160, 1198
\1__tag_struct_roletag_tl
76, 1149, 1152, 1160, 1162, 1198
__tag_struct_set_attribute:
............... 23, 37, 1154, 1268

227

__tag_struct_set_tag_info:nnn .
.......... 159, 161, 175, 194, 1131
\g__tag_struct_stack_current_tl
16, 29, 31, 38, 69, 75, 104, 148,
154, 162, 208, 270, 274, 310, 344,
533, 538, 544, 1153, 1217, 1221,
1222, 1243, 1261, 1267, 1306, 1312
1318, 1324, 1351, 1357, 1363, 1369
\1__tag_struct_stack_parent_-
tmpa_tl .. 16, 471, 480, 497, 742,
1129, 1136, 1140, 1180, 1207, 1214,
1218, 1220, 1223, 1235, 1236, 1244
\g__tag_struct_stack_seq
.......... 12, 22, 25, 470, 723,
736, 1139, 1145, 1155, 1254, 1259, 1265
\c__tag_struct_StructElem_-

entries_seq 39
\c__tag_struct_StructTreeRoot_-
entries_seq 39

\g__tag_struct_tag_NS_tl 76, 695,
711, 714, 718, 1134, 1148, 1242, 1279

\g__tag_struct_tag_stack_seq . ..
................. 14, 50, 249,
250, 573, 588, 602, 1151, 1258, 1273

\g__tag_struct_tag_tl 76,
179, 180, 183, 314, 315, 419, 420,
694, 696, 710, 713, 717, 719, 1133,
1147, 1152, 1275, 1277, 1319, 1364

__tag_struct_use_check_parent_-

child:nn . 634, 634, 681, 1323, 1368
__tag_struct_write_obj 140
__tag_struct_write_obj:n

.................. 151, 428, 428
\1__tag_tag_stop_int 158, 162, 163,
171, 172, 179, 186, 187, 196, 197, 205
\g__tag_tagunmarked_bool 94, 250, 252
\1__tag_tmp_unused_tl 63, 130, 315,
322, 395, 398, 402, 419, 422, 423,
685, 688, 701, 704, 752, 755, 788, 1550
\1__tag_tmp_unused_t1l ,,\1__-
tag_Ref_tmpa_tl 60
\1__tag_tmpa_box
..... 60, 171, 177, 178, 182, 193, 194
\1__tag_tmpa_clist
60, 1502, 1503, 1536, 1537, 1539
\1__tag_tmpa_int 60,
90, 93, 98, 101, 105, 114, 430, 442, 444
\1__tag_tmpa_prop 60, 176, 189, 203, 205
\1__tag_tmpa_seq 51, 58, 59, 60, 319
321, 323, 324, 325, 326, 443, 446,
454, 455, 457, 458, 459, 466, 486,
496, 687, 691, 694, 695, 703, 707,
710, 711, 754, 758, 761, 762, 774,

775, 776, 1504, 1508, 1518, 1519,
1520, 1522, 1540, 1546, 1548, 1572
\1__tag_tmpa_str
42, 43, 48, 60, 262, 267, 272,
297, 302, 309, 399, 404, 416, 421,
780, 787, 792, 799, 806, 813, 819,
820, 822, 825, 829, 837, 844, 910, 917
\1__tag_tmpa_tl
43, 47, 49, 50, 51, 56, 60, 86, 88, 93,
94, 96, 98, 102, 106, 106, 108, 109,
113, 114, 116, 118, 119, 137, 138,
139, 141, 143, 144, 146, 177, 178,
180, 183, 184, 186, 191, 198, 199,
205, 205, 206, 209, 211, 214, 215,
220, 268, 269, 271, 275, 277, 288,
297, 299, 300, 302, 306, 307, 308,
308, 308, 311, 314, 345, 347, 349,
357, 376, 448, 453, 455, 455, 456,
457, 458, 463, 468, 469, 470, 475,
481, 483, 488, 514, 516, 525, 546,
549, 556, 564, 566, 575, 599, 601,
602, 604, 606, 606, 610, 620, 624,
645, 653, 655, 656, 658, 662, 667,
698, 702, 715, 717, 723, 725, 736,
738, 766, 768, 771, 772, 774, 932,
935, 1258, 1259, 1265, 1267, 1273,
1276, 1277, 1279, 1346, 1440, 1442,
1443, 1447, 1510, 1516, 1527, 1554
\1__tag_tmpb_box
........ 60, 172, 179, 180, 184, 186
\1__tag_tmpb_seq
........ 60, 1503, 1504, 1539, 1540
\1__tag_tmpb_t1l 200, 60, 89, 104, 118
120, 295, 301, 432, 456, 462, 484,
490, 518, 547, 550, 556, 568, 609,
611, 614, 616, 621, 625, 672, 680,
682, 683, 685, 689, 694, 699, 703,
716, 718, 767, 769, 865, 869, 878, 882
\1__tag_tmpc_tl 60, 485, 491
__tag_tree_fill_parenttree:
171, 172, 253
20, 20, 354
.. 78, 82,154
__tag_tree_lua_fill_parenttree:
.................. 233, 233, 250
\g__tag_tree_openaction_struct_-
tl 32, 38, 57
__tag_tree_parenttree_rerun_-
msg: 171, 220, 255

__tag_tree_update_openaction:

__tag_tree_final_checks:
\g__tag_tree_id_pad_int

........................ 42,75
__tag_tree_write_classmap:
286, 286, 369

86, 361

__tag_tree_write_idtree:

__tag_tree_write_namespaces:

322, 322, 373

__tag_tree_write_parenttree:

246, 246, 357

__tag_tree_write_rolemap: ..
.................. 263, 263, 365

__tag_tree_write_structelements:
.................. 147, 147, 377

__tag_tree_write_structtreeroot:

126, 126, 381

\g__tag_unique_cnt_int
96, 1064, 1068, 1071, 1081, 1085, 1089

__tag_whatsits:

36, 43, 48, 49, 52, 295, 296

tag-namespace,, (rolemap-key) 752
tag/check/parent-child 183
tag/check/parent-child-end 183
tag/struct/1 internal commands:
__tag/struct/1 31
tag/tree/namespaces internal commands:
__tag/tree/namespaces 321
tag/tree/parenttree internal commands:
__tag/tree/parenttree 154
tag/tree/rolemap internal commands:
__tag/tree/rolemap 262
tagabspage 8, 122
tagmcabs, 8, 122
\tagmcbegin 41, 186, 22
\tagmcend 41, 22
tagmcid ... L 8, 122
\tagmcifinTF 41, 39
\tagmcuse 41, 22
\tagpdfparaOff 43, 570
\tagpdfparaOn 43, 570
\tagpdfsetup 41, 69, 116, 117, 186, 6
\tagpdfsuppressmarks 438, 575
\tagstart 7, 182, 213
\tagstop 7, 181, 212
tagstruct 8, 122
\tagstructbegin 41, 152, 186, 45, 288
\tagstructend 41, 45, 289
tagstructobj 8, 122
\tagstructuse 41, 45
tagtag@LastPage internal commands:
\r__tagtag@LastPage 57
\tagtool 41,13
tagunmarked (deprecated) (key) ... 1,250
test/lang,(setup-key) 577
TEX and KTEX 26 commands:
@M .. 168
\@bsphack 110
\@esphack 112
\@gobble 31, 55
\@ifpackageloaded 22

228

\@kernel@after@foot 592
\@kernel@after@head 590
\@kernel@before@foot 591
\@kernel@before@head 587, 589
\@maxdepth 181
\@secondoftwo 31, 55
\c@chapter 360, 378
\on@line 483, 498, 514
tex commands:
\tex_botmarks:D 91
\tex_firstmarks:D 88
\tex_kern:D 184
\tex_marks:D 25, 34,47, 54, 65, 71
\tex_special:D 52
\tex_splitbotmarks:D 217
\tex_splitfirstmarks:D 197
texsource (key) 1, 920
\tiny 437, 448
title (key) 1, 722
title-o (key) 1, 722
tl commands:
\c_empty_tl 365, 385
\c_space_tl 55, 56, 58, 60
100, 104, 116, 167, 191, 197, 198,
216, 218, 220, 222, 259, 299, 388,
405, 425, 453, 859, 869, 882, 893,
960, 1235, 1318, 1363, 1447, 1519, 1565
\tl_clear:N

88, 89, 106, 177, 210, 211, 288, 397
\tl_const:Nn 10, 237
\tl_count:n 79, 83, 154
\tl_gput_left:Nn 1000
\tl_gput_right:Nn 165, 958
\tl_gset:Nn 18,

33, 38, 104, 225, 243, 286, 298, 331,
373, 390, 393, 694, 695, 710, 711,
717, 718, 965, 1153, 1267, 1275, 1279
\tl_gset_eq:NN 180, 315
\tl_head:N 655, 682
\tl_if_empty:NTF 43,
43, 109, 185, 198, 289, 307, 316,
335, 417, 656, 683, 772, 778, 820, 1117
\tl_if_empty:nTF
51, 69, 77, 89, 142, 196,
210, 259, 262, 266, 279, 294, 295,
297, 352, 371, 413, 440, 621, 629,
643, 670, 803, 819, 834, 925, 995, 1016

\tl_if_empty_p:n 310, 793
\tl_if_eq:NNTF 349, 501, 667
\tl_if_eq:NnTF 108

\tl_if_eq:nnTF 212, 240, 274, 278
\tl_if_exist:NTF 277, 346, 397, 953
\tl_if_head_eq_charcode:nNTF 49
\tl_if_in:nnTF 185

\tl_new:N 11, 12, 12, 13
14, 15, 16, 17, 19, 20, 22, 23, 24, 25,
26, 32, 33, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 76, 77, 78, 79, 80,
82, 86, 162, 170, 285, 330, 332, 333,
335, 347, 348, 500, 761, 963, 1093, 1477
\tl_put_left:Nn 590, 592
\tl_put_right:Nn
94, 104, 118, 195, 207,
251, 256, 266, 267, 281, 297,
302, 394, 403, 404, 405, 409,
418, 420, 421, 423, 589, 591,
867, 880, 891, 1407, 1563, 1570
1442, 1443
308

301,
414,
857,
\tl_remove_once:Nn
\tl_replace_once:Nnn
\tl_set:Nn
42, 81, 83, 86, 87, 118, 139, 160,
162, 180, 183, 189, 193, 197,
205, 206, 207, 209, 213, 217,
235, 238, 239, 242, 243, 244,
250, 271, 275, 302, 306, 309,
334, 338, 339, 342, 343, 347,
399, 419, 455, 508, 516, 518,
560, 566, 568, 601, 606, 611
629, 645, 655, 658, 662, 667,
682, 685, 689, 694, 707, 742,
762, 762, 768, 769, 772, 775,
790, 794, 1129, 1303, 1411, 1516, 1544
\tl_set_eq:NN 179, 314
\tl_show:N . 1217, 1218, 1568, 1574
\tl_tail:n 531
\tl_to_str:n
33, 48, 149, 202, 217, 524, 557

249,

\tl_trim_spaces:n 49

\tl_use:N 279, 941, 984, 1003, 1048
tree-mcid-index-wrong 21, 226
tree-statistic 20, 54
tree-struct-still-open 20, A7

U

uncompress (deprecated) (key) 237
unittag,(deprecated) 402
\NURSKIP © v vi 41
use commands:

\use:N 67, 235, 576, 1219

\use:n 41, 348

99, 102, 109, 138, 154, 159, 206,
238, 365, 385, 597, 606, 608, 610, 1276
\use_ii:nn 104, 119
135, 152, 157, 207, 239, 344, 594, 605
\use_none:n 81, 103, 118, 230
80, 1392
44, 70, 72

\use_none:nn
\UseExpandableTaggingSocket

229

\UseSocket 44
\UseStructureName . 338, 339, 752, 754, 774
\UseTaggingSocket 44,

45, 69, 72, 806, 813, 820, 827, 834,
841, 847, 854, 860, 867, 875, 888,
899, 912, 923, 936, 947, 960, 970, 983

\vbadness 168, 192

vbox commands:
\vbox_set_split_to_ht:NNn
\vbox_set_to_ht:Nnn
\vbox_unpack_drop:N

\vfuzz

viewer/startstructurey, (setup-key)

wrong-pdfversion

230

220

	Contents
	I
	1 Initialization and test if pdfmanagement is active.
	2 base package
	3 Package options
	4 Packages
	4.1 a LastPage label

	5 Variables
	6 Variants of l3 commands
	7 Label and Reference commands
	8 Setup label attributes
	9 Commands to fill seq and prop
	10 General tagging commands
	11 Keys for tagpdfsetup
	12 loading of engine/more dependent code

	II
	1 Commands
	2 Description of log messages
	2.1 \ShowTagging command
	2.2 Messages in checks and commands
	2.3 Messages from the ptagging code
	2.4 Warning messages from the lua-code
	2.5 Info messages from the lua-code
	2.6 Debug mode messages and code
	2.7 Messages

	3 Messages
	3.1 Messages related to mc-chunks
	3.2 Messages related to structures
	3.3 Attributes
	3.4 Roles
	3.5 Miscellaneous

	4 Retrieving data
	5 PDF version check
	6 User conditionals
	7 Internal checks
	7.1 checks for active tagging
	7.2 Checks related to structures
	7.3 Checks related to roles
	7.4 Check related to mc-chunks
	7.5 Checks related to the state of MC on a page or in a split stream
	7.6 Benchmarks

	III
	1 Setup commands
	2 Commands related to mc-chunks
	3 Commands related to structures
	4 Debugging
	5 Extension commands
	5.1 Fake space
	5.2 Tagging of paragraphs
	5.3 Header and footer
	5.4 Link tagging

	6 Socket support
	7 User commands and extensions of document commands
	8 Setup and preamble commands
	9 Commands for the mc-chunks
	10 Commands for the structure
	11 Socket support
	12 Debugging
	13 Commands to extend document commands
	13.1 Document structure
	13.2 Structure destinations
	13.3 Fake space
	13.4 Paratagging
	13.5 Language support
	13.6 Header and footer
	13.7 Links
	13.8 Attaching css-files for derivation

	IV
	1 Trees, pdfmanagement and finalization code
	1.1 Check structure
	1.2 Catalog: MarkInfo and StructTreeRoot and OpenAction
	1.3 Writing the IDtree
	1.4 Writing structure elements
	1.5 ParentTree
	1.6 Rolemap dictionary
	1.7 Classmap dictionary
	1.8 Namespaces
	1.9 Finishing the structure
	1.10 StructParents entry for Page

	V
	1 Public Commands
	2 Public keys
	3 Marked content code – shared
	3.1 Variables and counters
	3.2 Functions
	3.3 Keys

	VI
	1 Marked content code – generic mode
	1.1 Variables
	1.2 Functions
	1.3 Looking at MC marks in boxes
	1.4 Keys

	VII
	1 Marked content code – luamode code
	1.1 Commands
	1.2 Key definitions

	VIII
	1 Public Commands
	2 Public keys
	2.1 Keys for the structure commands
	2.2 Setup keys

	3 Variables
	3.1 Variables used by the keys
	3.2 Variables used by tagging code of basic elements

	4 Commands
	4.1 Initialization of the StructTreeRoot
	4.2 Adding the /ID key
	4.3 Filling in the tag info
	4.4 Handlings kids
	4.5 Output of the object
	4.6 Commands for the parent-child checks

	5 Keys
	6 User commands
	7 Attributes and attribute classes
	7.1 Variables
	7.2 Commands and keys

	IX
	1 Loading the lua
	2 User commands to access data
	3 Logging functions
	4 Helper functions
	4.1 Retrieve data functions
	4.2 Functions to insert the pdf literals

	5 Function for the real space chars
	6 Function for the tagging
	7 Parenttree
	8 parent-child rules
	9 Link annotations

	X
	1 Code related to roles and structure names
	1.1 Variables
	1.2 Namespaces
	1.3 Adding a new tag
	1.3.1 pdf 1.7 and earlier
	1.3.2 The pdf 2.0 version

	1.4 Helper command to read the data from files
	1.5 Reading the default data
	1.6 Parent-child rules
	1.6.1 Reading in the csv-files
	1.6.2 Retrieving the parent-child rule

	1.7 Key-val user interface

	XI
	1 Code for interword spaces

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W

