
tagpdf – LATEX kernel code for PDF tagging∗

Ulrike Fischer†

Released 2026-01-12

Contents

I 7

1 Initialization and test if pdfmanagement is active. 8

2 base package 8

3 Package options 9

4 Packages 9
4.1 a LastPage label . 9

5 Variables 9

6 Variants of l3 commands 11

7 Label and Reference commands 11

8 Setup label attributes 12

9 Commands to fill seq and prop 13

10 General tagging commands 13

11 Keys for tagpdfsetup 15

12 loading of engine/more dependent code 16

II 18

1 Commands 18
∗This file describes v0.99x, last revised 2026-01-12.
†E-mail: fischer@troubleshooting-tex.de

1

mailto:fischer@troubleshooting-tex.de

2 Description of log messages 18
2.1 \ShowTagging command . 18
2.2 Messages in checks and commands . 18
2.3 Messages from the ptagging code . 19
2.4 Warning messages from the lua-code . 19
2.5 Info messages from the lua-code . 19
2.6 Debug mode messages and code . 20
2.7 Messages . 20

3 Messages 21
3.1 Messages related to mc-chunks . 21
3.2 Messages related to structures . 22
3.3 Attributes . 25
3.4 Roles . 25
3.5 Miscellaneous . 29

4 Retrieving data 29

5 PDF version check 30

6 User conditionals 30

7 Internal checks 31
7.1 checks for active tagging . 31
7.2 Checks related to structures . 32
7.3 Checks related to roles . 33
7.4 Check related to mc-chunks . 34
7.5 Checks related to the state of MC on a page or in a split stream 37
7.6 Benchmarks . 40

III 41

1 Setup commands 41

2 Commands related to mc-chunks 41

3 Commands related to structures 41

4 Debugging 42

5 Extension commands 42
5.1 Fake space . 42
5.2 Tagging of paragraphs . 43
5.3 Header and footer . 43
5.4 Link tagging . 44

6 Socket support 44

7 User commands and extensions of document commands 45

8 Setup and preamble commands 45

2

9 Commands for the mc-chunks 45

10 Commands for the structure 46

11 Socket support 47

12 Debugging 48

13 Commands to extend document commands 52
13.1 Document structure . 52
13.2 Structure destinations . 53
13.3 Fake space . 53
13.4 Paratagging . 53
13.5 Language support . 60
13.6 Header and footer . 60
13.7 Links . 64
13.8 Attaching css-files for derivation . 68

IV 71

1 Trees, pdfmanagement and finalization code 71
1.1 Check structure . 71
1.2 Catalog: MarkInfo and StructTreeRoot and OpenAction 71
1.3 Writing the IDtree . 73
1.4 Writing structure elements . 74
1.5 ParentTree . 75
1.6 Rolemap dictionary . 78
1.7 Classmap dictionary . 79
1.8 Namespaces . 80
1.9 Finishing the structure . 80
1.10 StructParents entry for Page . 81

V 83

1 Public Commands 83

2 Public keys 84

3 Marked content code – shared 85
3.1 Variables and counters . 85
3.2 Functions . 87
3.3 Keys . 90

VI 92

3

1 Marked content code – generic mode 92
1.1 Variables . 92
1.2 Functions . 93
1.3 Looking at MC marks in boxes . 96
1.4 Keys . 103

VII 105

1 Marked content code – luamode code 105
1.1 Commands . 106
1.2 Key definitions . 111

VIII 114

1 Public Commands 114

2 Public keys 115
2.1 Keys for the structure commands . 115
2.2 Setup keys . 117

3 Variables 117
3.1 Variables used by the keys . 120
3.2 Variables used by tagging code of basic elements 121

4 Commands 121
4.1 Initialization of the StructTreeRoot . 121
4.2 Adding the /ID key . 123
4.3 Filling in the tag info . 123
4.4 Handlings kids . 124
4.5 Output of the object . 129
4.6 Commands for the parent-child checks 133

5 Keys 137

6 User commands 145

7 Attributes and attribute classes 154
7.1 Variables . 155
7.2 Commands and keys . 155

IX 159

1 Loading the lua 159

2 User commands to access data 163

3 Logging functions 164

4

4 Helper functions 166
4.1 Retrieve data functions . 166
4.2 Functions to insert the pdf literals . 169

5 Function for the real space chars 171

6 Function for the tagging 175

7 Parenttree 180

8 parent-child rules 182

9 Link annotations 185

X 186

1 Code related to roles and structure names 186
1.1 Variables . 186
1.2 Namespaces . 189
1.3 Adding a new tag . 190

1.3.1 pdf 1.7 and earlier . 192
1.3.2 The pdf 2.0 version . 193

1.4 Helper command to read the data from files 195
1.5 Reading the default data . 197
1.6 Parent-child rules . 198

1.6.1 Reading in the csv-files . 199
1.6.2 Retrieving the parent-child rule . 201

1.7 Key-val user interface . 207

XI 210

1 Code for interword spaces 210

Index 214

5

The tagpdf main module
Part of the tagpdf package

Ulrike Fischer
Version 0.99x, released 2026-01-12

6

Part I

\tag_suspend:n {⟨label⟩}
\tag_resume:n {⟨label⟩}
\tag_stop:n {⟨label⟩} (deprecated)
\tag_start:n {⟨label⟩} (deprecated)

We need commands to stop tagging in some places. They switches three local booleans
and also stop the counting of paragraphs. If they are nested an inner \tag_resume:n will
not restart tagging. ⟨label⟩ is only used in debugging messages to allow to follow the
nesting and to identify which code is disabling the tagging. The label is not expanded
so can be a single token, e.g. \caption. \tag_suspend:n and \tag_resume:n are the
l3-layer variants of \SuspendTagging and \ResumeTagging and will be provided by the
kernel in the next release.

\tag_suspend:n
\tag_resume:n
\tag_stop:n
\tag_start:n

deprecated These are variants of the above commands without the debuging level. They
are now deprecated and it is recommended to use the kernel command \SuspendTagging,
\ResumeTagging, \tag_suspend:n and \tag_resume:n instead.

\tag_stop:
\tag_start:
\tagstop
\tagstart

activate/spaces (setup key) activate/spaces activates the additional parsing needed for interword spaces. It re­
places the deprecated key interwordspace.

activate/mc (setup key)
activate-mc (deprecated) (setup key)

A key to activate the marked content code. It should be used only in special cases, e.g.
for debugging.

activate/tree (setup key)
activate-tree (deprecated) (setup key)

This key activates the code that finalize the various trees. It should be used only in
special cases, e.g. for debugging.

activate/struct (setup key)
activate-struct (deprecated) (setup key)

This key activates the code for structures. It should be used only in special cases, e.g.
for debugging.

activate/all (setup key)
activate-all (deprecated) (setup key)

This is a meta key for the three previous keys and is normally what should be used to
activate tagging.

activate/struct-dest (setup key)
no-struct-dest (deprecated) (setup key)

The key allows to suppress the creation of structure destinations

debug/log (setup key) The debug/log key takes currently the values none, v, vv, vvv, all. More details are
in tagpdf-checks.

activate/tagunmarked (setup key)
tagunmarked (deprecated) (setup key)

This key allows to set if (in luamode) unmarked text should be marked up as artifact.
The initial value is true.

activate/softhyphen (setup key) This key allows to activates automatic handling of hyphens inserted by hyphenation. It
only is used in luamode and replaces hyphens by U+00AD if the font supports this.

page/tabsorder (setup key)
tabsorder (deprecated) (setup key)

This sets the tabsorder on a page. The values are row, column, structure (default)
or none. Currently this is set more or less globally. More finer control can be added if
needed.

7

These are attributes used by the label/ref system.tagstruct
tagstructobj
tagabspage
tagmcabs
tagmcid

1 Initialization and test if pdfmanagement is active.
1 ⟨@@=tag⟩
2 ⟨∗package⟩
3 \ProvidesExplPackage {tagpdf} {2026-01-12} {0.99x}
4 { LaTeX kernel code for PDF tagging }
5

6 \IfPDFManagementActiveF
7 {
8 \PackageError{tagpdf}
9 {

10 PDF~resource~management~is~no~active!\MessageBreak
11 tagpdf~will~no~work.
12 }
13 {
14 Activate~it~with \MessageBreak
15 \string\DocumentMetadata{<options>}\MessageBreak
16 before~\string\documentclass
17 }
18 }
19 ⟨/package⟩

<*debug>
20 \ProvidesExplPackage {tagpdf-debug} {2026-01-12} {0.99x}
21 { debug code for tagpdf }
22 \@ifpackageloaded{tagpdf}{}{\PackageWarning{tagpdf-debug}{tagpdf~not~loaded,~quitting}\endinput}

</debug> We map the internal module name “tag” to “tagpdf” in messages.
23 ⟨∗package⟩
24 \prop_gput:Nnn \g_msg_module_name_prop { tag }{ tagpdf }
25 ⟨/package⟩

Debug mode has its special mapping:
26 ⟨∗debug⟩
27 \prop_gput:Nnn \g_msg_module_type_prop { tag / debug} {}
28 \prop_gput:Nnn \g_msg_module_name_prop { tag / debug }{tagpdf~DEBUG}
29 ⟨/debug⟩

2 base package
To avoid to have to test everywhere if tagpdf has been loaded and is active, we define a
base package with dummy functions

30 ⟨∗base⟩
31 \ProvidesExplPackage {tagpdf-base} {2026-01-12} {0.99x}
32 {part of tagpdf - provide base, no-op versions of the user commands }
33 ⟨/base⟩

8

3 Package options
The boolean is kept for now for compatibility, can go in 2026.

34 ⟨∗package⟩
35 \bool_new:N\g__tag_mode_lua_bool
36 \sys_if_engine_luatex:T {\bool_gset_true:N \g__tag_mode_lua_bool}
37 \DeclareOption {luamode} { }
38 \DeclareOption {genericmode}{ }
39 \ProcessOptions

4 Packages
To be on the safe side for now, load also the base definitions

40 \RequirePackage{tagpdf-base}
41 ⟨/package⟩

The no-op version should behave a near enough to the real code as possible, so we define
a command which a special in the relevant backends:

42 ⟨∗base⟩
43 \cs_new_protected:Npn __tag_whatsits: {}
44 \AddToHook{begindocument}
45 {
46 \str_case:onF { \c_sys_backend_str }
47 {
48 { luatex } { \cs_set_protected:Npn __tag_whatsits: {} }
49 { dvisvgm } { \cs_set_protected:Npn __tag_whatsits: {} }
50 }
51 {
52 \cs_set_protected:Npn __tag_whatsits: {\tex_special:D {} }
53 }
54 }
55 ⟨/base⟩

4.1 a LastPage label
With LaTeX 2025-06-01 we no longer need a special version as the label is now written
directly. To avoid problems with the xr package, we undefine the label command before
reading the aux-file.

56 ⟨∗package⟩
57 \AddToHook{begindocument/before}{\cs_undefine:N\r__tagtag@LastPage}
58 \AddToHook{enddocument/afterlastpage}
59 {\property_record:nn{@tag@LastPage}{abspage,tagmcabs,tagstruct}}

5 Variables
\l__tag_tmpa_tl
\l__tag_tmpb_tl
\l__tag_tmpc_tl

\l__tag_tmp_unused_tl \l__tag_Ref_tmpa_tl
\l__tag_get_tmpc_tl

\l__tag_get_parent_tmpa_tl
\l__tag_get_parent_tmpb_tl
\l__tag_get_parent_tmpc_tl
\l__tag_get_child_tmpa_tl
\l__tag_get_child_tmpb_tl
\l__tag_get_child_tmpc_tl

\l__tag_tmpa_str
\l__tag_tmpa_prop
\l__tag_tmpa_seq
\l__tag_tmpb_seq

\l__tag_tmpa_clist
\l__tag_tmpa_int
\l__tag_tmpa_box
\l__tag_tmpb_box

A few temporary variables

9

60 \tl_new:N \l__tag_tmpa_tl
61 \tl_new:N \l__tag_tmpb_tl
62 \tl_new:N \l__tag_tmpc_tl
63 \tl_new:N \l__tag_tmp_unused_tl
64 \tl_new:N \l__tag_Ref_tmpa_tl
65 \tl_new:N \l__tag_get_tmpc_tl
66 \tl_new:N \l__tag_get_parent_tmpa_tl
67 \tl_new:N \l__tag_get_parent_tmpb_tl
68 \tl_new:N \l__tag_get_parent_tmpc_tl
69 \tl_new:N \l__tag_get_child_tmpa_tl
70 \tl_new:N \l__tag_get_child_tmpb_tl
71 \tl_new:N \l__tag_get_child_tmpc_tl
72 \str_new:N \l__tag_tmpa_str
73 \prop_new:N \l__tag_tmpa_prop
74 \seq_new:N \l__tag_tmpa_seq
75 \seq_new:N \l__tag_tmpb_seq
76 \clist_new:N \l__tag_tmpa_clist
77 \int_new:N \l__tag_tmpa_int
78 \box_new:N \l__tag_tmpa_box
79 \box_new:N \l__tag_tmpb_box

(End of definition for \l__tag_tmpa_tl and others.)

Attribute lists for the label command. We have a list for mc-related labels, and one for
structures.

\c__tag_property_mc_clist
\c__tag_property_struct_clist

80 \clist_const:Nn \c__tag_property_mc_clist {tagabspage,tagmcabs,tagmcid}
81 \clist_const:Nn \c__tag_property_struct_clist {tagstruct,tagstructobj}

(End of definition for \c__tag_property_mc_clist and \c__tag_property_struct_clist.)

\l__tag_loglevel_int This integer hold the log-level and so allows to control the messages. TODO: a list which
log-level shows what is needed. The current behaviour is quite ad-hoc.

82 \int_new:N \l__tag_loglevel_int

(End of definition for \l__tag_loglevel_int.)

\g__tag_active_space_bool
\g__tag_active_mc_bool

\g__tag_active_tree_bool
\g__tag_active_struct_bool

\g__tag_active_struct_dest_bool

These booleans should help to control the global behaviour of tagpdf. Ideally it should
more or less do nothing if all are false. The space-boolean controls the interword space
code, the mc-boolean activates \tag_mc_begin:n, the tree-boolean activates writing the
finish code and the pdfmanagement related commands, the struct-boolean activates the
storing of the structure data. In a normal document all should be active, the split is only
there for debugging purpose. Structure destination will be activated automatically, but
with the boolean struct-dest-boolean one can suppress them. Also we assume currently
that they are set only at begin document. But if some control passing over groups are
needed they could be perhaps used in a document too. TODO: check if they are used
everywhere as needed and as wanted.

83 \bool_new:N \g__tag_active_space_bool
84 \bool_new:N \g__tag_active_mc_bool
85 \bool_new:N \g__tag_active_tree_bool
86 \bool_new:N \g__tag_active_struct_bool
87 \bool_new:N \g__tag_active_struct_dest_bool
88 \bool_gset_true:N \g__tag_active_struct_dest_bool

10

(End of definition for \g__tag_active_space_bool and others.)

\l__tag_active_mc_bool
\l__tag_active_struct_bool
\l__tag_active_socket_bool

These booleans should help to control the local behaviour of tagpdf. In some cases it
could e.g. be necessary to stop tagging completely. As local booleans they respect groups.
TODO: check if they are used everywhere as needed and as wanted.

89 \bool_new:N \l__tag_active_mc_bool
90 \bool_set_true:N \l__tag_active_mc_bool
91 \bool_new:N \l__tag_active_struct_bool
92 \bool_set_true:N \l__tag_active_struct_bool
93 \bool_new:N \l__tag_active_socket_bool

(End of definition for \l__tag_active_mc_bool , \l__tag_active_struct_bool , and \l__tag_active_­
socket_bool.)

\g__tag_tagunmarked_bool This boolean controls if the code should try to automatically tag parts not in mc-chunk.
It is currently only used in luamode. It would be possible to used it in generic mode, but
this would create quite a lot empty artifact mc-chunks.

94 \bool_new:N \g__tag_tagunmarked_bool

(End of definition for \g__tag_tagunmarked_bool.)

\g__tag_softhyphen_bool This boolean controls if the code should try to automatically handle hyphens from hy­
phenation. It is currently only used in luamode.

95 \bool_new:N \g__tag_softhyphen_bool

(End of definition for \g__tag_softhyphen_bool.)

\g__tag_unique_cnt_int If tagpdf has to create unique names (e.g. for object names when embedding files) it can
use this integer to get an unique name. At every use it should be increased

96 \int_new:N \g__tag_unique_cnt_int

(End of definition for \g__tag_unique_cnt_int.)

6 Variants of l3 commands
97 \prg_generate_conditional_variant:Nnn \pdf_object_if_exist:n {e}{T,F,TF}
98 \cs_generate_variant:Nn \pdf_object_ref:n {e}
99 \cs_generate_variant:Nn \pdfannot_dict_put:nnn {nne}

100 \cs_generate_variant:Nn \pdffile_embed_stream:nnn {nee,oee}
101 \cs_generate_variant:Nn \prop_gput:Nnn {Nee,Nen} %** unneeded
102 \cs_generate_variant:Nn \prop_put:Nnn {Nee} %** unneeded
103 \cs_generate_variant:Nn \prop_item:Nn {No,Ne} %** unneeded
104 \cs_generate_variant:Nn \seq_set_split:Nnn{Nno}
105 \cs_generate_variant:Nn \str_set_convert:Nnnn {Nonn, Noon, Nnon }
106 \cs_generate_variant:Nn \clist_map_inline:nn {on}
107 \cs_generate_variant:Nn \pdffile_embed_file:nnn {eee}

7 Label and Reference commands
The code uses mostly the kernel properties but need a few local variants.

11

__tag_property_record:nn The command to record a property while preserving the spaces similar to the standard
\label.

108 \cs_new_protected:Npn __tag_property_record:nn #1#2
109 {
110 \@bsphack
111 \property_record:nn{#1}{#2}
112 \@esphack
113 }
114

And a few variants

115 \cs_generate_variant:Nn \property_ref:nnn {enn}
116 \cs_generate_variant:Nn \property_ref:nn {en}
117 \cs_generate_variant:Nn __tag_property_record:nn {en,eo}

(End of definition for __tag_property_record:nn.)

__tag_property_ref_lastpage:nn A command to retrieve the lastpage label, this will be adapted when there is a proper,
kernel lastpage label.

118 \cs_new:Npn __tag_property_ref_lastpage:nn #1 #2
119 {
120 \property_ref:nnn {@tag@LastPage}{#1}{#2}
121 }

(End of definition for __tag_property_ref_lastpage:nn.)

8 Setup label attributes
tagstruct

tagstructobj
tagabspage

tagmcabs
tagmcid

This are attributes used by the label/ref system. With structures we store the structure
number tagstruct and the object reference tagstructobj. The second is needed to be
able to reference a structure which hasn’t been created yet. The alternative would be to
create the object in such cases, but then we would have to check the object existence all
the time.
With mc-chunks we store the absolute page number tagabspage, the absolute id
tagmcabc, and the id on the page tagmcid.

122 \property_new:nnnn
123 { tagstruct } { now }
124 {1} { \int_use:N \c@g__tag_struct_abs_int }
125 \property_new:nnnn { tagstructobj } { now } {}
126 {
127 \pdf_object_ref_indexed:nn { __tag/struct } { \c@g__tag_struct_abs_int }
128 }
129 \property_new:nnnn
130 { tagabspage } { shipout }
131 {0} { \int_use:N \g_shipout_readonly_int }
132 \property_new:nnnn { tagmcabs } { now }
133 {0} { \int_use:N \c@g__tag_MCID_abs_int }
134

12

135 \flag_new:n { __tag/mcid }
136 \property_new:nnnn {tagmcid } { shipout }
137 {0} { \flag_height:n { __tag/mcid } }
138

(End of definition for tagstruct and others. These functions are documented on page 8.)

9 Commands to fill seq and prop
With most engines these are simply copies of the expl3 commands, but luatex will over­
write them, to store the data also in lua tables.

__tag_prop_new:N
__tag_prop_new_linked:N

__tag_seq_new:N
__tag_prop_gput:Nnn

__tag_seq_gput_right:Nn
__tag_seq_item:cn
__tag_prop_item:cn

__tag_seq_show:N
__tag_prop_show:N

139 \cs_set_eq:NN __tag_prop_new:N \prop_new:N
140 \cs_set_eq:NN __tag_prop_new_linked:N \prop_new_linked:N
141 \cs_set_eq:NN __tag_seq_new:N \seq_new:N
142 \cs_set_eq:NN __tag_prop_gput:Nnn \prop_gput:Nnn
143 \cs_set_eq:NN __tag_seq_gput_right:Nn \seq_gput_right:Nn
144 \cs_set_eq:NN __tag_seq_gput_left:Nn \seq_gput_left:Nn
145 \cs_set_eq:NN __tag_seq_item:cn \seq_item:cn
146 \cs_set_eq:NN __tag_prop_item:cn \prop_item:cn
147 \cs_set_eq:NN __tag_seq_show:N \seq_show:N
148 \cs_set_eq:NN __tag_prop_show:N \prop_show:N
149 % cnx temporary needed for latex-lab-graphic code
150 \cs_generate_variant:Nn __tag_prop_gput:Nnn { Nen, Nee, Nne, Nno, cnn, cen, cne, cno, cnx}
151 \cs_generate_variant:Nn __tag_seq_gput_right:Nn { Ne , No, cn, ce }
152 \cs_generate_variant:Nn __tag_seq_gput_left:Nn { ce }
153 \cs_generate_variant:Nn __tag_prop_new:N { c }
154 \cs_generate_variant:Nn __tag_seq_new:N { c }
155 \cs_generate_variant:Nn __tag_seq_show:N { c }
156 \cs_generate_variant:Nn __tag_prop_show:N { c }
157 ⟨/package⟩

(End of definition for __tag_prop_new:N and others.)

10 General tagging commands
\tag_suspend:n
\tag_resume:n

\tag_stop:
\tag_start:
\tag_stop:n

\tag_start:n

We need commands to stop tagging in some places. They switch local booleans and also
stop the counting of paragraphs. The commands keep track of the nesting with a local
counter. Tagging only is only restarted at the outer level, if the current level is 1. The
commands with argument allow to give a label. This is only used in debugging messages
to allow to follow the nesting. The label is not expand so can e.g. be a single command
token.

\l__tag_tag_stop_int

When stop/start pairs are nested we do not want the inner start command to restart
tagging. To control this we use a local int: The stop command will increase it. The
starting will decrease it and only restart tagging, if it is zero. This will replace the label
version.

158 ⟨∗package | debug⟩
159 ⟨package⟩\int_new:N \l__tag_tag_stop_int

13

160 \cs_set_protected:Npn \tag_stop:
161 {
162 ⟨debug⟩ \msg_note:nne {tag / debug }{tag-suspend}{ \int_use:N \l__tag_tag_stop_int }
163 \int_incr:N \l__tag_tag_stop_int
164 \bool_set_false:N \l__tag_active_struct_bool
165 \bool_set_false:N \l__tag_active_mc_bool
166 \bool_set_false:N \l__tag_active_socket_bool
167 __tag_stop_para_ints:
168 }
169 \cs_set_protected:Npn \tag_start:
170 {
171 \int_if_zero:nF { \l__tag_tag_stop_int } { \int_decr:N \l__tag_tag_stop_int }
172 \int_if_zero:nT { \l__tag_tag_stop_int }
173 {
174 \bool_set_true:N \l__tag_active_struct_bool
175 \bool_set_true:N \l__tag_active_mc_bool
176 \bool_set_true:N \l__tag_active_socket_bool
177 __tag_start_para_ints:
178 }
179 ⟨debug⟩ \msg_note:nne {tag / debug }{tag-resume}{ \int_use:N \l__tag_tag_stop_int }
180 }
181 \cs_set_eq:NN\tagstop\tag_stop:
182 \cs_set_eq:NN\tagstart\tag_start:

183 \cs_set_protected:Npn \tag_suspend:n #1
184 {
185 ⟨debug⟩ \msg_note:nnee {tag / debug }{tag-suspend}
186 ⟨debug⟩ { \int_use:N \l__tag_tag_stop_int }{\exp_not:n{#1}}
187 \int_incr:N \l__tag_tag_stop_int
188 \bool_set_false:N \l__tag_active_struct_bool
189 \bool_set_false:N \l__tag_active_mc_bool
190 \bool_set_false:N \l__tag_active_socket_bool
191 __tag_stop_para_ints:
192 }
193 \cs_set_eq:NN \tag_stop:n \tag_suspend:n
194 \cs_set_protected:Npn \tag_resume:n #1
195 {
196 \int_if_zero:nF { \l__tag_tag_stop_int } { \int_decr:N \l__tag_tag_stop_int }
197 \int_if_zero:nT { \l__tag_tag_stop_int }
198 {
199 \bool_set_true:N \l__tag_active_struct_bool
200 \bool_set_true:N \l__tag_active_mc_bool
201 \bool_set_true:N \l__tag_active_socket_bool
202 __tag_start_para_ints:
203 }
204 ⟨debug⟩ \msg_note:nnee {tag / debug }{tag-resume}
205 ⟨debug⟩ { \int_use:N \l__tag_tag_stop_int }{\exp_not:n{#1}}
206 }
207 \cs_set_eq:NN \tag_start:n \tag_resume:n
208 ⟨/package | debug⟩
209 ⟨∗base⟩
210 \cs_new_protected:Npn \tag_stop:{}
211 \cs_new_protected:Npn \tag_start:{}
212 \cs_new_protected:Npn \tagstop{}

14

213 \cs_new_protected:Npn \tagstart{}
214 \cs_new_protected:Npn \tag_stop:n #1 {}
215 \cs_new_protected:Npn \tag_start:n #1 {}

Until the commands are provided by the kernel we provide them here too

216 \cs_set_eq:NN \tag_suspend:n \tag_stop:n
217 \cs_set_eq:NN \tag_resume:n \tag_start:n
218 ⟨/base⟩

(End of definition for \tag_suspend:n and others. These functions are documented on page 7.)

11 Keys for tagpdfsetup
TODO: the log-levels must be sorted

activate/mc (setup key)
activate/tree (setup key)

activate/struct (setup key)
activate/all (setup key)

activate/struct-dest (setup key)

Keys to (globally) activate tagging. activate/spaces activates the additional parsing
needed for interword spaces. It is defined in tagpdf-space. activate/struct-dest allows
to activate or suppress structure destinations.

219 ⟨∗package⟩
220 \keys_define:nn { __tag / setup }
221 {
222 activate/mc .bool_gset:N = \g__tag_active_mc_bool,
223 activate/tree .bool_gset:N = \g__tag_active_tree_bool,
224 activate/struct .bool_gset:N = \g__tag_active_struct_bool,
225 activate/all .meta:n =
226 {activate/mc={#1},activate/tree={#1},activate/struct={#1}},
227 activate/all .default:n = true,
228 activate/struct-dest .bool_gset:N = \g__tag_active_struct_dest_bool,

old, deprecated names

229 activate-mc .bool_gset:N = \g__tag_active_mc_bool,
230 activate-tree .bool_gset:N = \g__tag_active_tree_bool,
231 activate-struct .bool_gset:N = \g__tag_active_struct_bool,
232 activate-all .meta:n =
233 {activate/mc={#1},activate/tree={#1},activate/struct={#1}},
234 activate-all .default:n = true,
235 no-struct-dest .bool_gset_inverse:N = \g__tag_active_struct_dest_bool,

debug/show (setup key) Subkeys/values are defined in various other places.

236 debug/show .choice:,

debug/log (setup key)
debug/uncompress (setup key)
log (deprecated) (setup key)

uncompress (deprecated) (setup key)

The log takes currently the values none, v, vv, vvv, all. The description of the log
levels is in tagpdf-checks.

237 debug/log .choice:,
238 debug/log / none .code:n = {\int_set:Nn \l__tag_loglevel_int { 0 }},
239 debug/log / v .code:n =
240 {

15

241 \int_set:Nn \l__tag_loglevel_int { 1 }
242 \cs_set_protected:Nn __tag_check_typeout_v:n { \iow_term:e {##1} }
243 },
244 debug/log / vv .code:n = {\int_set:Nn \l__tag_loglevel_int { 2 }},
245 debug/log / vvv .code:n = {\int_set:Nn \l__tag_loglevel_int { 3 }},
246 debug/log / all .code:n = {\int_set:Nn \l__tag_loglevel_int { 10 }},
247 debug/uncompress .code:n = { \pdf_uncompress: },

deprecated but still needed as the documentmetadata key argument uses it.

248 log .meta:n = {debug/log={#1}},
249 uncompress .code:n = { \pdf_uncompress: },

activate/tagunmarked (setup key)
tagunmarked (deprecated) (setup key)

This key allows to set if (in luamode) unmarked text should be marked up as artifact.
The initial value is true.

250 activate/tagunmarked .bool_gset:N = \g__tag_tagunmarked_bool,
251 activate/tagunmarked .initial:n = true,

deprecated name

252 tagunmarked .bool_gset:N = \g__tag_tagunmarked_bool,

activate/softhyphen (setup key) This key activates (in luamode) the handling of soft hyphens.

253 activate/softhyphen .bool_gset:N = \g__tag_softhyphen_bool,
254 activate/softhyphen .initial:n = true,

page/tabsorder (setup key)
tabsorder (deprecated) (setup key)

This sets the tabsorder on a page. The values are row, column, structure (default)
or none. Currently this is set more or less globally. More finer control can be added if
needed.

255 page/tabsorder .choice:,
256 page/tabsorder / row .code:n =
257 \pdfmanagement_add:nnn { Page } {Tabs}{/R},
258 page/tabsorder / column .code:n =
259 \pdfmanagement_add:nnn { Page } {Tabs}{/C},
260 page/tabsorder / structure .code:n =
261 \pdfmanagement_add:nnn { Page } {Tabs}{/S},
262 page/tabsorder / none .code:n =
263 \pdfmanagement_remove:nn {Page} {Tabs},
264 page/tabsorder .initial:n = structure,

deprecated name

265 tabsorder .meta:n = {page/tabsorder={#1}},
266 }

12 loading of engine/more dependent code
267 \sys_if_engine_luatex:T
268 {

16

269 \file_input:n {tagpdf-luatex.def}
270 }
271 ⟨/package⟩

272 ⟨∗mcloading⟩
273 \bool_if:NTF \g__tag_mode_lua_bool
274 {
275 \RequirePackage {tagpdf-mc-code-lua}
276 }
277 {
278 \RequirePackage {tagpdf-mc-code-generic} %
279 }
280 ⟨/mcloading⟩
281 ⟨∗debug⟩
282 \bool_if:NTF \g__tag_mode_lua_bool
283 {
284 \RequirePackage {tagpdf-debug-lua}
285 }
286 {
287 \RequirePackage {tagpdf-debug-generic} %
288 }
289 ⟨/debug⟩

The tagpdf-checks module
Messages and check code
Part of the tagpdf package

Ulrike Fischer
Version 0.99x, released 2026-01-12

17

Part II

1 Commands

This command tests if tagging is active. It only gives true if all tagging has been activated,
and if tagging hasn’t been stopped locally.

\tag_if_active_p: ⋆
\tag_if_active:TF ⋆

\tag_get:n {⟨keyword⟩}

This is a generic command to retrieve data for the current structure or mc-chunk. Cur­
rently the only sensible values for the argument ⟨keyword⟩ are mc_tag, struct_tag,
struct_id and struct_num.

\tag_get:n ⋆

\tag_if_box_tagged:NTF ⟨box⟩ {⟨true code⟩} {⟨false code⟩}

This tests if a box contains tagging commands. It relies currently on that the code,
that saved the box, correctly sets the command \l_tag_box_\int_use:N #1_tl to a
positive value. The LaTeX commands will do that automatically at some time but it is
in the responsibility of the user to ensure that when using low-level code. If the internal
command doesn’t exist the box is assumed to be untagged.

\tag_if_box_tagged_p:N ⋆
\tag_if_box_tagged:NTF ⋆

2 Description of log messages
2.1 \ShowTagging command
Argument type note
\ShowTaggingmc-data = num log+term lua-only
\ShowTaggingmc-current log+term
\ShowTaggingstruck-stack= [log|show] log or term+stop
\ShowTaggingdebug/structures = num log+termn debug mode only

2.2 Messages in checks and commands
command message action remark
\@@_check_structure_has_tag:n struct-missing-tag error
\@@_check_structure_tag:N role-unknown-tag warning
\@@_check_info_closing_struct:n struct-show-closing info log-level>0
\@@_check_no_open_struct: struct-faulty-nesting error TODO: error only with 1?
\@@_check_struct_used:n struct-used-twice warning
\@@_check_add_tag_role:nn role-missing, role-tag, role-unknown warning, info (>0), warning
\@@_check_mc_if_nested:, mc-nested warning
\@@_check_mc_if_open: mc-not-open warning only generic (?)
\@@_check_mc_pushed_popped:nn mc-pushed, mc-popped info (2), info+seq_log (>2)
\@@_check_mc_tag:N mc-tag-missing, role-unknown-tag error (missing), warning (unknown).
\@@_check_mc_used:n mc-used-twice warning TODO: review the sense of this test!
\@@_check_show_MCID_by_page: currently unused
\tag_mc_use:n mc-label-unknown, mc-used-twice warning in mc-shared
\role_add_tag:nn new-tag info (>0) in roles

sys-no-interwordspace warning space module, only xetex/dvi
\@@_struct_write_obj:n struct-no-objnum error in struct module
\@@_struct_write_obj:n struct-orphan warning in struct module
\tag_struct_begin:n struct-faulty-nesting error
\@@_struct_insert_annot:nn struct-faulty-nesting error
tag_struct_use:n struct-label-unknown warning
attribute-class, attribute attr-unknown error
\@@_tree_fill_parenttree: tree-mcid-index-wrong warning TODO: should trigger a standard rerun message.
in enddocument/info-hook para-hook-count-wrong error (warning?)

18

2.3 Messages from the ptagging code
A few messages are issued in generic mode from the code which reinserts missing
TMB/TME. This is currently done if log-level is larger than zero. TODO: reconsider
log-level and messages when this code settles down.

2.4 Warning messages from the lua-code
The messages are triggered if the log-level is at least equal to the number.

message log-level remark
WARN TAG-NOT-TAGGED: 1
WARN TAG-OPEN-MC: 1
WARN SHIPOUT-MC-OPEN: 1
WARN SHIPOUT-UPS: 0 shouldn’t happen
WARN TEX-MC-INSERT-MISSING: 0 shouldn’t happen
WARN TEX-MC-INSERT-NO-KIDS: 2 e.g. from empty hbox

2.5 Info messages from the lua-code
The messages are triggered if the log-level is at least equal to the number. TAG messages
are from the traversing function, TEX from code used in the tagpdf-mc module. PARENTREE
is the code building the parenttree.

message log-level remark
INFO SHIPOUT-INSERT-LAST-EMC 3 finish of shipout code
INFO SPACE-FUNCTION-FONT 3 interwordspace code
INFO TAG-ABSPAGE 3
INFO TAG-ARGS 4
INFO TAG-ENDHEAD 4
INFO TAG-ENDHEAD 4
INFO TAG-HEAD 3
INFO TAG-INSERT-ARTIFACT 3
INFO TAG-INSERT-BDC 3
INFO TAG-INSERT-EMC 3
INFO TAG-INSERT-TAG 3
INFO TAG-KERN-SUBTYPE 4
INFO TAG-MATH-SUBTYPE 4
INFO TAG-MC-COMPARE 4
INFO TAG-MC-INTO-PAGE 3
INFO TAG-NEW-MC-NODE 4
INFO TAG-NODE 3
INFO TAG-NO-HEAD 3
INFO TAG-NOT-TAGGED 2 replaced by artifact
INFO TAG-QUITTING-BOX 4
INFO TAG-STORE-MC-KID 4
INFO TAG-TRAVERSING-BOX 3
INFO TAG-USE-ACTUALTEXT 3
INFO TAG-USE-ALT 3
INFO TAG-USE-RAW 3
INFO TEX-MC-INSERT-KID 3

19

message log-level remark
INFO TEX-MC-INSERT-KID-TEST 4
INFO TEX-MC-INTO-STRUCT 3
INFO TEX-STORE-MC-DATA 3
INFO TEX-STORE-MC-KID 3
INFO PARENTTREE-CHUNKS 3
INFO PARENTTREE-NO-DATA 3
INFO PARENTTREE-NUM 3
INFO PARENTTREE-NUMENTRY 3
INFO PARENTTREE-STRUCT-OBJREF 4

2.6 Debug mode messages and code
If the package tagpdf-debug is loaded a number of commands are redefined and en­
hanced with additional commands which can be used to output debug messages or
collect statistics. The commands are present but do nothing if the log-level is zero.
command name action remark
\tag_mc_begin:n mc-begin-insert msg

mc-begin-ignore msg if inactive

2.7 Messages

Various messages related to mc-chunks. TODO document their meaning.mc-nested
mc-tag-missing
mc-label-unknown
mc-used-twice
mc-not-open
mc-pushed
mc-popped
mc-current

Various messages related to structure. Check the definition in the code for their meaning
and the arguments they take.

struct-unknown
struct-no-objnum
struct-orphan
struct-faulty-nesting
struct-missing-tag
struct-used-twice
struct-label-unknown
struct-show-closing

Message issued at the end of the compilation if there are (beside Root) other open struc­
tures on the stack.

tree-struct-still-open

Message issued at the end of the compilation showing the number of objects to writetree-statistic

20

These two messages are used in debug mode to show the current structures in the log
and terminal.

show-struct
show-kids

Message if an attribute i sunknown.attr-unknown

Messages related to role mapping.role-missing
role-unknown
role-unknown-tag
role-unknown-NS
role-tag
new-tag
role-parent-child-result
role-remapping

Used in the tree code, typically indicates the document must be rerun.tree-mcid-index-wrong

Message if an engine doesn’t support inter word spacessys-no-interwordspace

Message if the number of begin paragraph and end paragraph differ. This normally means
faulty structure.

para-hook-count-wrong

1 ⟨@@=tag⟩
2 ⟨∗header⟩
3 \ProvidesExplPackage {tagpdf-checks-code} {2026-01-12} {0.99x}
4 {part of tagpdf - code related to checks, conditionals, debugging and messages}
5 ⟨/header⟩

3 Messages
3.1 Messages related to mc-chunks

mc-nested This message is issue is a mc is opened before the previous has been closed. This is
not relevant for luamode, as the attributes don’t care about this. It is used in the
\@@_check_mc_if_nested: test.

6 ⟨∗package⟩
7 \msg_new:nnn { tag } {mc-nested} { nested~marked~content~found~-~mcid~#1 }

(End of definition for mc-nested. This function is documented on page 20.)

mc-tag-missing If the tag is missing

8 \msg_new:nnn { tag } {mc-tag-missing} { MC-tag~missing;~#1~used~instead~-~mcid~#2 }

(End of definition for mc-tag-missing. This function is documented on page 20.)

21

mc-label-unknown If the label of a mc that is used in another place is not known (yet) or has been undefined
as the mc was already used.

9 \msg_new:nnn { tag } {mc-label-unknown}
10 { label~#1~unknown~or~has~been~already~used.\\
11 Either~rerun~or~remove~one~of~the~uses. }

(End of definition for mc-label-unknown. This function is documented on page 20.)

mc-used-twice An mc-chunk can be inserted only in one structure. This indicates wrong coding and so
should at least give a warning.

12 \msg_new:nnn { tag } {mc-used-twice} { mc~#1~has~been~already~used }

(End of definition for mc-used-twice. This function is documented on page 20.)

mc-not-open This is issued if a \tag_mc_end: is issued wrongly, wrong coding.

13 \msg_new:nnn { tag } {mc-not-open} { there~is~no~mc~to~end~at~#1 }

(End of definition for mc-not-open. This function is documented on page 20.)

mc-pushed
mc-popped

Informational messages about mc-pushing.

14 \msg_new:nnn { tag } {mc-pushed} { #1~has~been~pushed~to~the~mc~stack}
15 \msg_new:nnn { tag } {mc-popped} { #1~has~been~removed~from~the~mc~stack }

(End of definition for mc-pushed and mc-popped. These functions are documented on page 20.)

mc-current Informational messages about current mc state.

16 \msg_new:nnn { tag } {mc-current}
17 { current~MC:~
18 \bool_if:NTF\g__tag_in_mc_bool
19 {abscnt=__tag_get_mc_abs_cnt:,~tag=\g__tag_mc_key_tag_tl}
20 {no~MC~open,~current~abscnt=__tag_get_mc_abs_cnt:"}
21 }

(End of definition for mc-current. This function is documented on page 20.)

3.2 Messages related to structures
struct-unknown if for example a parent key value points to structure that doesn’t exist (yet)

22 \msg_new:nnn { tag } {struct-unknown}
23 { structure~with~number~#1~doesn't~exist\\ #2 }

(End of definition for struct-unknown. This function is documented on page 20.)

struct-no-objnum Should not happen …

24 \msg_new:nnn { tag } {struct-no-objnum} { objnum~missing~for~structure~#1 }

(End of definition for struct-no-objnum. This function is documented on page 20.)

22

struct-orphan This indicates that there is a structure which has kids but no parent. This can happen
if a structure is stashed but then not used.

25 \msg_new:nnn { tag } {struct-orphan}
26 {
27 Structure~#1~has~#2~kids~but~no~parent.\\
28 It~is~turned~into~an~artifact.\\
29 Did~you~stashed~a~structure~and~then~didn't~use~it?
30 }
31

(End of definition for struct-orphan. This function is documented on page 20.)

struct-faulty-nesting This indicates that there is somewhere one \tag_struct_end: too much. This should
be normally an error.

32 \msg_new:nnn { tag }
33 {struct-faulty-nesting}
34 { there~is~no~open~structure~on~the~stack }

(End of definition for struct-faulty-nesting. This function is documented on page 20.)

struct-missing-tag A structure must have a tag.

35 \msg_new:nnn { tag } {struct-missing-tag} { a~structure~must~have~a~tag! }

(End of definition for struct-missing-tag. This function is documented on page 20.)

struct-used-twice

36 \msg_new:nnn { tag } {struct-used-twice}
37 { structure~with~label~#1~has~already~been~used}

(End of definition for struct-used-twice. This function is documented on page 20.)

struct-label-unknown label is unknown, typically needs a rerun.

38 \msg_new:nnn { tag } {struct-label-unknown}
39 { structure~with~label~#1~is~unknown~rerun}

(End of definition for struct-label-unknown. This function is documented on page 20.)

struct-show-closing Informational message shown if log-mode is high enough

40 \msg_new:nnn { tag } {struct-show-closing}
41 { closing~structure~#1~tagged~\use:e{\prop_item:cn{g__tag_struct_#1_prop}{S}} }

(End of definition for struct-show-closing. This function is documented on page 20.)

struct-Ref-unknown This message is issued at the end, when the Ref keys are updated. TODO: in debug
mode it should report more info about the structure.

42 \msg_new:nnn { tag } {struct-Ref-unknown}
43 {
44 #1~has~no~related~structure.\\
45 /Ref~not~updated.
46 }

23

(End of definition for struct-Ref-unknown. This function is documented on page ??.)

tree-struct-still-open Message issued at the end if there are beside Root other open structures on the stack.

47 \msg_new:nnn { tag } {tree-struct-still-open}
48 {
49 There~are~still~open~structures~on~the~stack!\\
50 The~stack~contains~\seq_use:Nn\g__tag_struct_tag_stack_seq{,}.\\
51 The~structures~are~automatically~closed,\\
52 but~their~nesting~can~be~wrong.
53 }

(End of definition for tree-struct-still-open. This function is documented on page 20.)

tree-statistic Message issued at the end showing the estimated number of structures and MC-childs

54 \msg_new:nnn { tag } {tree-statistic}
55 {
56 Finalizing~the~tagging~structure:\\
57 Writing~out~\c_tilde_str
58 \int_use:N\c@g__tag_struct_abs_int\c_space_tl~structure~objects\\
59 with~\c_tilde_str
60 \int_use:N\c@g__tag_MCID_abs_int\c_space_tl'MC'~leaf~nodes.\\
61 Be~patient~if~there~are~lots~of~objects!
62 }
63 ⟨/package⟩

(End of definition for tree-statistic. This function is documented on page 20.)

The following messages are only needed in debug mode.

show-struct
show-kids

This two messages are used to show the current structures in the log and terminal.

64 ⟨∗debug⟩
65 \msg_new:nnn { tag/debug } { show-struct }
66 {
67 =========================\\
68 The~structure~#1~
69 \tl_if_empty:nTF {#2}
70 { is~empty \\>~ . }
71 { contains: #2 }
72 \\
73 }
74 \msg_new:nnn { tag/debug } { show-kids }
75 {
76 The~structure~has~the~following~kids:
77 \tl_if_empty:nTF {#2}
78 { \\>~ NONE }
79 { #2 }
80 \\
81 =========================
82 }
83 ⟨/debug⟩

(End of definition for show-struct and show-kids. These functions are documented on page 21.)

24

3.3 Attributes
Not much yet, as attributes aren’t used so much.

attr-unknown

84 ⟨∗package⟩
85 \msg_new:nnn { tag } {attr-unknown} { attribute~#1~is~unknown}

(End of definition for attr-unknown. This function is documented on page 21.)

3.4 Roles
role-missing
role-unknown

role-unknown-tag
role-unknown-NS

Warning message if either the tag or the role is missing

86 \msg_new:nnn { tag } {role-missing} { tag~#1~has~no~role~assigned }
87 \msg_new:nnn { tag } {role-unknown} { role~#1~is~not~known }
88 \msg_new:nnn { tag } {role-unknown-tag} { tag~#1~is~not~known }
89 \msg_new:nnn { tag } {role-unknown-NS} { \tl_if_empty:nTF{#1}{Empty~NS}{NS~#1~is~not~known} }

(End of definition for role-missing and others. These functions are documented on page 21.)

role-parent-child-check This is an info message that inform which elements are checked, typically used to show
the original tags, not the rolemapped one.

90 \msg_new:nnn { tag } {role-parent-child-check}
91 { Checking~Parent-Child~'#1'~-->~'#2' }

(End of definition for role-parent-child-check. This function is documented on page ??.)

role-parent-child-result This is info and warning message about the containment rules between child and parent
tags.

92 \msg_new:nnn { tag } {role-parent-child-result}
93 { Parent-Child~'#1'~-->~'#2'.\\Relation~is~#3~\msg_line_context:}

(End of definition for role-parent-child-result. This function is documented on page 21.)

role-struct-parent-child-forbidden The most important message is that the relation is not allowed between two structures.
Argument #1 is the parent structure number, #2 is the child structure number, #3
NS:tag info of the parent (TODO perhaps rolemapped), #4 NS:tag of the child. (TODO
)

94 \msg_new:nnn { tag } {role-struct-parent-child-forbidden}
95 {
96 Parent-Child~'#3'~-->~'#4'.\\
97 Relation~is~not~allowed! ~\msg_line_context:\\
98 struct~#1,~
99 \exp_last_unbraced:Ne\use_i:nn { \prop_item:cn{ g__tag_struct_#1_prop}{tag} }

100 \c_space_tl-->\c_space_tl
101 struct~#2,~
102 \exp_last_unbraced:Ne\use_i:nn { \prop_item:cn{ g__tag_struct_#2_prop}{tag} }
103 }

(End of definition for role-struct-parent-child-forbidden. This function is documented on page ??.)

25

role-MC-child-forbidden In case that MC is forbidden we use a special message. Argument #1 is the parent
structure number. #2 NS:tag of the parent,

104 \msg_new:nnn { tag } {role-MC-child-forbidden}
105 {
106 Parent-Child~'#2'~-->~'MC~(real~content)'.\\
107 Relation~is~not~allowed! ~\msg_line_context:\\
108 struct~#1,~
109 \exp_last_unbraced:Ne\use_i:nn { \prop_item:cn{ g__tag_struct_#1_prop}{tag} }
110 }

(End of definition for role-MC-child-forbidden. This function is documented on page ??.)

role-parent-child-forbidden The most important message is that the relation is not allowed. Argument #1 is the
parent structure number. #2 NS:tag of the parent, #3 NS:tag of the child.

111 \msg_new:nnn { tag } {role-parent-child-forbidden}
112 {
113 Parent-Child~'#2'~-->~'#3'.\\
114 Relation~is~not~allowed! ~\msg_line_context:\\
115 struct~#1,~\prop_item:cn{ g__tag_struct_#1_prop}{S}
116 \c_space_tl
117 \str_if_eq:nnF{#3}{MC~(realcontent)}
118 {-->~struct~\int_eval:n {\c@g__tag_struct_abs_int}}
119 }

(End of definition for role-parent-child-forbidden. This function is documented on page ??.)

__tag_check_forbidden_parent_child:nnnn

120 \cs_new_protected:Npn __tag_check_forbidden_parent_child:nnnn #1#2#3#4
121 % #1 check number, #2 number of parent struct
122 % #3 parent info, #4 child info
123 {
124 \int_compare:nNnT {#1 } <0
125 {
126 \msg_warning:nneee
127 { tag }
128 {role-parent-child-forbidden}
129 { #2}
130 { #3 }
131 { #4 }
132 }
133 }
134 \cs_generate_variant:Nn __tag_check_forbidden_parent_child:nnnn {nnee}
135

136 % new with structure numbers:
137 \cs_new_protected:Npn __tag_check_struct_forbidden_parent_child:nnn #1#2#3
138 % #1 check number,
139 % #2 number of parent struct
140 % #3 number of child struct
141 {
142 \int_compare:nNnT {#1 } <0
143 {

26

144 \prop_get:cnN {g__tag_struct_#2_prop}{parentrole}\l__tag_get_parent_tmpc_tl
145 \prop_get:cnN {g__tag_struct_#3_prop}{rolemap}\l__tag_get_child_tmpc_tl
146 \msg_warning:nneeee
147 { tag }
148 {role-struct-parent-child-forbidden}
149 { #2 }
150 { #3 }
151 {
152 \exp_last_unbraced:No \use_ii:nn { \l__tag_get_parent_tmpc_tl }
153 :
154 \exp_last_unbraced:No \use_i:nn {\l__tag_get_parent_tmpc_tl }
155 }
156 {
157 \exp_last_unbraced:No \use_ii:nn { \l__tag_get_child_tmpc_tl }
158 :
159 \exp_last_unbraced:No \use_i:nn { \l__tag_get_child_tmpc_tl }
160 }
161 }
162 }
163 \cs_generate_variant:Nn__tag_check_struct_forbidden_parent_child:nnn{onn}

(End of definition for __tag_check_forbidden_parent_child:nnnn.)

role-parent-child-unresolved If a structure is stashed and then used later and its root is one of Part, Div or NonStruct,
then we can not check the parent-child rules. This would require to know all children.
In this case we only warn. resolved a Argument #1 is the parent structure number. #2
NS:tag of the parent, #3 NS:tag of the child.

164 \msg_new:nnn { tag } {role-parent-child-unresolved}
165 {
166 Structure~\int_eval:n {\c@g__tag_struct_abs_int}~was~moved~into~structure~#1.\\
167 Parent-Child~'#2'~-->~'#3'~can~not~checked.
168 }

(End of definition for role-parent-child-unresolved. This function is documented on page ??.)

__tag_check_unresolved_parent_child:nnnn

169 \cs_new_protected:Npn __tag_check_unresolved_parent_child:nnnn #1#2#3#4
170 % #1 check number, #2 number of parent struct
171 % #3 parent info, #4 child info
172 {
173 \int_compare:nNnT { #1 } = {\c__tag_role_rule_checkparent_tl}
174 {
175 \msg_warning:nneee
176 { tag }
177 {role-parent-child-unresolved}
178 { #2 }
179 { #3 }
180 { #4 }
181 }
182 }

(End of definition for __tag_check_unresolved_parent_child:nnnn.)

27

tag/check/parent-child
tag/check/parent-child-end

Sockets used around the parent-child checks so that we can disable them.

183 \socket_new:nn{tag/check/parent-child}{1}
184 \socket_new:nn{tag/check/parent-child-end}{0}
185 \socket_new_plug:nnn {tag/check/parent-child-end}{check}
186 {
187 \sys_if_engine_luatex:T
188 {
189 \lua_now:e
190 {
191 ltx.__tag.func.check_parent_child_rules (2)
192 }
193 }
194 }

And a key to disable the check

195 \keys_define:nn { __tag / setup}
196 {
197 debug / parent-child-check .choice:,
198 debug / parent-child-check / on .code:n =
199 {
200 \socket_assign_plug:nn {tag/check/parent-child}{identity}
201 },
202 debug / parent-child-check / off .code:n=
203 {
204 \socket_assign_plug:nn {tag/check/parent-child}{noop}
205 \socket_assign_plug:nn {tag/check/parent-child-end}{noop}
206 },
207 debug / parent-child-check / atend .code:n=
208 {
209 \socket_assign_plug:nn {tag/check/parent-child}{noop}
210 \socket_assign_plug:nn {tag/check/parent-child-end}{check}
211 }
212 }

(End of definition for tag/check/parent-child and tag/check/parent-child-end. These functions are
documented on page ??.)

role-remapping This is info and warning message about role-remapping

213 \msg_new:nnn { tag } {role-remapping}
214 { remapping~tag~to~#1 }

(End of definition for role-remapping. This function is documented on page 21.)

role-tag
new-tag

Info messages.

215 \msg_new:nnn { tag } {role-tag} { mapping~tag~#1~to~role~#2 }
216 \msg_new:nnn { tag } {new-tag} { adding~new~tag~#1 }
217 \msg_new:nnn { tag } {read-namespace} { reading~namespace~definitions~tagpdf-ns-

#1.def }
218 \msg_new:nnn { tag } {namespace-missing}{ namespace~definitions~tagpdf-ns-#1.def~not~found }
219 \msg_new:nnn { tag } {namespace-unknown}{ namespace~#1~is~not~declared }

(End of definition for role-tag and new-tag. These functions are documented on page 21.)

28

3.5 Miscellaneous
wrong-pdfversion Used a begin document if the pdfversion has been changed after the reading.

220 \msg_new:nnn { tag } {wrong-pdfversion}
221 {
222 The~PDF~version~has~changed~after~the~loading~of~tagpdf~from~#1~to~#2.\\
223 The~structure~will~be~faulty.\\
224 Trying~to~revert~to~#1.
225 }

(End of definition for wrong-pdfversion. This function is documented on page ??.)

tree-mcid-index-wrong Used in the tree code, typically indicates the document must be rerun.

226 \msg_new:nnn { tag } {tree-mcid-index-wrong}
227 {something~is~wrong~with~the~mcid--rerun}

(End of definition for tree-mcid-index-wrong. This function is documented on page 21.)

sys-no-interwordspace Currently only pdflatex and lualatex have some support for real spaces.

228 \msg_new:nnn { tag } {sys-no-interwordspace}
229 {engine/output~mode~#1~doesn't~support~the~interword~spaces}

(End of definition for sys-no-interwordspace. This function is documented on page 21.)

__tag_check_typeout_v:n A simple logging function. By default is gobbles its argument, but the log-keys sets it to
typeout.

230 \cs_set_eq:NN __tag_check_typeout_v:n \use_none:n

(End of definition for __tag_check_typeout_v:n.)

para-hook-count-wrong At the end of the document we check if the count of para-begin and para-end is identical.
If not we issue a warning: this is normally a coding error and and breaks the structure.

231 \msg_new:nnnn { tag } {para-hook-count-wrong}
232 {The~number~of~automatic~begin~(#1)~and~end~(#2)~#3~para~hooks~differ!}
233 {This~quite~probably~a~coding~error~and~the~structure~will~be~wrong!}
234 ⟨/package⟩

(End of definition for para-hook-count-wrong. This function is documented on page 21.)

4 Retrieving data
\tag_get:n This retrieves some data. This is a generic command to retrieve data. Currently the only

sensible values for the argument are mc_tag, struct_tag and struct_num.

235 ⟨base⟩\cs_new:Npn \tag_get:n #1 { \use:c {__tag_get_data_#1: } }

(End of definition for \tag_get:n. This function is documented on page 18.)

29

5 PDF version check
236 ⟨∗package⟩
237 \tl_const:Ne\c__tag_check_pdfversion_tl {\pdf_version:}
238 \AddToHook{begindocument/before}
239 {
240 \tl_if_eq:eeF{\c__tag_check_pdfversion_tl}{\pdf_version:}
241 {
242 \msg_error:nnee {tag}{wrong-pdfversion}{\c__tag_check_pdfversion_tl}{\pdf_version:}
243 \pdf_version_gset:e {\c__tag_check_pdfversion_tl}
244 \pdf_object_unnamed_write:nn{dict}{}
245 }
246 }
247 ⟨/package⟩

6 User conditionals
\tag_if_active_p:
\tag_if_active:TF

This tests if tagging is active. This allows packages to add conditional code. The test is
true if all booleans, the global and the two local one are true.

248 ⟨∗base⟩
249 \cs_if_exist:NF\tag_if_active:T
250 {
251 \prg_new_conditional:Npnn \tag_if_active: { p , T , TF, F }
252 { \prg_return_false: }
253 }
254 ⟨/base⟩
255 ⟨∗package⟩
256 \prg_set_conditional:Npnn \tag_if_active: { p , T , TF, F }
257 {
258 \bool_lazy_all:nTF
259 {
260 {\g__tag_active_struct_bool}
261 {\g__tag_active_mc_bool}
262 {\g__tag_active_tree_bool}
263 {\l__tag_active_struct_bool}
264 {\l__tag_active_mc_bool}
265 }
266 {
267 \prg_return_true:
268 }
269 {
270 \prg_return_false:
271 }
272 }
273 ⟨/package⟩

(End of definition for \tag_if_active:TF. This function is documented on page 18.)

\tag_if_box_tagged_p:N
\tag_if_box_tagged:NTF

This tests if a box contains tagging commands. It relies on that the code that saved
the box correctly set \l_tag_box_<box number>_tl to a positive value. The LaTeX
commands will do that automatically at some time but it is in the responsibility of the
user to ensure that when using low-level code. If the internal command doesn’t exist the
box is assumed to be untagged.

30

274 ⟨∗base⟩
275 \prg_new_conditional:Npnn \tag_if_box_tagged:N #1 {p,T,F,TF}
276 {
277 \tl_if_exist:cTF {l_tag_box_\int_use:N #1_tl}
278 {
279 \int_compare:nNnTF {0\tl_use:c{l_tag_box_\int_use:N #1_tl}}>{0}
280 { \prg_return_true: }
281 { \prg_return_false: }
282 }
283 {
284 \prg_return_false:
285 % warning??
286 }
287 }
288 ⟨/base⟩

(End of definition for \tag_if_box_tagged:NTF. This function is documented on page 18.)

7 Internal checks
These are checks used in various places in the code.

7.1 checks for active tagging
__tag_check_if_active_mc:TF

__tag_check_if_active_struct:TF
This checks if mc are active.

289 ⟨∗package⟩
290 \prg_new_conditional:Npnn __tag_check_if_active_mc: {T,F,TF}
291 {
292 \bool_lazy_and:nnTF { \g__tag_active_mc_bool } { \l__tag_active_mc_bool }
293 {
294 \prg_return_true:
295 }
296 {
297 \prg_return_false:
298 }
299 }
300 \prg_new_conditional:Npnn __tag_check_if_active_struct: {T,F,TF}
301 {
302 \bool_lazy_and:nnTF { \g__tag_active_struct_bool } { \l__tag_active_struct_bool }
303 {
304 \prg_return_true:
305 }
306 {
307 \prg_return_false:
308 }
309 }

(End of definition for __tag_check_if_active_mc:TF and __tag_check_if_active_struct:TF.)

31

7.2 Checks related to structures
__tag_check_structure_has_tag:n Structures must have a tag, so we check if the S entry is in the property. It is an error if

this is missing. The argument is a number. The tests for existence and type is split in
structures, as the tags are stored differently to the mc case.

310 \cs_new_protected:Npn __tag_check_structure_has_tag:n #1 %#1 struct num
311 {
312 \prop_get:cnNF
313 { g__tag_struct_#1_prop }
314 {S}
315 \l__tag_tmp_unused_tl
316 {
317 \msg_error:nn { tag } {struct-missing-tag}
318 }
319 }

(End of definition for __tag_check_structure_has_tag:n.)

__tag_check_structure_tag:N This checks if the name of the tag is known, either because it is a standard type or has
been rolemapped. This always used with commands, so the argument is N.

320 \cs_new_protected:Npn __tag_check_structure_tag:N #1
321 {
322 \prop_get:NoNF \g__tag_role_tags_NS_prop {#1}\l__tag_tmp_unused_tl
323 {
324 \msg_warning:nne { tag } {role-unknown-tag} {#1}
325 }
326 }

(End of definition for __tag_check_structure_tag:N.)

__tag_check_info_closing_struct:n This info message is issued at a closing structure, the use should be guarded by log-level.

327 \cs_new_protected:Npn __tag_check_info_closing_struct:n #1 %#1 struct num
328 {
329 \int_compare:nNnT {\l__tag_loglevel_int} > { 0 }
330 {
331 \msg_info:nnn { tag } {struct-show-closing} {#1}
332 }
333 }
334

335 \cs_generate_variant:Nn __tag_check_info_closing_struct:n {o,e}

(End of definition for __tag_check_info_closing_struct:n.)

__tag_check_no_open_struct: This checks if there is an open structure. It should be used when trying to close a
structure. It errors if false.

336 \cs_new_protected:Npn __tag_check_no_open_struct:
337 {
338 \msg_error:nn { tag } {struct-faulty-nesting}
339 }

(End of definition for __tag_check_no_open_struct:.)

32

__tag_check_struct_used:n This checks if a stashed structure has already been used.

340 \cs_new_protected:Npn __tag_check_struct_used:n #1 %#1 label
341 {
342 \prop_get:cnNT
343 {g__tag_struct_\property_ref:enn{tagpdfstruct-#1}{tagstruct}{unknown}_prop}
344 {parentnum}
345 \l__tag_tmpa_tl
346 {
347 \msg_warning:nnn { tag } {struct-used-twice} {#1}
348 }
349 }

(End of definition for __tag_check_struct_used:n.)

7.3 Checks related to roles
__tag_check_add_tag_role:nn This check is used when defining a new role mapping.

350 \cs_new_protected:Npn __tag_check_add_tag_role:nn #1 #2 %#1 tag, #2 role
351 {
352 \tl_if_empty:nTF {#2}
353 {
354 \msg_error:nnn { tag } {role-missing} {#1}
355 }
356 {
357 \prop_get:NnNTF \g__tag_role_tags_NS_prop {#2} \l__tag_tmpa_tl
358 {
359 \int_compare:nNnT {\l__tag_loglevel_int} > { 0 }
360 {
361 \msg_info:nnnn { tag } {role-tag} {#1} {#2}
362 }
363 }
364 {
365 \msg_error:nnn { tag } {role-unknown} {#2}
366 }
367 }
368 }

Similar with a namespace

369 \cs_new_protected:Npn __tag_check_add_tag_role:nnn #1 #2 #3 %#1 tag/NS, #2 role #3 namespace
370 {
371 \tl_if_empty:nTF {#2}
372 {
373 \msg_error:nnn { tag } {role-missing} {#1}
374 }
375 {
376 \prop_get:cnNTF { g__tag_role_NS_#3_prop } {#2} \l__tag_tmpa_tl
377 {
378 \int_compare:nNnT {\l__tag_loglevel_int} > { 0 }
379 {
380 \msg_info:nnnn { tag } {role-tag} {#1} {#2/#3}
381 }

33

382 }
383 {
384 \msg_error:nnn { tag } {role-unknown} {#2/#3}
385 }
386 }
387 }

(End of definition for __tag_check_add_tag_role:nn.)

7.4 Check related to mc-chunks
__tag_check_mc_if_nested:
__tag_check_mc_if_open:

Two tests if a mc is currently open. One for the true (for begin code), one for the false
part (for end code).

388 \cs_new_protected:Npn __tag_check_mc_if_nested:
389 {
390 __tag_mc_if_in:T
391 {
392 \msg_warning:nne { tag } {mc-nested} { __tag_get_mc_abs_cnt: }
393 }
394 }
395

396 \cs_new_protected:Npn __tag_check_mc_if_open:
397 {
398 __tag_mc_if_in:F
399 {
400 \msg_warning:nne { tag } {mc-not-open} { __tag_get_mc_abs_cnt: }
401 }
402 }

(End of definition for __tag_check_mc_if_nested: and __tag_check_mc_if_open:.)

__tag_check_mc_pushed_popped:nn This creates an information message if mc’s are pushed or popped. The first argument
is a word (pushed or popped), the second the tag name. With larger log-level the stack
is shown too.

403 \cs_new_protected:Npn __tag_check_mc_pushed_popped:nn #1 #2
404 {
405 \int_compare:nNnT
406 { \l__tag_loglevel_int } ={ 2 }
407 { \msg_info:nne {tag}{mc-#1}{#2} }
408 \int_compare:nNnT
409 { \l__tag_loglevel_int } > { 2 }
410 {
411 \msg_info:nne {tag}{mc-#1}{#2}
412 \seq_log:N \g__tag_mc_stack_seq
413 }
414 }

(End of definition for __tag_check_mc_pushed_popped:nn.)

__tag_check_mc_tag:N This checks if the mc has a (known) tag, if it is empty (e.g. if due to a call to the output
routine, see issue https://github.com/latex3/tagpdf/issues/111) then we fall back to the
structure name.

34

415 \cs_new_protected:Npn __tag_check_mc_tag:N #1 %#1 is var with a tag name in it
416 {
417 \tl_if_empty:NTF #1
418 {
419 \tl_set:No #1 { \g__tag_struct_tag_tl }
420 \msg_info:nnee { tag } {mc-tag-missing} { \g__tag_struct_tag_tl }{ __tag_get_mc_abs_cnt: }
421 }
422 {
423 \prop_get:NoNF \g__tag_role_tags_NS_prop {#1}\l__tag_tmp_unused_tl
424 {
425 \msg_warning:nne { tag } {role-unknown-tag} {#1}
426 }
427 }
428 }

(End of definition for __tag_check_mc_tag:N.)

\g__tag_check_mc_used_intarray
__tag_check_init_mc_used:

This variable holds the list of used mc numbers. Everytime we store a mc-number we
will add one the relevant array index If everything is right at the end there should be
only 1 until the max count of the mcid. 2 indicates that one mcid was used twice, 0 that
we lost one. In engines other than luatex the total number of all intarray entries are
restricted so we use only a rather small value of 65536, and we initialize the array only
at first used, guarded by the log-level. This check is probably only needed for debugging.
TODO does this really make sense to check? When can it happen??

429 \cs_new_protected:Npn __tag_check_init_mc_used:
430 {
431 \intarray_new:Nn \g__tag_check_mc_used_intarray { 65536 }
432 \cs_gset_eq:NN __tag_check_init_mc_used: \prg_do_nothing:
433 }

(End of definition for \g__tag_check_mc_used_intarray and __tag_check_init_mc_used:.)

__tag_check_mc_used:n This checks if a mc is used twice.

434 \cs_new_protected:Npn __tag_check_mc_used:n #1 %#1 mcid abscnt
435 {
436 \int_compare:nNnT {\l__tag_loglevel_int} > { 2 }
437 {
438 __tag_check_init_mc_used:
439 \intarray_gset:Nnn \g__tag_check_mc_used_intarray
440 {#1}
441 { \intarray_item:Nn \g__tag_check_mc_used_intarray {#1} + 1 }
442 \int_compare:nNnT
443 {
444 \intarray_item:Nn \g__tag_check_mc_used_intarray {#1}
445 }
446 >
447 { 1 }
448 {
449 \msg_warning:nnn { tag } {mc-used-twice} {#1}
450 }
451 }
452 }

35

(End of definition for __tag_check_mc_used:n.)

__tag_check_show_MCID_by_page: This allows to show the mc on a page. Currently unused.

453 \cs_new_protected:Npn __tag_check_show_MCID_by_page:
454 {
455 \tl_set:Ne \l__tag_tmpa_tl
456 {
457 __tag_property_ref_lastpage:nn
458 {abspage}
459 {-1}
460 }
461 \int_step_inline:nnnn {1}{1}
462 {
463 \l__tag_tmpa_tl
464 }
465 {
466 \seq_clear:N \l__tag_tmpa_seq
467 \int_step_inline:nnnn
468 {1}
469 {1}
470 {
471 __tag_property_ref_lastpage:nn
472 {tagmcabs}
473 {-1}
474 }
475 {
476 \int_compare:nT
477 {
478 \property_ref:enn
479 {mcid-####1}
480 {tagabspage}
481 {-1}
482 =
483 ##1
484 }
485 {
486 \seq_gput_right:Ne \l__tag_tmpa_seq
487 {
488 Page##1-####1-
489 \property_ref:enn
490 {mcid-####1}
491 {tagmcid}
492 {-1}
493 }
494 }
495 }
496 \seq_show:N \l__tag_tmpa_seq
497 }
498 }

(End of definition for __tag_check_show_MCID_by_page:.)

36

7.5 Checks related to the state of MC on a page or in a split
stream

The following checks are currently only usable in generic mode as they rely on the marks
defined in the mc-generic module. They are used to detect if a mc-chunk has been split
by a page break or similar and additional end/begin commands are needed.

__tag_check_mc_in_galley_p:
__tag_check_mc_in_galley:TF

At first we need a test to decide if \tag_mc_begin:n (tmb) and \tag_mc_end: (tme)
has been used at all on the current galley. As each command issues two slightly different
marks we can do it by comparing firstmarks and botmarks. The test assumes that
the marks have been already mapped into the sequence with \@@_mc_get_marks:. As
\seq_if_eq:NNTF doesn’t exist we use the tl-test.

499 \prg_new_conditional:Npnn __tag_check_if_mc_in_galley: { T,F,TF }
500 {
501 \tl_if_eq:NNTF \l__tag_mc_firstmarks_seq \l__tag_mc_botmarks_seq
502 { \prg_return_false: }
503 { \prg_return_true: }
504 }

(End of definition for __tag_check_mc_in_galley:TF.)

__tag_check_if_mc_tmb_missing_p:
__tag_check_if_mc_tmb_missing:TF

This checks if a extra top mark (“extra-tmb”) is needed. According to the analysis this
the case if the firstmarks start with e- or b+. Like above we assume that the marks
content is already in the seq’s.

505 \prg_new_conditional:Npnn __tag_check_if_mc_tmb_missing: { T,F,TF }
506 {
507 \bool_if:nTF
508 {
509 \str_if_eq_p:ee {\seq_item:Nn \l__tag_mc_firstmarks_seq {1}}{e-}
510 ||
511 \str_if_eq_p:ee {\seq_item:Nn \l__tag_mc_firstmarks_seq {1}}{b+}
512 }
513 { \prg_return_true: }
514 { \prg_return_false: }
515 }

(End of definition for __tag_check_if_mc_tmb_missing:TF.)

__tag_check_if_mc_tme_missing_p:
__tag_check_if_mc_tme_missing:TF

This checks if a extra bottom mark (“extra-tme”) is needed. According to the analysis
this the case if the botmarks starts with b+. Like above we assume that the marks content
is already in the seq’s.

516 \prg_new_conditional:Npnn __tag_check_if_mc_tme_missing: { T,F,TF }
517 {
518 \str_if_eq:eeTF {\seq_item:Nn \l__tag_mc_botmarks_seq {1}}{b+}
519 { \prg_return_true: }
520 { \prg_return_false: }
521 }

(End of definition for __tag_check_if_mc_tme_missing:TF.)

522 ⟨/package⟩

37

523 ⟨∗debug⟩

Code for tagpdf-debug. This will probably change over time. At first something for the
mc commands.

524 \msg_new:nnn { tag / debug } {mc-begin} { MC~begin~#1~with~options:~\tl_to_str:n{#2}~[\msg_line_context:] }
525 \msg_new:nnn { tag / debug } {mc-end} { MC~end~#1~[\msg_line_context:] }
526

527 \cs_new_protected:Npn __tag_debug_mc_begin_insert:n #1
528 {
529 \int_compare:nNnT { \l__tag_loglevel_int } > {0}
530 {
531 \msg_note:nnnn { tag / debug } {mc-begin} {inserted} { #1 }
532 }
533 }
534 \cs_new_protected:Npn __tag_debug_mc_begin_ignore:n #1
535 {
536 \int_compare:nNnT { \l__tag_loglevel_int } > {0}
537 {
538 \msg_note:nnnn { tag / debug } {mc-begin } {ignored} { #1 }
539 }
540 }
541 \cs_new_protected:Npn __tag_debug_mc_end_insert:
542 {
543 \int_compare:nNnT { \l__tag_loglevel_int } > {0}
544 {
545 \msg_note:nnn { tag / debug } {mc-end} {inserted}
546 }
547 }
548 \cs_new_protected:Npn __tag_debug_mc_end_ignore:
549 {
550 \int_compare:nNnT { \l__tag_loglevel_int } > {0}
551 {
552 \msg_note:nnn { tag / debug } {mc-end } {ignored}
553 }
554 }

And now something for the structures

555 \msg_new:nnn { tag / debug } {struct-begin}
556 {
557 Struct~\tag_get:n{struct_num}~begin~#1~with~options:~\tl_to_str:n{#2}~\\[\msg_line_context:]
558 }
559 \msg_new:nnn { tag / debug } {struct-end}
560 {
561 Struct~end~#1~[\msg_line_context:]
562 }
563 \msg_new:nnn { tag / debug } {struct-end-wrong}
564 {
565 Struct~end~'#1'~doesn't~fit~start~'#2'~[\msg_line_context:]
566 }
567

568 \cs_new_protected:Npn __tag_debug_struct_begin_insert:n #1
569 {
570 \int_compare:nNnT { \l__tag_loglevel_int } > {0}

38

571 {
572 \msg_note:nnnn { tag / debug } {struct-begin} {inserted} { #1 }
573 \seq_log:N \g__tag_struct_tag_stack_seq
574 }
575 }
576 \cs_new_protected:Npn __tag_debug_struct_begin_ignore:n #1
577 {
578 \int_compare:nNnT { \l__tag_loglevel_int } > {0}
579 {
580 \msg_note:nnnn { tag / debug } {struct-begin } {ignored} { #1 }
581 }
582 }
583 \cs_new_protected:Npn __tag_debug_struct_end_insert:
584 {
585 \int_compare:nNnT { \l__tag_loglevel_int } > {0}
586 {
587 \msg_note:nnn { tag / debug } {struct-end} {inserted}
588 \seq_log:N \g__tag_struct_tag_stack_seq
589 }
590 }
591 \cs_new_protected:Npn __tag_debug_struct_end_ignore:
592 {
593 \int_compare:nNnT { \l__tag_loglevel_int } > {0}
594 {
595 \msg_note:nnn { tag / debug } {struct-end } {ignored}
596 }
597 }
598 \cs_new_protected:Npn __tag_debug_struct_end_check:n #1
599 {
600 \int_compare:nNnT { \l__tag_loglevel_int } > {0}
601 {
602 \seq_get:NNT \g__tag_struct_tag_stack_seq \l__tag_tmpa_tl
603 {
604 \str_if_eq:eeF
605 {#1}
606 {\exp_last_unbraced:No \use_i:nn { \l__tag_tmpa_tl }}
607 {
608 \msg_warning:nnee { tag/debug }{ struct-end-wrong }
609 {#1}
610 {\exp_last_unbraced:No \use_i:nn { \l__tag_tmpa_tl }}
611 }
612 }
613 }
614 }

This tracks tag suspend and resume. The tag-suspend message should go before the int
is increased. The tag-resume message after the int is decreased.

615 \msg_new:nnn { tag / debug } {tag-suspend}
616 {
617 \int_if_zero:nTF
618 {#1}
619 {Tagging~suspended}
620 {Tagging~(not)~suspended~(already~inactive)}\\
621 level:~#1~==>~\int_eval:n{#1+1}\tl_if_empty:nF{#2}{,~label:~#2}~[\msg_line_context:]

39

622 }
623 \msg_new:nnn { tag / debug } {tag-resume}
624 {
625 \int_if_zero:nTF
626 {#1}
627 {Tagging~resumed}
628 {Tagging~(not)~resumed}\\
629 level:~\int_eval:n{#1+1}~==>~#1\tl_if_empty:nF{#2}{,~label:~#2}~[\msg_line_context:]
630 }

631 ⟨/debug⟩

7.6 Benchmarks
It doesn’t make much sense to do benchmarks in debug mode or in combination with a
log-level as this would slow down the compilation. So we add simple commands that can
be activated if l3benchmark has been loaded. TODO: is a warning needed?

632 ⟨∗package⟩
633 \cs_new_protected:Npn __tag_check_benchmark_tic:{}
634 \cs_new_protected:Npn __tag_check_benchmark_toc:{}
635 \cs_new_protected:Npn \tag_check_benchmark_on:
636 {
637 \cs_if_exist:NT \benchmark_tic:
638 {
639 \cs_set_eq:NN __tag_check_benchmark_tic: \benchmark_tic:
640 \cs_set_eq:NN __tag_check_benchmark_toc: \benchmark_toc:
641 }
642 }
643 ⟨/package⟩

The tagpdf-user module
Code related to LATEX2e user commands and document commands
Part of the tagpdf package

Ulrike Fischer
Version 0.99x, released 2026-01-12

40

Part III

1 Setup commands

\tagpdfsetup{⟨key val list⟩}

This is the main setup command to adapt the behaviour of tagpdf. It can be used in the
preamble and in the document (but not all keys make sense there).

\tagpdfsetup

And additional setup key which combine the other activate keys activate/mc, activate/tree,
activate/struct and additionally adds a document structure.

activate (setup-key)

\tag_tool:n {⟨key val⟩}

The tagging of basic document elements will require a variety of small commands to
configure and adapt the tagging. This command will collect them under a command
interface. The argument is one key-value like string. This is work in progress and both
syntax, known arguments and implementation can change!

\tag_tool:n
\tagtool

2 Commands related to mc-chunks

\tagmcbegin{⟨key-val⟩}
\tagmcend
\tagmcuse{⟨label⟩}
These are wrappers around \tag_mc_begin:n, \tag_mc_end: and \tag_mc_use:n. The
commands and their argument are documentated in the tagpdf-mc module. In difference
to the expl3 commands, \tagmcbegin issues also an \ignorespaces, and \tagmcend will
issue in horizontal mode an \unskip.

\tagmcbegin
\tagmcend
\tagmcuse

\tagmcifinTF{⟨true code⟩}{⟨false code⟩}

This is a wrapper around \tag_mc_if_in:TF. and tests if an mc is open or not. It
is mostly of importance for pdflatex as lualatex doesn’t mind much if a mc tag is not
correctly closed. Unlike the expl3 command it is not expandable.

The command is probably not of much use and will perhaps disappear in future
versions. It normally makes more sense to push/pop an mc-chunk.

\tagmcifinTF

3 Commands related to structures

\tagstructbegin{⟨key-val⟩}
\tagstructend
\tagstructuse{⟨label⟩}
These are direct wrappers around \tag_struct_begin:n, \tag_struct_end: and
\tag_struct_use:n. The commands and their argument are documented in the tagpdf-
struct module.

\tagstructbegin
\tagstructend
\tagstructuse

41

4 Debugging

\ShowTagging{⟨key-val⟩}

This is a generic function to output various debugging helps. It not necessarily stops the
compilation. The keys and their function are described below.

\ShowTagging

mc-data = ⟨number⟩

This key is (currently?) relevant for lua mode only. It shows the data of all mc-chunks
created so far. It is accurate only after shipout (and perhaps a second compilation), so
typically should be issued after a newpage. The value is a positive integer and sets the
first mc-shown. If no value is given, 1 is used and so all mc-chunks created so far are
shown.

mc-data (show-key)

mc-current

This key shows the number and the tag of the currently open mc-chunk. If no chunk is
open it shows only the state of the abs count. It works in all mode, but the output in
luamode looks different.

mc-current (show-key)

mc-marks = show|use

This key helps to debug the page marks. It should only be used at shipout in header or
footer.

mc-marks (show-key)

struct-stack = log|show

This key shows the current structure stack. With log the info is only written to the
log-file, show stops the compilation and shows on the terminal. If no value is used, then
the default is show.

struct-stack (show-key)

debug/structures = ⟨structure number⟩debug/structures (show-key)

This key is available only if the tagpdf-debug package is loaded and shows all structures
starting with the one with the number given by the key.

5 Extension commands
The following commands and code parts are not core commands of tagpdf. They either
provide work-arounds for missing functionality elsewhere, or do a first step to apply
tagpdf commands to document commands.

The commands and keys should be view as experimental!
This part will be regularly revisited to check if the code should go to a better place

or can be improved and so can change easily.

5.1 Fake space

(lua-only) This provides a lua-version of the \pdffakespace primitive of pdftex.\pdffakespace

42

5.2 Tagging of paragraphs
This makes use of the paragraph hooks in LaTeX to automate the tagging of paragraph.
It requires sane paragraph nesting, faulty code, e.g. a missing \par at the end of a low-
level vbox can highly confuse the tagging. The tags should be carefully checked if this is
used.

para/tagging = true|false
debug/show=para
debug/show=paraOff

para/tagging (setup-key)
paratagging-show (deprecated)
paratagging (deprecated)

The para/tagging key can be used in \tagpdfsetup and enable/disables tagging of
paragraphics. debug/show=para puts small colored numbers at the begin and end of a
paragraph. This is meant as a debugging help. The number are boxes and have a (tiny)
height, so they can affect typesetting.

These commands allow to enable/disable para tagging too and are a bit faster then
\tagpdfsetup. But I’m not sure if the names are good.

\tagpdfparaOn
\tagpdfparaOff

This command allows to suppress the creation of the marks. It takes an argument
which should normally be one of the mc-commands, puts a group around it and suppress
the marks creation in this group. This command should be used if the begin and end
command are at different boxing levels. E.g.

\@hangfrom
{
\tagstructbegin{tag=H1}%
\tagmcbegin {tag=H1}%
#2

}
{#3\tagpdfsuppressmarks{\tagmcend}\tagstructend}%

\tagpdfsuppressmarks

5.3 Header and footer
Header and footer are automatically tagged as artifact: They are surrounded by an
artifact-mc and inside tagging is stopped. If some real content is in the header and
footer, tagging must be restarted there explicitly. The behaviour can be changed with
the following key. The key accepts the values true (the default), false which disables
the header tagging code. This can be useful if the page style is empty (it then avoids
empty mc-chunks) or if the head and foot should be tagged in some special way. The
last value, pagination, is like true but additionally adds an artifact structure with an
pagination attribute.

page/exclude-header-footer = true|false|paginationpage/exclude-header-footer (setup-key)

43

5.4 Link tagging
Links need a special structure and cross reference system. This is added through hooks
of the l3pdfannot module and will work automatically if tagging is activated.

Links should (probably) have an alternative text in the Contents key. It is unclear
which text this should be and how to get it. Currently the code simply adds the fix texts
url and ref. Another text can be added by changing the dictionary value:

\pdfannot_dict_put:nnn
{ link/GoTo }
{ Contents }
{ (ref) }

6 Socket support

\tag_socket_use:n {⟨socket name⟩}
\tag_socket_use:nn {⟨socket name⟩} {⟨socket argument⟩}
\tag_socket_use:nnn {⟨socket name⟩} {⟨socket argument⟩} {⟨socket argument⟩}
\tag_socket_use_expandable:n {⟨socket name⟩}
\UseTaggingSocket {⟨socket name⟩}
\UseTaggingSocket {⟨socket name⟩} {⟨socket argument⟩}
\UseTaggingSocket {⟨socket name⟩} {⟨socket argument⟩} {⟨socket argument⟩}

\tag_socket_use:n
\tag_socket_use:nnn
\UseTaggingSocket

Given that we sometimes have to suspend tagging, it would be fairly inefficient
to put different plugs into these sockets whenever that happens. We therefore offer
\UseTaggingSocket which is like \UseSocket except that is expects a socket starting
with tagsupport/ but the socket name is specified without this prefix, i.e.,

\UseTaggingSocket{foo} → \UseSocket{tagsupport/foo}

.
Beside being slightly shorter, the big advantage is that this way we can change

\UseTaggingSocket to do nothing by switching a boolean instead of changing the plugs
of the tagging support sockets back and forth.

Usually, these sockets have (beside the default plug defined for every socket) one
additional plug defined and directly assigned. This plug is used when tagging is active.
There may be more plugs, e.g., tagging with special debugging or special behaviour
depending on the class or PDF version etc., but right now it is usually just on or off.

When tagging is suspended they all have the same predefined behaviour: The sockets
with zero arguments do nothing. The sockets with one argument gobble their argument.
The sockets with two arguments will drop their first argument and pass the second
unchanged.

It is possible to use the tagging support sockets with \UseSocket directly, but in
this case the socket remains active if e.g. \SuspendTagging is in force. There may be
reasons for doing that but in general we expect to always use \UseTaggingSocket.

For special cases like in some \halign contexts we need a fully expandable version
of the commend. For these cases, \UseExpandableTaggingSocket can be used. To allow
being expandable, it does not output any debugging information if \DebugSocketsOn is
in effect and therefore should be avoided whenever possible.

44

The L3 programming layer versions \tag_socket_use_expandable:n, \tag_­
socket_use:n, and \tag_socket_use:nn, \tag_socket_use:nnn are slightly more effi­
cient than \UseTaggingSocket because they do not have to determine how many argu­
ments the socket takes when disabling it.

7 User commands and extensions of document com­
mands

1 ⟨@@=tag⟩
2 ⟨∗header⟩
3 \ProvidesExplPackage {tagpdf-user} {2026-01-12} {0.99x}
4 {tagpdf - user commands}
5 ⟨/header⟩

8 Setup and preamble commands
\tagpdfsetup

6 ⟨base⟩\NewDocumentCommand \tagpdfsetup { m }{}
7 ⟨∗package⟩
8 \RenewDocumentCommand \tagpdfsetup { m }
9 {

10 \keys_set:nn { __tag / setup } { #1 }
11 }
12 ⟨/package⟩

(End of definition for \tagpdfsetup. This function is documented on page 41.)

\tag_tool:n
\tagtool

This is a first definition of the tool command. Currently it uses key-val, but this should
be probably be flattened to speed it up.

13 ⟨base⟩\cs_new_protected:Npn\tag_tool:n #1 {}
14 ⟨base⟩\cs_set_eq:NN\tagtool\tag_tool:n
15 ⟨∗package⟩
16 \cs_set_protected:Npn\tag_tool:n #1
17 {
18 \tag_if_active:T { \keys_set:nn {tag / tool}{#1} }
19 }
20 \cs_set_eq:NN\tagtool\tag_tool:n
21 ⟨/package⟩

(End of definition for \tag_tool:n and \tagtool. These functions are documented on page 41.)

9 Commands for the mc-chunks
\tagmcbegin
\tagmcend
\tagmcuse22 ⟨∗base⟩

23 \NewDocumentCommand \tagmcbegin { m }
24 {
25 \tag_mc_begin:n {#1}

45

26 }
27

28

29 \NewDocumentCommand \tagmcend { }
30 {
31 \tag_mc_end:
32 }
33

34 \NewDocumentCommand \tagmcuse { m }
35 {
36 \tag_mc_use:n {#1}
37 }
38 ⟨/base⟩

(End of definition for \tagmcbegin , \tagmcend , and \tagmcuse. These functions are documented on
page 41.)

\tagmcifinTF This is a wrapper around \tag_mc_if_in: and tests if an mc is open or not. It is mostly
of importance for pdflatex as lualatex doesn’t mind much if a mc tag is not correctly
closed. Unlike the expl3 command it is not expandable.

39 ⟨∗package⟩
40 \NewDocumentCommand \tagmcifinTF { m m }
41 {
42 \tag_mc_if_in:TF { #1 } { #2 }
43 }
44 ⟨/package⟩

(End of definition for \tagmcifinTF. This function is documented on page 41.)

10 Commands for the structure
\tagstructbegin

\tagstructend
\tagstructuse

These are structure related user commands. There are direct wrapper around the expl3
variants.

45 ⟨∗base⟩
46 \NewDocumentCommand \tagstructbegin { m }
47 {
48 \tag_struct_begin:n {#1}
49 }
50

51 \NewDocumentCommand \tagstructend { }
52 {
53 \tag_struct_end:
54 }
55

56 \NewDocumentCommand \tagstructuse { m }
57 {
58 \tag_struct_use:n {#1}
59 }
60 ⟨/base⟩

(End of definition for \tagstructbegin , \tagstructend , and \tagstructuse. These functions are
documented on page 41.)

46

11 Socket support
Until we can be sure that the kernel defines the commands we provide them before
redefining them: The expandable version will only work correctly after the 2024-11-01
release.

61 ⟨∗base⟩
62 \providecommand\tag_socket_use:n[1]{}
63 \providecommand\tag_socket_use:nn[2]{}
64 \providecommand\tag_socket_use:nnn[3]{#3}
65 \providecommand\tag_socket_use_expandable:n[1]{}
66 \providecommand\socket_use_expandable:nw [1] {
67 \use:c { __socket_#1_plug_ \str_use:c { l__socket_#1_plug_str } :w }
68 }
69 \providecommand\UseTaggingSocket[1]{}
70 \providecommand\UseExpandableTaggingSocket[1]{}
71 ⟨/base⟩

\tag_socket_use:n
\tag_socket_use:nn
\tag_socket_use:nnn

\UseTaggingSocket
\tag_socket_use_expandable:n
\UseExpandableTaggingSocket

72 ⟨∗package⟩
73 \cs_set_protected:Npn \tag_socket_use:n #1
74 {
75 \bool_if:NT \l__tag_active_socket_bool
76 { \socket_use:n {tagsupport/#1} }
77 }

78 \cs_set_protected:Npn \tag_socket_use:nn #1#2
79 {
80 \bool_if:NT \l__tag_active_socket_bool
81 { \socket_use:nn {tagsupport/#1} {#2} }
82 }

83 \cs_set_protected:Npn \tag_socket_use:nnn #1#2#3
84 {
85 \bool_if:NTF \l__tag_active_socket_bool
86 { \socket_use:nnn {tagsupport/#1} {#2} {#3} }
87 { #3 }
88 }

89 \cs_set:Npn \tag_socket_use_expandable:n #1
90 {
91 \bool_if:NT \l__tag_active_socket_bool
92 { \socket_use_expandable:n {tagsupport/#1} }
93 }

94 \cs_set_protected:Npn \UseTaggingSocket #1
95 {
96 \bool_if:NTF \l__tag_active_socket_bool
97 { \socket_use:nw {tagsupport/#1} }
98 {
99 \int_case:nnF

100 { \int_use:c { c__socket_tagsupport/#1_args_int } }

47

101 {
102 0 \prg_do_nothing:
103 1 \use_none:n
104 2 \use_ii:nn

We do not expect tagging sockets with more than one or two arguments, so for now we
only provide those.

105 }
106 \ERRORusetaggingsocket
107 }
108 }

109 \cs_set:Npn \UseExpandableTaggingSocket #1
110 {
111 \bool_if:NTF \l__tag_active_socket_bool
112 { \socket_use_expandable:nw {tagsupport/#1} }
113 {
114 \int_case:nnF
115 { \int_use:c { c__socket_tagsupport/#1_args_int } }
116 {
117 0 \prg_do_nothing:
118 1 \use_none:n
119 2 \use_ii:nn

We do not expect tagging sockets with more than one or two arguments, so for now we
only provide those.

120 }
121 \ERRORusetaggingsocket
122 }
123 }
124 ⟨/package⟩

(End of definition for \tag_socket_use:n and others. These functions are documented on page 44.)

12 Debugging
\ShowTagging This is a generic command for various show commands. It takes a keyval list, the various

keys are implemented below.

125 ⟨∗package⟩
126 \NewDocumentCommand\ShowTagging { m }
127 {
128 \keys_set:nn { __tag / show }{ #1}
129

130 }

(End of definition for \ShowTagging. This function is documented on page 42.)

mc-data (show-key) This key is (currently?) relevant for lua mode only. It shows the data of all mc-chunks
created so far. It is accurate only after shipout, so typically should be issued after a
newpage. With the optional argument the minimal number can be set.

48

131 \keys_define:nn { __tag / show }
132 {
133 mc-data .code:n =
134 {
135 \bool_if:NT \g__tag_mode_lua_bool
136 {
137 \lua_now:e{ltx.__tag.trace.show_all_mc_data(#1,__tag_get_mc_abs_cnt:,0)}
138 }
139 }
140 ,mc-data .default:n = 1
141 }
142

(End of definition for mc-data (show-key). This function is documented on page 42.)

mc-current (show-key) This shows some info about the current mc-chunk. It works in generic and lua-mode.

143 \keys_define:nn { __tag / show }
144 { mc-current .code:n =
145 {
146 \bool_if:NTF \g__tag_mode_lua_bool
147 {
148 \int_compare:nNnTF
149 { -2147483647 }
150 =
151 {
152 \lua_now:e
153 {
154 tex.print
155 (\int_use:N\c_document_cctab,
156 tex.getattribute
157 (luatexbase.attributes.g__tag_mc_cnt_attr))
158 }
159 }
160 {
161 \lua_now:e
162 {
163 ltx.__tag.trace.log
164 (
165 "mc-current:~no~MC~open,~current~abscnt
166 =__tag_get_mc_abs_cnt:"
167 ,0
168)
169 texio.write_nl("")
170 }
171 }
172 {
173 \lua_now:e
174 {
175 ltx.__tag.trace.log
176 (
177 "mc-current:~abscnt=__tag_get_mc_abs_cnt:=="
178 ..
179 tex.getattribute(luatexbase.attributes.g__tag_mc_cnt_attr)

49

180 ..
181 "~=>tag="
182 ..
183 tostring
184 (ltx.__tag.func.get_tag_from
185 (tex.getattribute
186 (luatexbase.attributes.g__tag_mc_type_attr)))
187 ..
188 "="
189 ..
190 tex.getattribute
191 (luatexbase.attributes.g__tag_mc_type_attr)
192 ,0
193)
194 texio.write_nl("")
195 }
196 }
197 }
198 {
199 \msg_note:nn{ tag }{ mc-current }
200 }
201 }
202 }

(End of definition for mc-current (show-key). This function is documented on page 42.)

mc-marks (show-key) It maps the mc-marks into the sequences and then shows them. This allows to inspect the
first and last mc-Mark on a page. It should only be used in the shipout (header/footer).

203 \keys_define:nn { __tag / show }
204 {
205 mc-marks .choice: ,
206 mc-marks / show .code:n =
207 {
208 __tag_mc_get_marks:
209 __tag_check_if_mc_in_galley:TF
210 {
211 \iow_term:n {Marks~from~this~page:~}
212 }
213 {
214 \iow_term:n {Marks~from~a~previous~page:~}
215 }
216 \seq_show:N \l__tag_mc_firstmarks_seq
217 \seq_show:N \l__tag_mc_botmarks_seq
218 __tag_check_if_mc_tmb_missing:T
219 {
220 \iow_term:n {BDC~missing~on~this~page!}
221 }
222 __tag_check_if_mc_tme_missing:T
223 {
224 \iow_term:n {EMC~missing~on~this~page!}
225 }
226 },
227 mc-marks / use .code:n =

50

228 {
229 __tag_mc_get_marks:
230 __tag_check_if_mc_in_galley:TF
231 { Marks~from~this~page:~}
232 { Marks~from~a~previous~page:~}
233 \seq_use:Nn \l__tag_mc_firstmarks_seq {,~}\quad
234 \seq_use:Nn \l__tag_mc_botmarks_seq {,~}\quad
235 __tag_check_if_mc_tmb_missing:T
236 {
237 BDC~missing~
238 }
239 __tag_check_if_mc_tme_missing:T
240 {
241 EMC~missing
242 }
243 },
244 mc-marks .default:n = show
245 }

(End of definition for mc-marks (show-key). This function is documented on page 42.)

struct-stack (show-key)

246 \keys_define:nn { __tag / show }
247 {
248 struct-stack .choice:
249 ,struct-stack / log .code:n = \seq_log:N \g__tag_struct_tag_stack_seq
250 ,struct-stack / show .code:n = \seq_show:N \g__tag_struct_tag_stack_seq
251 ,struct-stack .default:n = show
252 }
253 ⟨/package⟩

(End of definition for struct-stack (show-key). This function is documented on page 42.)

debug/structures (show-key) The following key is available only if the tagpdf-debug package is loaded and shows all
structures starting with the one with the number given by the key.

254 ⟨∗debug⟩
255 \keys_define:nn { __tag / show }
256 {
257 ,debug/structures .code:n =
258 {
259 \int_step_inline:nnn{#1}{\c@g__tag_struct_abs_int}
260 {
261 \msg_term:nneeee
262 { tag/debug } { show-struct }
263 { ##1 }
264 {
265 \prop_map_function:cN
266 {g__tag_struct_debug_##1_prop}
267 \msg_show_item_unbraced:nn
268 }
269 { } { }
270 \msg_term:nneeee

51

271 { tag/debug } { show-kids }
272 { ##1 }
273 {
274 \seq_map_function:cN
275 {g__tag_struct_debug_kids_##1_seq}
276 \msg_show_item_unbraced:n
277 }
278 { } { }
279 }
280 }
281 ,debug/structures .default:n = 1
282 }
283 ⟨/debug⟩

(End of definition for debug/structures (show-key). This function is documented on page 42.)

13 Commands to extend document commands
The following commands and code parts are not core commands of tagpdf. They either
provide work-arounds for missing functionality elsewhere, or do a first step to apply
tagpdf commands to document commands. This part should be regularly revisited to
check if the code should go to a better place or can be improved.

284 ⟨∗package⟩

13.1 Document structure
\g__tag_root_default_tl

activate (setup-key)
activate/socket (setup-key)285 \tl_new:N\g__tag_root_default_tl

286 \tl_gset:Nn\g__tag_root_default_tl {Document}
287

288 \hook_gput_code:nnn{begindocument}{tagpdf}{\tagstructbegin{tag=\g__tag_root_default_tl}}
289 \hook_gput_code:nnn{tagpdf/finish/before}{tagpdf}{\tagstructend}
290

291 \keys_define:nn { __tag / setup}
292 {
293 activate/socket .bool_set:N = \l__tag_active_socket_bool,
294 activate .code:n =
295 {
296 \keys_set:nn { __tag / setup }
297 { activate/mc,activate/tree,activate/struct,activate/socket }
298 \tl_gset:Nn\g__tag_root_default_tl {#1}
299 },
300 activate .default:n = Document
301 }
302

(End of definition for \g__tag_root_default_tl , activate (setup-key) , and activate/socket (setup-
key). These functions are documented on page 41.)

52

13.2 Structure destinations
Since TeXlive 2022 pdftex and luatex offer support for structure destinations and the
pdfmanagement has backend support for. We activate them if structures are actually
created. Structure destinations are actually PDF 2.0 only but they don’t harm in older
PDF and can improve html export.

303 \AddToHook{begindocument/before}
304 {
305 \bool_lazy_and:nnT
306 { \g__tag_active_struct_dest_bool }
307 { \g__tag_active_struct_bool }
308 {
309 \tl_set:Nn \l_pdf_current_structure_destination_tl
310 { {__tag/struct}{\g__tag_struct_stack_current_tl }}
311 \pdf_activate_indexed_structure_destination:
312 }
313 }

13.3 Fake space
\pdffakespace We need a luatex variant for \pdffakespace. This should probably go into the kernel at

some time. We also provide a no-op version for dvi mode

314 \bool_if:NT \g__tag_mode_lua_bool
315 {
316 \NewDocumentCommand\pdffakespace { }
317 {
318 __tag_fakespace:
319 }
320 }
321 \providecommand\pdffakespace{}

(End of definition for \pdffakespace. This function is documented on page 42.)

13.4 Paratagging
The following are some simple commands to enable/disable paratagging. Probably one
should add some checks if we are already in a paragraph.

\l__tag_para_bool
\l__tag_para_flattened_bool

\l__tag_para_show_bool
\g__tag_para_begin_int
\g__tag_para_end_int

\g__tag_para_main_begin_int
\g__tag_para_main_end_int

\g__tag_para_main_struct_tl
\l__tag_para_tag_default_tl

\l__tag_para_tag_tl
\l__tag_para_main_tag_tl

\l__tag_para_attr_class_tl
\l__tag_para_main_attr_class_tl

At first some variables.

322 ⟨/package⟩
323 ⟨base⟩\bool_new:N \l__tag_para_flattened_bool
324 ⟨base⟩\bool_new:N \l__tag_para_bool
325 ⟨∗package⟩
326 \int_new:N \g__tag_para_begin_int
327 \int_new:N \g__tag_para_end_int
328 \int_new:N \g__tag_para_main_begin_int
329 \int_new:N \g__tag_para_main_end_int

this will hold the structure number of the current text-unit.

53

330 \tl_new:N \g__tag_para_main_struct_tl
331 \tl_gset:Nn \g__tag_para_main_struct_tl {1}
332 \tl_new:N \l__tag_para_tag_default_tl
333 \tl_new:N \l__tag_para_tag_tl
334 \tl_set:Nn \l__tag_para_tag_tl { \l__tag_para_tag_default_tl }
335 \tl_new:N \l__tag_para_main_tag_tl
336 \IfFormatAtLeastTF{2025-11-01}
337 {
338 \tl_set:Nn \l__tag_para_tag_default_tl { \UseStructureName {para/textblock} }
339 \tl_set:Nn \l__tag_para_main_tag_tl { \UseStructureName {para/semantic} }
340 }
341 {
342 \tl_set:Nn \l__tag_para_tag_default_tl { text }
343 \tl_set:Nn \l__tag_para_main_tag_tl {text-unit}
344 }
345

this is perhaps already defined by the block code

346 \tl_if_exist:NF \l__tag_para_attr_class_tl
347 {\tl_new:N \l__tag_para_attr_class_tl }
348 \tl_new:N \l__tag_para_main_attr_class_tl

(End of definition for \l__tag_para_bool and others.)

__tag_gincr_para_main_begin_int:
__tag_gincr_para_main_end_int:

__tag_gincr_para_begin_int:
__tag_gincr_para_end_int:

The global para counter should be set through commands so that \tag_stop: can stop
them.

349 \cs_new_protected:Npn __tag_gincr_para_main_begin_int:
350 {
351 \int_gincr:N \g__tag_para_main_begin_int
352 }
353 \cs_new_protected:Npn __tag_gincr_para_begin_int:
354 {
355 \int_gincr:N \g__tag_para_begin_int
356 }
357 \cs_new_protected:Npn __tag_gincr_para_main_end_int:
358 {
359 \int_gincr:N \g__tag_para_main_end_int
360 }
361 \cs_new_protected:Npn __tag_gincr_para_end_int:
362 {
363 \int_gincr:N \g__tag_para_end_int
364 }

(End of definition for __tag_gincr_para_main_begin_int: and others.)

__tag_start_para_ints:
__tag_stop_para_ints:

365 \cs_new_protected:Npn __tag_start_para_ints:
366 {
367 \cs_set_protected:Npn __tag_gincr_para_main_begin_int:
368 {
369 \int_gincr:N \g__tag_para_main_begin_int

54

370 }
371 \cs_set_protected:Npn __tag_gincr_para_begin_int:
372 {
373 \int_gincr:N \g__tag_para_begin_int
374 }
375 \cs_set_protected:Npn __tag_gincr_para_main_end_int:
376 {
377 \int_gincr:N \g__tag_para_main_end_int
378 }
379 \cs_set_protected:Npn __tag_gincr_para_end_int:
380 {
381 \int_gincr:N \g__tag_para_end_int
382 }
383 }
384 \cs_new_protected:Npn __tag_stop_para_ints:
385 {
386 \cs_set_eq:NN __tag_gincr_para_main_begin_int:\prg_do_nothing:
387 \cs_set_eq:NN __tag_gincr_para_begin_int: \prg_do_nothing:
388 \cs_set_eq:NN __tag_gincr_para_main_end_int: \prg_do_nothing:
389 \cs_set_eq:NN __tag_gincr_para_end_int: \prg_do_nothing:
390 }

(End of definition for __tag_start_para_ints: and __tag_stop_para_ints:.)

We want to be able to inspect the current para main structure, so we need a command
to store its structure number

__tag_para_main_store_struct:

391 \cs_new:Npn __tag_para_main_store_struct:
392 {
393 \tl_gset:Ne \g__tag_para_main_struct_tl {\int_use:N \c@g__tag_struct_abs_int }
394 }

(End of definition for __tag_para_main_store_struct:.)

temporary adaption for the block module:

395 \AddToHook{package/latex-lab-testphase-block/after}
396 {
397 \tl_if_exist:NT \l_tag_para_attr_class_tl
398 {
399 \tl_set:Nn \l__tag_para_attr_class_tl { \l_tag_para_attr_class_tl }
400 }
401 }

para/tagging (setup-key)
para/tag (setup-key)

para/maintag (setup-key)
para/tagging (tool-key)

para/tag (tool-key)
para/maintag (tool-key)

para/flattened (tool-key)
unittag (deprecated)

para-flattened (deprecated)
paratagging (deprecated)

paratagging-show (deprecated)
paratag (deprecated)

These keys enable/disable locally paratagging. Paragraphs are typically tagged with two
structure: A main structure around the whole paragraph, and inner structures around
the various chunks. Debugging can be activated locally with debug/show=para, this can
affect the typesetting as the small numbers are boxes and they have a (small) height.
Debugging can be deactivated with debug/show=paraOff The para/tag key sets the tag
used by the inner structure, para/maintag the tag of the outer structure, both can also
be changed with \tag_tool:n

55

402 \keys_define:nn { __tag / setup }
403 {
404 para/tagging .bool_set:N = \l__tag_para_bool,
405 debug/show/para .code:n = {\bool_set_true:N \l__tag_para_show_bool},
406 debug/show/paraOff .code:n = {\bool_set_false:N \l__tag_para_show_bool},
407 para/tag .tl_set:N = \l__tag_para_tag_tl,
408 para/maintag .tl_set:N = \l__tag_para_main_tag_tl,
409 para/flattened .bool_set:N = \l__tag_para_flattened_bool
410 }
411 \keys_define:nn { tag / tool}
412 {
413 para/tagging .bool_set:N = \l__tag_para_bool,
414 para/tag .tl_set:N = \l__tag_para_tag_tl,
415 para/maintag .tl_set:N = \l__tag_para_main_tag_tl,
416 para/flattened .bool_set:N = \l__tag_para_flattened_bool
417 }

the deprecated names

418 \keys_define:nn { __tag / setup }
419 {
420 paratagging .bool_set:N = \l__tag_para_bool,
421 paratagging-show .bool_set:N = \l__tag_para_show_bool,
422 paratag .tl_set:N = \l__tag_para_tag_tl
423 }
424 \keys_define:nn { tag / tool}
425 {
426 para .bool_set:N = \l__tag_para_bool,
427 paratag .tl_set:N = \l__tag_para_tag_tl,
428 unittag .tl_set:N = \l__tag_para_main_tag_tl,
429 para-flattened .bool_set:N = \l__tag_para_flattened_bool
430 }

(End of definition for para/tagging (setup-key) and others. These functions are documented on page
43.)

Helper command for debugging:

431 \cs_new_protected:Npn __tag_check_para_begin_show:nn #1 #2
432 %#1 color, #2 prefix
433 {
434 \bool_if:NT \l__tag_para_show_bool
435 {
436 \tag_mc_begin:n{artifact}
437 \llap{\color_select:n{#1}\tiny#2\int_use:N\g__tag_para_begin_int\ }
438 \tag_mc_end:
439 }
440 }
441

442 \cs_new_protected:Npn __tag_check_para_end_show:nn #1 #2
443 %#1 color, #2 prefix
444 {
445 \bool_if:NT \l__tag_para_show_bool
446 {
447 \tag_mc_begin:n{artifact}

56

448 \rlap{\color_select:n{#1}\tiny\ #2\int_use:N\g__tag_para_end_int}
449 \tag_mc_end:
450 }
451 }

The para/begin and para/end code. We have two variants here: a simpler one, which
must be used if the block code is not used (and so probably will disappear at some time)
and a more sophisticated one that must be used if the block code is used. It is possible
that we will need more variants, so we setup a socket so that the code can be easily
switched. This code moves into lttagging (2025/11), so we add a test for the transition.

452 \socket_if_exist:nF { tagsupport/para/begin }
453 {
454 \NewTaggingSocket {para/begin}{0}
455 \NewTaggingSocket {para/end}{0}
456

457 \NewTaggingSocketPlug{para/begin}{plain}
458 {
459 \bool_if:NT \l__tag_para_bool
460 {
461 \bool_if:NF \l__tag_para_flattened_bool
462 {
463 __tag_gincr_para_main_begin_int:
464 \tag_struct_begin:n
465 {
466 tag=\l__tag_para_main_tag_tl,
467 }
468 __tag_para_main_store_struct:
469 }
470 __tag_gincr_para_begin_int:
471 \tag_struct_begin:n {tag=\l__tag_para_tag_tl}
472 __tag_check_para_begin_show:nn {green}{}
473 \tag_mc_begin:n {}
474 }
475 }
476 \NewTaggingSocketPlug{para/begin}{block}
477 {
478 \bool_if:NT \l__tag_para_bool
479 {
480 \legacy_if:nF { @inlabel }
481 {
482 __tag_check_typeout_v:n
483 {==>~ @endpe = \legacy_if:nTF { @endpe }{true}{false} \on@line }
484 \legacy_if:nF { @endpe }
485 {
486 \bool_if:NF \l__tag_para_flattened_bool
487 {
488 __tag_gincr_para_main_begin_int:
489 \tag_struct_begin:n
490 {
491 tag=\l__tag_para_main_tag_tl,
492 attribute-class=\l__tag_para_main_attr_class_tl,
493 }
494 __tag_para_main_store_struct:

57

495 }
496 }
497 __tag_gincr_para_begin_int:
498 __tag_check_typeout_v:n {==>~increment~ P \on@line }
499 \tag_struct_begin:n
500 {
501 tag=\l__tag_para_tag_tl
502 ,attribute-class=\l__tag_para_attr_class_tl
503 }
504 __tag_check_para_begin_show:nn {green}{\PARALABEL}
505 \tag_mc_begin:n {}
506 }
507 }
508 }

there was no real difference between the original and in the block variant, only a debug
message. We therefore define only a plain variant.

509 \NewTaggingSocketPlug {para/end}{plain}
510 {
511 \bool_if:NT \l__tag_para_bool
512 {
513 __tag_gincr_para_end_int:
514 __tag_check_typeout_v:n {==>~increment~ /P \on@line }
515 \tag_mc_end:
516 __tag_check_para_end_show:nn {red}{}
517 \tag_struct_end:
518 \bool_if:NF \l__tag_para_flattened_bool
519 {
520 __tag_gincr_para_main_end_int:
521 \tag_struct_end:
522 }
523 }
524 }
525 }

By default we assign the plain plug:

526 \AssignTaggingSocketPlug { para/begin}{plain}
527 \AssignTaggingSocketPlug { para/end}{plain}

And use the sockets in the hooks. Once tagging sockets exist, this can be adapted.

528 \AddToHook{para/begin}{ \tag_socket_use:n { para/begin } }
529 \AddToHook{para/end} { \tag_socket_use:n { para/end } }

If the block code is loaded we must ensure that it doesn’t overwrite the hook again.
And we must reassign the para/begin plug. This can go once the block code no longer
tries to adapt the hooks.

530 \AddToHook{package/latex-lab-testphase-block/after}
531 {
532 \RemoveFromHook{para/begin}[tagpdf]
533 \RemoveFromHook{para/end}[latex-lab-testphase-block]
534 \AddToHook{para/begin}[tagpdf]
535 {

58

536 \socket_use:n { tagsupport/para/begin }
537 }
538 \AddToHook{para/end}[tagpdf]
539 {
540 \socket_use:n { tagsupport/para/end }
541 }
542 \socket_assign_plug:nn { tagsupport/para/begin}{block}
543 }
544

We check the para count at the end. If tagging is not active it is not a error, but we
issue a warning as it perhaps indicates that the testphase code didn’t guard everything
correctly.

545 \AddToHook{enddocument/info}
546 {
547 \tag_if_active:F
548 {
549 \msg_redirect_name:nnn { tag } { para-hook-count-wrong } { warning }
550 }
551 \int_compare:nNnF {\g__tag_para_main_begin_int}={\g__tag_para_main_end_int}
552 {
553 \msg_error:nneee
554 {tag}
555 {para-hook-count-wrong}
556 {\int_use:N\g__tag_para_main_begin_int}
557 {\int_use:N\g__tag_para_main_end_int}
558 {text-unit}
559 }
560 \int_compare:nNnF {\g__tag_para_begin_int}={\g__tag_para_end_int}
561 {
562 \msg_error:nneee
563 {tag}
564 {para-hook-count-wrong}
565 {\int_use:N\g__tag_para_begin_int}
566 {\int_use:N\g__tag_para_end_int}
567 {text}
568 }
569 }

</package>

\tagpdfparaOn
\tagpdfparaOff

This two command switch para mode on and off. \tagpdfsetup could be used too but
is longer. An alternative is \tag_tool:n{para/tagging=false}

570 ⟨base⟩\newcommand\tagpdfparaOn {}
571 ⟨base⟩\newcommand\tagpdfparaOff{}
572 ⟨∗package⟩
573 \renewcommand\tagpdfparaOn {\bool_set_true:N \l__tag_para_bool}
574 \renewcommand\tagpdfparaOff{\bool_set_false:N \l__tag_para_bool}

(End of definition for \tagpdfparaOn and \tagpdfparaOff. These functions are documented on page
43.)

59

\tagpdfsuppressmarks This command allows to suppress the creation of the marks. It takes an argument
which should normally be one of the mc-commands, puts a group around it and suppress
the marks creation in this group. This command should be used if the begin and end
command are at different boxing levels. E.g.

\@hangfrom
{
\tagstructbegin{tag=H1}%
\tagmcbegin {tag=H1}%
#2

}
{#3\tagpdfsuppressmarks{\tagmcend}\tagstructend}%

575 \NewDocumentCommand\tagpdfsuppressmarks{m}
576 {{\use:c{__tag_mc_disable_marks:} #1}}

(End of definition for \tagpdfsuppressmarks. This function is documented on page 43.)

13.5 Language support
With the following key the lang variable is set. All structures in the current group will
then set this lang variable.

test/lang (setup-key)

577 \keys_define:nn { __tag / setup }
578 {
579 text / lang .tl_set:N = \l__tag_struct_lang_tl
580 }

(End of definition for test/lang (setup-key). This function is documented on page ??.)

13.6 Header and footer
Header and footer should normally be tagged as artifacts. The following code requires
the new hooks. For now we allow to disable this function, but probably the code should
always there at the end. TODO check if Pagination should be changeable.

581 \cs_new_protected:Npn__tag_hook_kernel_before_head:{}
582 \cs_new_protected:Npn__tag_hook_kernel_after_head:{}
583 \cs_new_protected:Npn__tag_hook_kernel_before_foot:{}
584 \cs_new_protected:Npn__tag_hook_kernel_after_foot:{}

This can go once the new OR is active (June 2025)

585 \AddToHook{begindocument}
586 {
587 \cs_if_exist:NT \@kernel@before@head
588 {
589 \tl_put_right:Nn \@kernel@before@head {__tag_hook_kernel_before_head:}
590 \tl_put_left:Nn \@kernel@after@head {__tag_hook_kernel_after_head:}
591 \tl_put_right:Nn \@kernel@before@foot {__tag_hook_kernel_before_foot:}
592 \tl_put_left:Nn \@kernel@after@foot {__tag_hook_kernel_after_foot:}
593 }
594 }

60

We use the page sockets.

595 \NewTaggingSocketPlug{build/page/header}{tagpdf}
596 {
597 __tag_hook_kernel_before_head:
598 #2
599 __tag_hook_kernel_after_head:
600 }
601

602 \AssignTaggingSocketPlug{build/page/header}{tagpdf}
603 \NewTaggingSocketPlug{build/page/footer}{tagpdf}
604 {
605 __tag_hook_kernel_before_foot:
606 #2
607 __tag_hook_kernel_after_foot:
608 }
609 \AssignTaggingSocketPlug{build/page/footer}{tagpdf}

610 \bool_new:N \g__tag_saved_in_mc_bool
611 \cs_new_protected:Npn __tag_exclude_headfoot_begin:
612 {
613 \bool_set_false:N \l__tag_para_bool
614 \bool_if:NTF \g__tag_mode_lua_bool
615 {
616 \tag_mc_end_push:
617 }
618 {
619 \bool_gset_eq:NN \g__tag_saved_in_mc_bool \g__tag_in_mc_bool
620 \bool_gset_false:N \g__tag_in_mc_bool
621 }
622 \tag_mc_begin:n {artifact}
623 \tag_suspend:n{headfoot}
624 }
625 \cs_new_protected:Npn __tag_exclude_headfoot_end:
626 {
627 \tag_resume:n{headfoot}
628 \tag_mc_end:
629 \bool_if:NTF \g__tag_mode_lua_bool
630 {
631 \tag_mc_begin_pop:n{}
632 }
633 {
634 \bool_gset_eq:NN \g__tag_in_mc_bool\g__tag_saved_in_mc_bool
635 }
636 }

This version allows to use an Artifact structure

637 __tag_attr_new_entry:nn {__tag/attr/pagination}{/O/Artifact/Type/Pagination}
638 \cs_new_protected:Npn __tag_exclude_struct_headfoot_begin:n #1
639 {
640 \bool_set_false:N \l__tag_para_bool
641 \bool_if:NTF \g__tag_mode_lua_bool
642 {
643 \tag_mc_end_push:

61

644 }
645 {
646 \bool_gset_eq:NN \g__tag_saved_in_mc_bool \g__tag_in_mc_bool
647 \bool_gset_false:N \g__tag_in_mc_bool
648 }
649 \tag_struct_begin:n{tag=Artifact,attribute-class=__tag/attr/#1}
650 \tag_mc_begin:n {artifact=#1}
651 \tag_suspend:n{headfoot}
652 }
653

654 \cs_new_protected:Npn __tag_exclude_struct_headfoot_end:
655 {
656 \tag_resume:n{headfoot}
657 \tag_mc_end:
658 \tag_struct_end:
659 \bool_if:NTF \g__tag_mode_lua_bool
660 {
661 \tag_mc_begin_pop:n{}
662 }
663 {
664 \bool_gset_eq:NN \g__tag_in_mc_bool\g__tag_saved_in_mc_bool
665 }
666 }

And now the keys

page/exclude-header-footer (setup-key)
exclude-header-footer (deprecated)

667 \keys_define:nn { __tag / setup }
668 {
669 page/exclude-header-footer .choice:,
670 page/exclude-header-footer / true .code:n =
671 {
672 \cs_set_eq:NN __tag_hook_kernel_before_head: __tag_exclude_headfoot_begin:
673 \cs_set_eq:NN __tag_hook_kernel_before_foot: __tag_exclude_headfoot_begin:
674 \cs_set_eq:NN __tag_hook_kernel_after_head: __tag_exclude_headfoot_end:
675 \cs_set_eq:NN __tag_hook_kernel_after_foot: __tag_exclude_headfoot_end:
676 },
677 page/exclude-header-footer / pagination .code:n =
678 {
679 \cs_set:Nn __tag_hook_kernel_before_head: { __tag_exclude_struct_headfoot_begin:n {pagination} }
680 \cs_set:Nn __tag_hook_kernel_before_foot: { __tag_exclude_struct_headfoot_begin:n {pagination} }
681 \cs_set_eq:NN __tag_hook_kernel_after_head: __tag_exclude_struct_headfoot_end:
682 \cs_set_eq:NN __tag_hook_kernel_after_foot: __tag_exclude_struct_headfoot_end:
683 },
684 page/exclude-header-footer / false .code:n =
685 {
686 \cs_set_eq:NN __tag_hook_kernel_before_head: \prg_do_nothing:
687 \cs_set_eq:NN __tag_hook_kernel_before_foot: \prg_do_nothing:
688 \cs_set_eq:NN __tag_hook_kernel_after_head: \prg_do_nothing:
689 \cs_set_eq:NN __tag_hook_kernel_after_foot: \prg_do_nothing:
690 },
691 page/exclude-header-footer .default:n = true,
692 page/exclude-header-footer .initial:n = true,

62

deprecated name

693 exclude-header-footer .meta:n = { page/exclude-header-footer = {#1} }
694 }

(End of definition for page/exclude-header-footer (setup-key) and exclude-header-footer (deprecated).
These functions are documented on page 43.)

A special, experimental tagged version, which only works with fancyhdr or similar
that uses parbox

695 \AtBeginDocument
696 {
697 \socket_if_exist:nT{tagsupport/parbox/before}
698 {
699 \NewTaggingSocketPlug{parbox/before}{tag/footer}
700 {
701 \tag_struct_begin:n{tag=Span}
702 \tag_mc_begin:n{}
703 }
704

705 \NewTaggingSocketPlug{parbox/after}{tag/footer}
706 {
707 \tag_mc_end:
708 \tag_struct_end:
709 }
710 }
711 }
712

713 \cs_new_protected:Npn __tag_headfoot_tagged_begin:n #1
714 {
715 \AssignTaggingSocketPlug{parbox/before}{tag/footer}
716 \AssignTaggingSocketPlug{parbox/after}{tag/footer}
717 \bool_set_false:N \l__tag_para_bool
718 \bool_if:NTF \g__tag_mode_lua_bool
719 {
720 \tag_mc_end_push:
721 }
722 {
723 \bool_gset_eq:NN \g__tag_saved_in_mc_bool \g__tag_in_mc_bool
724 \bool_gset_false:N \g__tag_in_mc_bool
725 }
726 \tag_struct_begin:n{tag=Artifact,attribute-class=__tag/attr/#1,parent=\tag_get:n{current_Sect}}
727 }
728

729 \cs_new_protected:Npn __tag_headfoot_tagged_end:
730 {
731 \tag_struct_end:
732 \bool_if:NTF \g__tag_mode_lua_bool
733 {
734 \tag_mc_begin_pop:n{}
735 }
736 {
737 \bool_gset_eq:NN \g__tag_in_mc_bool\g__tag_saved_in_mc_bool
738 }

63

739 }
740 \keys_define:nn { __tag / setup }
741 {
742 page/tag-header-footer .code:n =
743 {
744 \cs_set:Nn __tag_hook_kernel_before_head: { __tag_headfoot_tagged_begin:n {pagination}}
745 \cs_set:Nn __tag_hook_kernel_before_foot: { __tag_headfoot_tagged_begin:n {pagination}}
746 \cs_set_eq:NN __tag_hook_kernel_after_head: __tag_headfoot_tagged_end:
747 \cs_set_eq:NN __tag_hook_kernel_after_foot: __tag_headfoot_tagged_end:
748 }
749 }

13.7 Links
We need to close and reopen mc-chunks around links. We handle URI, GoTo (internal)
links, GoToR, Launch and Named links. Links should have an alternative text in the
Contents key; this is added for normal links by the generic hyperref driver. With luatex
we make use of the lualinksplit package to get OBJR of all annotations into the Link
structure, so the hook code should not contain the command to insert the OBJR into
the structure.

At first we provide some commands that will be in the next LaTeX release (11/2025)

750 \AddToHookNext{class/before}
751 {
752 \cs_if_exist:NF \UseStructureName
753 {
754 \cs_new:Npn\UseStructureName#1
755 {
756 \cs:w l__tag_name_#1_tl\cs_end:
757 }
758 }
759 \cs_if_exist:NF \l__tag_name_link_tl
760 {
761 \tl_new:N \l__tag_name_link_tl
762 \tl_set:Nn \l__tag_name_link_tl{Link}
763 }
764 }

Tagging sockets for links

765 \socket_if_exist:nF {tagsupport/link/before}
766 {
767 \NewTaggingSocket{link/before}{1}
768 \NewTaggingSocket{link/after}{1}
769 }
770 \NewTaggingSocketPlug{link/before}{kernel}
771 {
772 \mode_leave_vertical:
773 \tag_mc_end_push:
774 \tag_struct_begin:n { tag=\UseStructureName{link} }
775 \tag_mc_begin:n {}
776 #1
777 }
778 \AssignTaggingSocketPlug{link/before}{kernel}

64

779

780 \NewTaggingSocketPlug{link/after}{kernel}
781 {
782 #1
783 \tag_mc_end:
784 \tag_struct_end:
785 \tag_mc_begin_pop:n{}
786 }
787 \AssignTaggingSocketPlug{link/after}{kernel}
788

789

790 \bool_lazy_and:nnTF
791 { \sys_if_engine_luatex_p: }
792 {
793 \tl_if_empty_p:e
794 {
795 \lua_now:e
796 { if~ luatexbase.in_callback('pre_shipout_filter','linksplit')~
797 then~else~tex.print('1')~end
798 }
799 }
800 }
801 {
802 \hook_gput_code:nnn
803 {pdfannot/link/URI/before}
804 {tagpdf}
805 {
806 \UseTaggingSocket{link/before}{}
807 }
808

809 \hook_gput_code:nnn
810 {pdfannot/link/URI/after}
811 {tagpdf}
812 {
813 \UseTaggingSocket{link/after}{}
814 }
815

816 \hook_gput_code:nnn
817 {pdfannot/link/GoTo/before}
818 {tagpdf}
819 {
820 \UseTaggingSocket{link/before}{}
821 }
822

823 \hook_gput_code:nnn
824 {pdfannot/link/GoTo/after}
825 {tagpdf}
826 {
827 \UseTaggingSocket{link/after}{}
828 }
829

830 \hook_gput_code:nnn
831 {pdfannot/link/GoToR/before}
832 {tagpdf}

65

833 {
834 \UseTaggingSocket{link/before}
835 }
836

837 \hook_gput_code:nnn
838 {pdfannot/link/GoToR/after}
839 {tagpdf}
840 {
841 \UseTaggingSocket{link/after}{}
842 }
843 \hook_gput_code:nnn
844 {pdfannot/link/Launch/before}
845 {tagpdf}
846 {
847 \UseTaggingSocket{link/before}{}
848 }
849

850 \hook_gput_code:nnn
851 {pdfannot/link/Launch/after}
852 {tagpdf}
853 {
854 \UseTaggingSocket{link/after}{}
855 }
856 \hook_gput_code:nnn
857 {pdfannot/link/Named/before}
858 {tagpdf}
859 {
860 \UseTaggingSocket{link/before}{}
861 }
862

863 \hook_gput_code:nnn
864 {pdfannot/link/Named/after}
865 {tagpdf}
866 {
867 \UseTaggingSocket{link/after}{}
868 }
869 }
870 {
871 \hook_gput_code:nnn
872 {pdfannot/link/URI/before}
873 {tagpdf}
874 {
875 \UseTaggingSocket{link/before}
876 {
877 \pdfannot_dict_put:nne
878 { link/URI }
879 { StructParent }
880 { \tag_struct_parent_int: }
881 }
882 }
883

884 \hook_gput_code:nnn
885 {pdfannot/link/URI/after}
886 {tagpdf}

66

887 {
888 \UseTaggingSocket{link/after}
889 {
890 \tag_struct_insert_annot:ee
891 {\pdfannot_link_ref_last:}{\tag_struct_parent_int:}
892 }
893 }
894

895 \hook_gput_code:nnn
896 {pdfannot/link/GoTo/before}
897 {tagpdf}
898 {
899 \UseTaggingSocket{link/before}
900 {
901 \pdfannot_dict_put:nne
902 { link/GoTo }
903 { StructParent }
904 { \tag_struct_parent_int: }
905 }
906 }
907

908 \hook_gput_code:nnn
909 {pdfannot/link/GoTo/after}
910 {tagpdf}
911 {
912 \UseTaggingSocket{link/after}
913 {
914 \tag_struct_insert_annot:ee
915 {\pdfannot_link_ref_last:}{\tag_struct_parent_int:}
916 }
917 }
918

919 \hook_gput_code:nnn
920 {pdfannot/link/GoToR/before}
921 {tagpdf}
922 {
923 \UseTaggingSocket{link/before}
924 {
925 \pdfannot_dict_put:nne
926 { link/GoToR }
927 { StructParent }
928 { \tag_struct_parent_int: }
929 }
930 }
931

932 \hook_gput_code:nnn
933 {pdfannot/link/GoToR/after}
934 {tagpdf}
935 {
936 \UseTaggingSocket{link/after}
937 {
938 \tag_struct_insert_annot:ee
939 {\pdfannot_link_ref_last:}{\tag_struct_parent_int:}
940 }

67

941 }
942

943 \hook_gput_code:nnn
944 {pdfannot/link/Named/before}
945 {tagpdf}
946 {
947 \UseTaggingSocket{link/before}
948 {
949 \pdfannot_dict_put:nne
950 { link/Named }
951 { StructParent }
952 { \tag_struct_parent_int: }
953 }
954 }
955

956 \hook_gput_code:nnn
957 {pdfannot/link/Named/after}
958 {tagpdf}
959 {
960 \UseTaggingSocket{link/after}
961 {
962 \tag_struct_insert_annot:ee
963 {\pdfannot_link_ref_last:}{\tag_struct_parent_int:}
964 }
965 }
966 \hook_gput_code:nnn
967 {pdfannot/link/Launch/before}
968 {tagpdf}
969 {
970 \UseTaggingSocket{link/before}
971 {
972 \pdfannot_dict_put:nne
973 { link/Launch }
974 { StructParent }
975 { \tag_struct_parent_int: }
976 }
977 }
978

979 \hook_gput_code:nnn
980 {pdfannot/link/Launch/after}
981 {tagpdf}
982 {
983 \UseTaggingSocket{link/after}
984 {
985 \tag_struct_insert_annot:ee
986 {\pdfannot_link_ref_last:}{\tag_struct_parent_int:}
987 }
988 }
989 }

13.8 Attaching css-files for derivation
Derivation to html (https://pdfa.org/wp-content/uploads/2019/06/Deriving_HTML_­
from_PDF.pdf, implemented by, e.g., ngpdf) can be improved by attaching CSS style

68

definitions in associated files with relationship supplement to the Catalog1.
Such CSS style definitions can be given in two ways:

• In files with the extension .css. Such files should contain only CSS style definitions.
ngpdf will store these files and include them with an <link rel=stylesheet href=...>
in the head of the html.

• In files with the extension .html. Such files should contain CSS style definitions
inside one (or more) <style>...</style> html tags. The content of these files are
copied by ngpdf directly into the head of the derived html.

By default (if tagging is active) tagpdf embeds now such CSS style definitions. Cur­
rently the list of files is rather short and consists of two files (with extension .html and
<style>...</style> html tags) which are provided by the tagpdf package:

• latex-align-css.html which improves the styling of amsmath alignments tagged with
MathML.

• latex-list-css.html which improves the style of list environments.

It is possible to suppress the embedding of these files by setting the \tagpdfsetup
key attach-css to false, attach-css=true or attach-css reverts this again.

For developers, \tagpdfsetup some keys to manipulate the list exist: With css-
list={file1,file2} the list can be overwritten. css-list= clears the list (and so sup­
presses the embedding too). To remove a file from the list, use css-list-remove=file,
e.g. css-list-remove=latex-list-css.html. To add your own file use css-list-
add=my-fancy-align-css.html. It is also possible to attach a .css-file in this way.

These keys do not affect files added directly with root-supplemental-file or catalog-
supplemental-file.

The files in this list are attached at the end of the compilation but you shouldn’t
rely on a specific order of the embedding in the html.

We want to avoid to embed files twice, so we use a prop.

990 \prop_new:N \g__tag_css_prop
991 \prop_gset_from_keyval:Nn \g__tag_css_prop
992 {
993 latex-list-css.html=true,
994 latex-align-css.html=true
995 }
996

997

998 \bool_new:N \g__tag_css_bool
999 \bool_gset_true:N \g__tag_css_bool

The files for the catalog must be added before the catalog is pushed.

1000 \tl_gput_left:Nn \g__kernel_pdfmanagement_end_run_code_tl
1001 {
1002 \bool_lazy_and:nnT { \g__tag_css_bool }{ \tag_if_active_p: }
1003 {
1004 \prop_map_inline:Nn \g__tag_css_prop
1005 {
1006 \keys_set:nn { __tag / setup }{ catalog-supplemental-file= {#1} }

1Previously they suggested the StructTreeRoot, but this is not compatible with pdf/A-3

69

1007 }
1008 }
1009 }
1010

1011 \keys_define:nn { __tag / setup }
1012 {
1013 attach-css .bool_gset:N = \g__tag_css_bool,
1014 css-list .code:n =
1015 {
1016 \tl_if_empty:nTF{#1}
1017 {\prop_gclear:N \g__tag_css_prop }
1018 {\prop_gput:Nnn \g__tag_css_prop { #1 }{true}}
1019 },
1020 css-list-add .code:n = { \prop_gput:Nnn \g__tag_css_prop { #1 }{true} },
1021 css-list-remove .code:n = { \prop_gremove:Nn \g__tag_css_prop { #1 } },
1022 }

</package> The tagpdf-tree module
Commands trees and main dictionaries
Part of the tagpdf package

Ulrike Fischer
Version 0.99x, released 2026-01-12

70

Part IV
1 ⟨@@=tag⟩
2 ⟨∗header⟩
3 \ProvidesExplPackage {tagpdf-tree-code} {2026-01-12} {0.99x}
4 {part of tagpdf - code related to writing trees and dictionaries to the pdf}
5 ⟨/header⟩

1 Trees, pdfmanagement and finalization code
The code to finish the structure is in a hook. This will perhaps at the end be a kernel
hook. TODO check right place for the code The pdfmanagement code is the kernel hook
after shipout/lastpage so all code affecting it should be before. Objects can be written
later, at least in pdf mode.

6 ⟨∗package⟩
7 \hook_gput_code:nnn{begindocument}{tagpdf}
8 {
9 \bool_if:NT \g__tag_active_tree_bool

10 {
11 \sys_if_output_pdf:TF
12 {
13 \AddToHook{enddocument/end} { __tag_finish_structure: }
14 }
15 {
16 \AddToHook{shipout/lastpage} { __tag_finish_structure: }
17 }
18 }
19 }

1.1 Check structure
__tag_tree_final_checks:

20 \cs_new_protected:Npn __tag_tree_final_checks:
21 {
22 \int_compare:nNnF {\seq_count:N\g__tag_struct_stack_seq}={1}
23 {
24 \msg_warning:nn {tag}{tree-struct-still-open}
25 \int_step_inline:nnn{2}{\seq_count:N\g__tag_struct_stack_seq}
26 {\tag_struct_end:}
27 }
28 \socket_use:n { tag/check/parent-child-end }
29 \msg_note:nn {tag}{tree-statistic}
30 }

(End of definition for __tag_tree_final_checks:.)

1.2 Catalog: MarkInfo and StructTreeRoot and OpenAction
The StructTreeRoot and the MarkInfo entry must be added to the catalog. If there is
an OpenAction entry we must update it, so that it contains also a structure destination.
We do it late so that we can win, but before the pdfmanagement hook.

71

__tag/struct/1 This is the object for the root object, the StructTreeRoot

31 \pdf_object_new_indexed:nn { __tag/struct }{ 1 }

(End of definition for __tag/struct/1.)

\g__tag_tree_openaction_struct_tl We need a variable that indicates which structure is wanted in the OpenAction. By
default we use 2 (the Document structure).

32 \tl_new:N \g__tag_tree_openaction_struct_tl
33 \tl_gset:Nn \g__tag_tree_openaction_struct_tl { 2 }

(End of definition for \g__tag_tree_openaction_struct_tl.)

viewer/startstructure (setup-key) We also need an option to setup the start structure. So we setup a key which sets the
variable to the current structure. This still requires hyperref to do most of the job, this
should perhaps be changed.

34 \keys_define:nn { __tag / setup }
35 {
36 viewer/startstructure .code:n =
37 {
38 \tl_gset:Ne \g__tag_tree_openaction_struct_tl {#1}
39 }
40 ,viewer/startstructure .default:n = { \int_use:N \c@g__tag_struct_abs_int }
41 }

(End of definition for viewer/startstructure (setup-key). This function is documented on page ??.)

The OpenAction should only be updated if it is there. So we inspect the Catalog-prop:

42 \cs_new_protected:Npn __tag_tree_update_openaction:
43 {
44 \prop_get:cnNT
45 { __kernel_pdfdict_name:n { g__pdf_Core/Catalog } }
46 {OpenAction}
47 \l__tag_tmpa_tl
48 {

we only do something if the OpenAction is an array (as set by hyperref) in other cases
we hope that the author knows what they did.

49 \tl_if_head_eq_charcode:eNT { \tl_trim_spaces:o { \l__tag_tmpa_tl } } [%]
50 {
51 \seq_set_split:Nno\l__tag_tmpa_seq {/} {\l__tag_tmpa_tl}
52 \pdfmanagement_add:nne {Catalog} { OpenAction }
53 {
54 <<
55 /S/GoTo \c_space_tl
56 /D~\l__tag_tmpa_tl\c_space_tl
57 /SD~[\pdf_object_ref_indexed:nn{__tag/struct}{\g__tag_tree_openaction_struct_tl}

there should be always a /Fit etc in the array but better play safe here ...

72

58 \int_compare:nNnTF{ \seq_count:N \l__tag_tmpa_seq } > {1}
59 { /\seq_item:Nn\l__tag_tmpa_seq{2} }
60 {] }
61 >>
62 }
63 }
64 }
65 }

66 \hook_gput_code:nnn{shipout/lastpage}{tagpdf}
67 {
68 \bool_if:NT \g__tag_active_tree_bool
69 {
70 \pdfmanagement_add:nnn { Catalog / MarkInfo } { Marked } { true }
71 \pdfmanagement_add:nne
72 { Catalog }
73 { StructTreeRoot }
74 { \pdf_object_ref_indexed:nn { __tag/struct } { 1 } }
75 __tag_tree_update_openaction:
76 }
77 }

1.3 Writing the IDtree
The ID are currently quite simple: every structure has an ID build from the prefix ID
together with the structure number padded with enough zeros to that we get directly an
lexical order. We ship them out in bundles At first a seq to hold the references for the
kids

\g__tag_tree_id_pad_int

78 \int_new:N\g__tag_tree_id_pad_int

(End of definition for \g__tag_tree_id_pad_int.)

Now we get the needed padding

79 \cs_generate_variant:Nn \tl_count:n {e}
80 \hook_gput_code:nnn{begindocument}{tagpdf}
81 {
82 \int_gset:Nn\g__tag_tree_id_pad_int
83 {\tl_count:e { __tag_property_ref_lastpage:nn{tagstruct}{1000}}+1}
84 }
85

This is the main code to write the tree it basically splits the existing structure numbers
in chunks of length 50 TODO consider is 50 is a good length.

86 \cs_new_protected:Npn __tag_tree_write_idtree:
87 {
88 \tl_clear:N \l__tag_tmpa_tl
89 \tl_clear:N \l__tag_tmpb_tl
90 \int_zero:N \l__tag_tmpa_int
91 \int_step_inline:nnn {2} {\c@g__tag_struct_abs_int}
92 {

73

93 \int_incr:N\l__tag_tmpa_int
94 \tl_put_right:Ne \l__tag_tmpa_tl
95 {
96 __tag_struct_get_id:n{##1}~\pdf_object_ref_indexed:nn {__tag/struct}{##1}~
97 }
98 \int_compare:nNnF {\l__tag_tmpa_int}<{50} %
99 {

100 \pdf_object_unnamed_write:ne {dict}
101 { /Limits~[__tag_struct_get_id:n{##1-\l__tag_tmpa_int+1}~__tag_struct_get_id:n{##1}]
102 /Names~[\l__tag_tmpa_tl]
103 }
104 \tl_put_right:Ne\l__tag_tmpb_tl {\pdf_object_ref_last:\c_space_tl}
105 \int_zero:N \l__tag_tmpa_int
106 \tl_clear:N \l__tag_tmpa_tl
107 }
108 }
109 \tl_if_empty:NF \l__tag_tmpa_tl
110 {
111 \pdf_object_unnamed_write:ne {dict}
112 {
113 /Limits~
114 [__tag_struct_get_id:n{\c@g__tag_struct_abs_int-\l__tag_tmpa_int+1}~
115 __tag_struct_get_id:n{\c@g__tag_struct_abs_int}]
116 /Names~[\l__tag_tmpa_tl]
117 }
118 \tl_put_right:Ne\l__tag_tmpb_tl {\pdf_object_ref_last:}
119 }
120 \pdf_object_unnamed_write:ne {dict}{/Kids~[\l__tag_tmpb_tl]}
121 __tag_prop_gput:cne
122 { g__tag_struct_1_prop }
123 { IDTree }
124 { \pdf_object_ref_last: }
125 }

1.4 Writing structure elements
The following commands are needed to write out the structure.

__tag_tree_write_structtreeroot: This writes out the root object.

126 \cs_new_protected:Npn __tag_tree_write_structtreeroot:
127 {
128 __tag_prop_gput:cne
129 { g__tag_struct_1_prop }
130 { ParentTree }
131 { \pdf_object_ref:n { __tag/tree/parenttree } }
132 __tag_prop_gput:cne
133 { g__tag_struct_1_prop }
134 { RoleMap }
135 { \pdf_object_ref:n { __tag/tree/rolemap } }
136 __tag_struct_fill_kid_key:n { 1 }
137 \prop_gremove:cn { g__tag_struct_1_prop } {S}
138 __tag_struct_get_dict_content:nN { 1 } \l__tag_tmpa_tl
139 \pdf_object_write_indexed:nnne

74

140 { __tag/struct } { 1 }
141 {dict}
142 {
143 \l__tag_tmpa_tl
144 }

Better put S back, see https://github.com/latex3/tagging-project/issues/86

145 \prop_gput:cnn { g__tag_struct_1_prop } {S}{ /StructTreeRoot }
146 }

(End of definition for __tag_tree_write_structtreeroot:.)

__tag_tree_write_structelements: This writes out the other struct elems, the absolute number is in the counter.

147 \cs_new_protected:Npn __tag_tree_write_structelements:
148 {
149 \int_step_inline:nnnn {2}{1}{\c@g__tag_struct_abs_int}
150 {
151 __tag_struct_write_obj:n { ##1 }
152 }
153 }

(End of definition for __tag_tree_write_structelements:.)

1.5 ParentTree
__tag/tree/parenttree The object which will hold the parenttree

154 \pdf_object_new:n { __tag/tree/parenttree }

(End of definition for __tag/tree/parenttree.)

The ParentTree maps numbers to objects or (if the number represents a page) to arrays of
objects. The numbers refer to two distinct types of entries: page streams and real objects
like annotations. The numbers must be distinct and ordered. So we rely on abspage for
the pages and put the real objects at the end. We use a counter to have a chance to get
the correct number if code is processed twice.

\c@g__tag_parenttree_obj_int This is a counter for the real objects. It starts at the absolute last page value. It relies
on l3ref.

155 \int_new:N \c@g__tag_parenttree_obj_int
156 \hook_gput_code:nnn{begindocument}{tagpdf}
157 {
158 \int_gset:Nn
159 \c@g__tag_parenttree_obj_int
160 { __tag_property_ref_lastpage:nn{abspage}{100} }
161 }

(End of definition for \c@g__tag_parenttree_obj_int.)

We store the number/object references in a tl-var. If more structure is needed one could
switch to a seq.

75

\g__tag_parenttree_objr_tl

162 \tl_new:N \g__tag_parenttree_objr_tl

(End of definition for \g__tag_parenttree_objr_tl.)

__tag_parenttree_add_objr:nn This command stores a StructParent number and a objref into the tl var. This is only
for objects like annotations, pages are handled elsewhere.

163 \cs_new_protected:Npn __tag_parenttree_add_objr:nn #1 #2 %#1 StructParent number, #2 objref
164 {
165 \tl_gput_right:Ne \g__tag_parenttree_objr_tl
166 {
167 #1 \c_space_tl #2 ^^J
168 }
169 }

(End of definition for __tag_parenttree_add_objr:nn.)

\l__tag_parenttree_content_tl A tl-var which will get the page related parenttree content.

170 \tl_new:N \l__tag_parenttree_content_tl

(End of definition for \l__tag_parenttree_content_tl.)

__tag_tree_fill_parenttree: This is the main command to assemble the page related entries of the parent tree. It
wanders through the pages and the mcid numbers and collects all mcid of one page.

171 \cs_new_protected:Npn __tag_tree_parenttree_rerun_msg: {}
172 \cs_new_protected:Npn __tag_tree_fill_parenttree:
173 {
174 \int_step_inline:nnnn{1}{1}{__tag_property_ref_lastpage:nn{abspage}{-1}} %not quite clear if labels are needed. See lua code
175 { %page ##1
176 \prop_clear:N \l__tag_tmpa_prop
177 \int_step_inline:nnnn{1}{1}{__tag_property_ref_lastpage:nn{tagmcabs}{-1}}
178 {
179 %mcid####1
180 \int_compare:nT
181 {\property_ref:enn{mcid-####1}{tagabspage}{-1}=##1} %mcid is on current page
182 {% yes
183 \prop_get:NnNT
184 \g__tag_mc_parenttree_prop
185 {####1}
186 \l__tag_tmpa_tl
187 {
188 \prop_put:Nee
189 \l__tag_tmpa_prop
190 {\property_ref:enn{mcid-####1}{tagmcid}{-1}}
191 {\l__tag_tmpa_tl}
192 }
193 }
194 }
195 \tl_put_right:Ne\l__tag_parenttree_content_tl
196 {

76

197 \int_eval:n {##1-1}\c_space_tl
198 [\c_space_tl %]
199 }
200 \int_step_inline:nnnn %####1
201 {0}
202 {1}
203 { \prop_count:N \l__tag_tmpa_prop -1 }
204 {
205 \prop_get:NnNTF \l__tag_tmpa_prop {####1} \l__tag_tmpa_tl
206 {% page#1:mcid##1:\l__tag_tmpa_tl :content
207 \tl_put_right:Ne \l__tag_parenttree_content_tl
208 {
209 \prop_if_exist:cTF { g__tag_struct_ \l__tag_tmpa_tl _prop }
210 {
211 \pdf_object_ref_indexed:nn { __tag/struct }{ \l__tag_tmpa_tl }
212 }
213 {
214 null
215 }
216 \c_space_tl
217 }
218 }
219 {
220 \cs_set_protected:Npn __tag_tree_parenttree_rerun_msg:
221 {
222 \msg_warning:nn { tag } {tree-mcid-index-wrong}
223 }
224 }
225 }
226 \tl_put_right:Nn
227 \l__tag_parenttree_content_tl
228 {%[
229]^^J
230 }
231 }
232 }

(End of definition for __tag_tree_fill_parenttree:.)

__tag_tree_lua_fill_parenttree: This is a special variant for luatex. lua mode must/can do it differently.

233 \cs_new_protected:Npn __tag_tree_lua_fill_parenttree:
234 {
235 \tl_set:Nn \l__tag_parenttree_content_tl
236 {
237 \lua_now:e
238 {
239 ltx.__tag.func.output_parenttree
240 (
241 \int_use:N\g_shipout_readonly_int
242)
243 }
244 }
245 }

77

(End of definition for __tag_tree_lua_fill_parenttree:.)

__tag_tree_write_parenttree: This combines the two parts and writes out the object. TODO should the check for lua
be moved into the backend code?

246 \cs_new_protected:Npn __tag_tree_write_parenttree:
247 {
248 \bool_if:NTF \g__tag_mode_lua_bool
249 {
250 __tag_tree_lua_fill_parenttree:
251 }
252 {
253 __tag_tree_fill_parenttree:
254 }
255 __tag_tree_parenttree_rerun_msg:
256 \tl_put_right:No \l__tag_parenttree_content_tl { \g__tag_parenttree_objr_tl }
257 \pdf_object_write:nne { __tag/tree/parenttree }{dict}
258 {
259 /Nums\c_space_tl [\l__tag_parenttree_content_tl]
260 }
261 }

(End of definition for __tag_tree_write_parenttree:.)

1.6 Rolemap dictionary
The Rolemap dictionary describes relations between new tags and standard types. The
main part here is handled in the role module, here we only define the command which
writes it to the PDF.

__tag/tree/rolemap At first we reserve again an object. Rolemap is also used in PDF 2.0 as a fallback.

262 \pdf_object_new:n { __tag/tree/rolemap }

(End of definition for __tag/tree/rolemap.)

__tag_tree_write_rolemap: This writes out the rolemap, basically it simply pushes out the dictionary which has been
filled in the role module.

263 \cs_new_protected:Npn __tag_tree_write_rolemap:
264 {
265 \bool_if:NT \g__tag_role_add_mathml_bool
266 {
267 \prop_map_inline:Nn \g__tag_role_NS_mathml_prop
268 {
269 \prop_gput:Nnn \g__tag_role_rolemap_prop {##1}{Span}
270 }
271 }
272 \prop_map_inline:Nn\g__tag_role_rolemap_prop
273 {
274 \tl_if_eq:nnF {##1}{##2}
275 {
276 \pdfdict_gput:nne {g__tag_role/RoleMap_dict}
277 {##1}

78

278 {\pdf_name_from_unicode_e:n{##2}}
279 }
280 }
281 \pdf_object_write:nne { __tag/tree/rolemap }{dict}
282 {
283 \pdfdict_use:n{g__tag_role/RoleMap_dict}
284 }
285 }

(End of definition for __tag_tree_write_rolemap:.)

1.7 Classmap dictionary
Classmap and attributes are setup in the struct module, here is only the code to write it
out. It should only done if values have been used.

__tag_tree_write_classmap:

286 \cs_new_protected:Npn __tag_tree_write_classmap:
287 {
288 \tl_clear:N \l__tag_tmpa_tl

We process the older sec for compatibility with the table code. TODO: check if still
needed

289 \seq_map_inline:Nn \g__tag_attr_class_used_seq
290 {
291 \prop_gput:Nnn \g__tag_attr_class_used_prop {##1}{}
292 }
293 \prop_map_inline:Nn \g__tag_attr_class_used_prop
294 {
295 \prop_get:NnNT \g__tag_attr_entries_prop {##1} \l__tag_tmpb_tl
296 {
297 \tl_put_right:Ne \l__tag_tmpa_tl
298 {
299 ##1\c_space_tl
300 <<
301 \l__tag_tmpb_tl
302 >>
303 \iow_newline:
304 }
305 }
306 }
307 \tl_if_empty:NF
308 \l__tag_tmpa_tl
309 {
310 \pdf_object_new:n { __tag/tree/classmap }
311 \pdf_object_write:nne
312 { __tag/tree/classmap }
313 {dict}
314 { \l__tag_tmpa_tl }
315 __tag_prop_gput:cne
316 { g__tag_struct_1_prop }
317 { ClassMap }

79

318 { \pdf_object_ref:n { __tag/tree/classmap } }
319 }
320 }

(End of definition for __tag_tree_write_classmap:.)

1.8 Namespaces
Namespaces are handle in the role module, here is the code to write them out. Names­
paces are only relevant for pdf2.0.

__tag/tree/namespaces

321 \pdf_object_new:n { __tag/tree/namespaces }

(End of definition for __tag/tree/namespaces.)

__tag_tree_write_namespaces:

322 \cs_new_protected:Npn __tag_tree_write_namespaces:
323 {
324 \pdf_version_compare:NnF < {2.0}
325 {
326 \prop_map_inline:Nn \g__tag_role_NS_prop
327 {
328 \pdfdict_if_empty:nF {g__tag_role/RoleMapNS_##1_dict}
329 {
330 \pdf_object_write:nne {__tag/RoleMapNS/##1}{dict}
331 {
332 \pdfdict_use:n {g__tag_role/RoleMapNS_##1_dict}
333 }
334 \pdfdict_gput:nne{g__tag_role/Namespace_##1_dict}
335 {RoleMapNS}{\pdf_object_ref:n {__tag/RoleMapNS/##1}}
336 }
337 \pdf_object_write:nne{tag/NS/##1}{dict}
338 {
339 \pdfdict_use:n {g__tag_role/Namespace_##1_dict}
340 }
341 }
342 \pdf_object_write:nne {__tag/tree/namespaces}{array}
343 {
344 \prop_map_tokens:Nn \g__tag_role_NS_prop{\use_ii:nn}
345 }
346 }
347 }

(End of definition for __tag_tree_write_namespaces:.)

1.9 Finishing the structure
This assembles the various parts. TODO (when tabular are done or if someone requests
it): IDTree

__tag_finish_structure:

80

348 \hook_new:n {tagpdf/finish/before}
349 \cs_new_protected:Npn __tag_finish_structure:
350 {
351 \bool_if:NT\g__tag_active_tree_bool
352 {
353 \hook_use:n {tagpdf/finish/before}
354 __tag_tree_final_checks:
355 \iow_term:n{Package~tagpdf~Info:~writing~ParentTree}
356 __tag_check_benchmark_tic:
357 __tag_tree_write_parenttree:
358 __tag_check_benchmark_toc:
359 \iow_term:n{Package~tagpdf~Info:~writing~IDTree}
360 __tag_check_benchmark_tic:
361 __tag_tree_write_idtree:
362 __tag_check_benchmark_toc:
363 \iow_term:n{Package~tagpdf~Info:~writing~RoleMap}
364 __tag_check_benchmark_tic:
365 __tag_tree_write_rolemap:
366 __tag_check_benchmark_toc:
367 \iow_term:n{Package~tagpdf~Info:~writing~ClassMap}
368 __tag_check_benchmark_tic:
369 __tag_tree_write_classmap:
370 __tag_check_benchmark_toc:
371 \iow_term:n{Package~tagpdf~Info:~writing~NameSpaces}
372 __tag_check_benchmark_tic:
373 __tag_tree_write_namespaces:
374 __tag_check_benchmark_toc:
375 \iow_term:n{Package~tagpdf~Info:~writing~StructElems}
376 __tag_check_benchmark_tic:
377 __tag_tree_write_structelements: %this is rather slow!!
378 __tag_check_benchmark_toc:
379 \iow_term:n{Package~tagpdf~Info:~writing~Root}
380 __tag_check_benchmark_tic:
381 __tag_tree_write_structtreeroot:
382 __tag_check_benchmark_toc:
383 }
384 }
385 ⟨/package⟩

(End of definition for __tag_finish_structure:.)

1.10 StructParents entry for Page
We need to add to the Page resources the StructParents entry, this is simply the absolute
page number.

386 ⟨∗package⟩
387 \hook_gput_code:nnn{begindocument}{tagpdf}
388 {
389 \bool_if:NT\g__tag_active_tree_bool
390 {
391 \hook_gput_code:nnn{shipout/before} { tagpdf/structparents }
392 {
393 \pdfmanagement_add:nne

81

394 { Page }
395 { StructParents }
396 { \int_eval:n { \g_shipout_readonly_int} }
397 }
398 }
399 }
400 ⟨/package⟩

The tagpdf-mc-shared module
Code related to Marked Content (mc-chunks), code shared by all modes
Part of the tagpdf package

Ulrike Fischer
Version 0.99x, released 2026-01-12

82

Part V

1 Public Commands

\tag_mc_begin:n {⟨key-values⟩}
\tag_mc_end:

These commands insert the end code of the marked content. They don’t end a group and
in generic mode it doesn’t matter if they are in another group as the starting commands.
In generic mode both commands check if they are correctly nested and issue a warning
if not.

\tag_mc_begin:n
\tag_mc_end:

\tag_mc_use:n {⟨label⟩}

These command allow to record a marked content that was stashed away before into the
current structure. A marked content can be used only once – the command will issue a
warning if an mc is use a second time.

\tag_mc_use:n

\tag_mc_artifact_group_begin:n {⟨name⟩}
\tag_mc_artifact_group_end:

\tag_mc_artifact_group_begin:n
\tag_mc_artifact_group_end:

New: 2019-11-20

This command pair creates a group with an artifact marker at the begin and the end.
Inside the group the tagging commands are disabled. It allows to mark a complete
region as artifact without having to worry about user commands with tagging commands.
⟨name⟩ should be a value allowed also for the artifact key. It pushes and pops mc-chunks
at the begin and end. TODO: document is in tagpdf.tex

\tag_mc_end_push:
\tag_mc_begin_pop:n {⟨key-values⟩}
If there is an open mc chunk, \tag_mc_end_push: ends it and pushes its tag of the
(global) stack. If there is no open chunk, it puts −1 on the stack (for debugging) \tag_­
mc_begin_pop:n removes a value from the stack. If it is different from −1 it opens a tag
with it. The reopened mc chunk looses info like the alt text for now.

\tag_mc_end_push:
\tag_mc_begin_pop:n

New: 2021-04-22

\tag_mc_if_in:TF {⟨true code⟩} {⟨false code⟩}

Determines if a mc-chunk is open.
\tag_mc_if_in_p: ⋆
\tag_mc_if_in:TF ⋆

\tag_mc_reset_box:N ⟨box⟩

This resets in lua mode the mc attributes to the one currently in use. It does nothing in
generic mode.

\tag_mc_reset_box:N ⋆

New: 2023-06-11

83

\tag_mc_add_missing_to_stream:Nn ⟨box⟩ {⟨stream name⟩}\tag_mc_add_missing_to_stream:Nn

New: 2024-11-18

This command is only needed in generic mode, in lua mode it gobbles its arguments.
In generic mode it adds MC literals to the stream that are missing because of page
breaks. The first argument is the box with the stream, the second a string representing
the stream. Predeclared are the names main, footnote and multicol. If more streams
should be handle the underlying interface must be enabled with \tag_mc_new_stream:n
The command is only for packages doing deep manipulations of the output routine!
Example of use are in the multicol package and in tagpdf itself.

\tag_mc_new_stream:n {⟨stream name⟩}

This declares the interface needed to handle a new stream with \tag_mc_add_missing_­
to_stream:Nn. Predeclared are the names main, footnote and multicol.

\tag_mc_new_stream:n

New: 2024-11-18

2 Public keys
The following keys can be used with \tag_mc_begin:n, \tagmcbegin, \tag_mc_begin_pop:n,

This key is required, unless artifact is used. The value is a tag like P or H1 without a
slash at the begin, this is added by the code. It is possible to setup new tags. The value
of the key is expanded, so it can be a command. The expansion is passed unchanged
to the PDF, so it should with a starting slash give a valid PDF name (some ascii with
numbers like H4 is fine).

tag (mc-key)

This will setup the marked content as an artifact. The key should be used for content
that should be ignored. The key can take one of the values pagination, layout, page,
background and notype (this is the default).

artifact (mc-key)

This key allows to add more entries to the properties dictionary. The value must be
correct, low-level PDF. E.g. raw=/Alt (Hello) will insert an alternative Text.

raw (mc-key)

This key inserts an /Alt value in the property dictionary of the BDC operator. The value
is handled as verbatim string, commands are not expanded. The value will be expanded
first once. If it is empty, nothing will happen.

alt (mc-key)

This key inserts an /ActualText value in the property dictionary of the BDC operator.
The value is handled as verbatim string, commands are not expanded. The value will be
expanded first once. If it is empty, nothing will happen.

actualtext (mc-key)

This key sets a label by which one can call the marked content later in another structure
(if it has been stashed with the stash key). Internally the label name will start with
tagpdf-.

label (mc-key)

84

This “stashes” an mc-chunk: it is not inserted into the current structure. It should be
normally be used along with a label to be able to use the mc-chunk in another place.

stash (mc-key)

The code is split into three parts: code shared by all engines, code specific to luamode
and code not used by luamode.

3 Marked content code – shared
1 ⟨@@=tag⟩
2 ⟨∗header⟩
3 \ProvidesExplPackage {tagpdf-mc-code-shared} {2026-01-12} {0.99x}
4 {part of tagpdf - code related to marking chunks -
5 code shared by generic and luamode }
6 ⟨/header⟩

3.1 Variables and counters
MC chunks must be counted. I use a latex counter for the absolute count, so that it is
added to \cl@@ckpt and restored e.g. in tabulars and align. \int_new:N \c@g_@@_MCID_abs_int
and \tl_put_right:Nn\cl@@ckpt{\@elt{g_@@_MCID_abs_int}} would work too, but
as the name is not expl3 then too, why bother? The absolute counter can be used to
label and to check if the page counter needs a reset.

g__tag_MCID_abs_int

7 ⟨∗base⟩
8 \newcounter { g__tag_MCID_abs_int }

(End of definition for g__tag_MCID_abs_int.)

__tag_get_data_mc_counter: This command allows \tag_get:n to get the current state of the mc counter with the
keyword mc_counter. By comparing the numbers it can be used to check the number of
structure commands in a piece of code.

9 \cs_new:Npn __tag_get_data_mc_counter:
10 {
11 \int_use:N \c@g__tag_MCID_abs_int
12 }
13 ⟨/base⟩

(End of definition for __tag_get_data_mc_counter:.)

__tag_get_mc_abs_cnt: A (expandable) function to get the current value of the cnt. TODO: duplicate of the
previous one, this should be cleaned up.

14 ⟨∗shared⟩
15 \cs_new:Npn __tag_get_mc_abs_cnt: { \int_use:N \c@g__tag_MCID_abs_int }

(End of definition for __tag_get_mc_abs_cnt:.)

\g__tag_in_mc_bool This booleans record if a mc is open, to test nesting.

16 \bool_new:N \g__tag_in_mc_bool

85

(End of definition for \g__tag_in_mc_bool.)

\g__tag_mc_parenttree_prop For every chunk we need to know the structure it is in, to record this in the parent tree.
We store this in a property.
key: absolute number of the mc (tagmcabs)
value: the structure number the mc is in

17 __tag_prop_new_linked:N \g__tag_mc_parenttree_prop

(End of definition for \g__tag_mc_parenttree_prop.)

\g__tag_mc_parenttree_prop Some commands (e.g. links) want to close a previous mc and reopen it after they did
their work. For this we create a stack:

18 \seq_new:N \g__tag_mc_stack_seq

(End of definition for \g__tag_mc_parenttree_prop.)

\l__tag_mc_artifact_type_tl Artifacts can have various types like Pagination or Layout. This stored in this variable.

19 \tl_new:N \l__tag_mc_artifact_type_tl

(End of definition for \l__tag_mc_artifact_type_tl.)

\l__tag_mc_key_stash_bool
\l__tag_mc_artifact_bool

This booleans store the stash and artifact status of the mc-chunk.

20 \bool_new:N \l__tag_mc_key_stash_bool
21 \bool_new:N \l__tag_mc_artifact_bool

(End of definition for \l__tag_mc_key_stash_bool and \l__tag_mc_artifact_bool.)

\l__tag_mc_lang_tl a variable to set a Lang on the mc. This is not conforming to the spec! But it seems to
work in acrobat.

22 \tl_new:N \l__tag_mc_lang_tl

(End of definition for \l__tag_mc_lang_tl.)

\l__tag_mc_key_tag_tl
\g__tag_mc_key_tag_tl

\l__tag_mc_key_label_tl
\l__tag_mc_key_properties_tl

Variables used by the keys. \l_@@_mc_key_properties_tl will collect a number of
values. TODO: should this be a pdfdict now?

23 \tl_new:N \l__tag_mc_key_tag_tl
24 \tl_new:N \g__tag_mc_key_tag_tl
25 \tl_new:N \l__tag_mc_key_label_tl
26 \tl_new:N \l__tag_mc_key_properties_tl

(End of definition for \l__tag_mc_key_tag_tl and others.)

86

3.2 Functions
__tag_mc_handle_mc_label:e The commands labels a mc-chunk. It is used if the user explicitly labels the mc-chunk

with the label key. The argument is the value provided by the user. It stores the
attributes
tagabspage: the absolute page, \g_shipout_readonly_int,
tagmcabs: the absolute mc-counter \c@g_@@_MCID_abs_int. The reference command is
based on l3ref.

27 \cs_new:Npn __tag_mc_handle_mc_label:e #1
28 {
29 __tag_property_record:en{tagpdf-#1}{tagabspage,tagmcabs}
30 }

(End of definition for __tag_mc_handle_mc_label:e.)

__tag_mc_set_label_used:n Unlike with structures we can’t check if a labeled mc has been used by looking at the P
key, so we use a dedicated csname for the test

31 \cs_new_protected:Npn __tag_mc_set_label_used:n #1 %#1 labelname
32 {
33 \tl_new:c { g__tag_mc_label_\tl_to_str:n{#1}_used_tl }
34 }
35 ⟨/shared⟩

(End of definition for __tag_mc_set_label_used:n.)

\tag_mc_use:n These command allow to record a marked content that was stashed away before into the
current structure. A marked content can be used only once – the command will issue a
warning if an mc is use a second time. The argument is a label name set with the label
key.
TODO: is testing for struct the right test?

36 ⟨base⟩\cs_new_protected:Npn \tag_mc_use:n #1 { __tag_whatsits: }
37 ⟨∗shared⟩
38 \cs_set_protected:Npn \tag_mc_use:n #1 %#1: label name
39 {
40 __tag_check_if_active_struct:T
41 {
42 \tl_set:Ne \l__tag_tmpa_tl { \property_ref:nnn{tagpdf-#1}{tagmcabs}{} }
43 \tl_if_empty:NTF\l__tag_tmpa_tl
44 {
45 \msg_warning:nnn {tag} {mc-label-unknown} {#1}
46 }
47 {
48 \cs_if_free:cTF { g__tag_mc_label_\tl_to_str:n{#1}_used_tl }
49 {
50 __tag_mc_handle_stash:e { \l__tag_tmpa_tl }
51 __tag_mc_set_label_used:n {#1}
52 }
53 {
54 \msg_warning:nnn {tag}{mc-used-twice}{#1}
55 }

87

56 }
57 }
58 }
59 ⟨/shared⟩

(End of definition for \tag_mc_use:n. This function is documented on page 83.)

\tag_mc_artifact_group_begin:n
\tag_mc_artifact_group_end:

This opens an artifact of the type given in the argument, and then stops all tagging. It
creates a group. It pushes and pops mc-chunks at the begin and end.

60 ⟨base⟩\cs_new_protected:Npn \tag_mc_artifact_group_begin:n #1 {}
61 ⟨base⟩\cs_new_protected:Npn \tag_mc_artifact_group_end:{}
62 ⟨∗shared⟩
63 \cs_set_protected:Npn \tag_mc_artifact_group_begin:n #1
64 {
65 \tag_mc_end_push:
66 \tag_mc_begin:n {artifact=#1}
67 \group_begin:
68 \tag_suspend:n{artifact-group}
69 }
70

71 \cs_set_protected:Npn \tag_mc_artifact_group_end:
72 {
73 \tag_resume:n{artifact-group}
74 \group_end:
75 \tag_mc_end:
76 \tag_mc_begin_pop:n{}
77 }
78 ⟨/shared⟩

(End of definition for \tag_mc_artifact_group_begin:n and \tag_mc_artifact_group_end:. These
functions are documented on page 83.)

\tag_mc_reset_box:N This allows to reset the mc-attributes in box. On base and generic mode it should do
nothing.

79 ⟨base⟩\cs_new_protected:Npn \tag_mc_reset_box:N #1 {}

(End of definition for \tag_mc_reset_box:N. This function is documented on page 83.)

\tag_mc_end_push:
\tag_mc_begin_pop:n

80 ⟨base⟩\cs_new_protected:Npn \tag_mc_end_push: {}
81 ⟨base⟩\cs_new_protected:Npn \tag_mc_begin_pop:n #1 {}
82 ⟨∗shared⟩
83 \cs_set_protected:Npn \tag_mc_end_push:
84 {
85 __tag_check_if_active_mc:T
86 {
87 __tag_mc_if_in:TF
88 {
89 \seq_gpush:Ne \g__tag_mc_stack_seq { \tag_get:n {mc_tag} }
90 __tag_check_mc_pushed_popped:nn
91 { pushed }

88

92 { \tag_get:n {mc_tag} }
93 \tag_mc_end:
94 }
95 {
96 \seq_gpush:Nn \g__tag_mc_stack_seq {-1}
97 __tag_check_mc_pushed_popped:nn { pushed }{-1}
98 }
99 }

100 }
101

102 \cs_set_protected:Npn \tag_mc_begin_pop:n #1
103 {
104 __tag_check_if_active_mc:T
105 {
106 \seq_gpop:NNTF \g__tag_mc_stack_seq \l__tag_tmpa_tl
107 {
108 \tl_if_eq:NnTF \l__tag_tmpa_tl {-1}
109 {
110 __tag_check_mc_pushed_popped:nn {popped}{-1}
111 }
112 {
113 __tag_check_mc_pushed_popped:nn {popped}{\l__tag_tmpa_tl}
114 \tag_mc_begin:n {tag=\l__tag_tmpa_tl,#1}
115 }
116 }
117 {
118 __tag_check_mc_pushed_popped:nn {popped}{empty~stack,~nothing}
119 }
120 }
121 }

(End of definition for \tag_mc_end_push: and \tag_mc_begin_pop:n. These functions are documented
on page 83.)

__tag_mc_check_parent_child:n This checks if an MC can be used in a structure.

122 \cs_new_protected:Npn __tag_mc_check_parent_child:n #1
123 % #1 structure number of parent
124 {

This records if logging is on

125 \int_compare:nNnT {\l__tag_loglevel_int} > { 0 }
126 {
127 \prop_get:cnN{g__tag_struct_#1_prop}{tag}\l__tag_get_parent_tmpa_tl
128 \msg_note:nnee
129 { tag }
130 { role-parent-child-check }
131 {
132 \quark_if_no_value:NTF \l__tag_get_parent_tmpa_tl
133 {??}
134 {
135 \exp_last_unbraced:No\use_ii:nn
136 { \l__tag_get_parent_tmpa_tl }

89

137 :
138 \exp_last_unbraced:No\use_i:nn
139 { \l__tag_get_parent_tmpa_tl }
140 }
141 }
142 {
143 MC~(real~content)
144 }
145 }
146 __tag_struct_get_role:nnNN
147 {#1}
148 {rolemap}
149 \l__tag_get_parent_tmpa_tl
150 \l__tag_get_parent_tmpb_tl
151 __tag_role_check_parent_child:ooooN
152 { \l__tag_get_parent_tmpa_tl }
153 { \l__tag_get_parent_tmpb_tl }
154 { MC } %
155 { } %
156 \l__tag_parent_child_check_tl

if the return value is 7 we have to check against the parentrole field. TODO ruby and
warichu use 7 too, that should be changed!

157 \int_compare:nNnT {\l__tag_parent_child_check_tl} = { \c__tag_role_rule_checkparent_tl }
158 {
159 __tag_struct_get_role:nnNN
160 {#1}
161 {parentrole}
162 \l__tag_get_parent_tmpa_tl
163 \l__tag_get_parent_tmpb_tl
164 __tag_role_check_parent_child:ooooN
165 { \l__tag_get_parent_tmpa_tl }
166 { \l__tag_get_parent_tmpb_tl }
167 { MC } %
168 { } %
169 \l__tag_parent_child_check_tl
170 }
171 __tag_check_forbidden_parent_child:nnee
172 {\l__tag_parent_child_check_tl}
173 {#1}
174 {
175 \l__tag_get_parent_tmpb_tl : \l__tag_get_parent_tmpa_tl
176 }
177 {
178 MC~(real content)
179 }
180 }
181 \cs_generate_variant:Nn __tag_mc_check_parent_child:n {o}

(End of definition for __tag_mc_check_parent_child:n.)

3.3 Keys
This are the keys where the code can be shared between the modes.

90

stash (mc-key)
__artifact-bool
__artifact-type

the two internal artifact keys are use to define the public artifact. For now we add
support for the subtypes Header and Footer. Watermark,PageNum, LineNum,Redac­
tion,Bates will be added if some use case emerges. If some use case for /BBox and
/Attached emerges, it will be perhaps necessary to adapt the code.

182 \keys_define:nn { __tag / mc }
183 {
184 stash .bool_set:N = \l__tag_mc_key_stash_bool,
185 __artifact-bool .bool_set:N = \l__tag_mc_artifact_bool,
186 __artifact-type .choice:,
187 __artifact-type / pagination .code:n =
188 {
189 \tl_set:Nn \l__tag_mc_artifact_type_tl { Pagination }
190 },
191 __artifact-type / pagination/header .code:n =
192 {
193 \tl_set:Nn \l__tag_mc_artifact_type_tl { Pagination/Subtype/Header }
194 },
195 __artifact-type / pagination/footer .code:n =
196 {
197 \tl_set:Nn \l__tag_mc_artifact_type_tl { Pagination/Subtype/Footer }
198 },
199 __artifact-type / layout .code:n =
200 {
201 \tl_set:Nn \l__tag_mc_artifact_type_tl { Layout }
202 },
203 __artifact-type / page .code:n =
204 {
205 \tl_set:Nn \l__tag_mc_artifact_type_tl { Page }
206 },
207 __artifact-type / background .code:n =
208 {
209 \tl_set:Nn \l__tag_mc_artifact_type_tl { Background }
210 },
211 __artifact-type / notype .code:n =
212 {
213 \tl_set:Nn \l__tag_mc_artifact_type_tl {}
214 },
215 __artifact-type / .code:n =
216 {
217 \tl_set:Nn \l__tag_mc_artifact_type_tl {}
218 },
219 }

(End of definition for stash (mc-key) , __artifact-bool , and __artifact-type. This function is doc­
umented on page 85.)

220 ⟨/shared⟩

The tagpdf-mc-generic module
Code related to Marked Content (mc-chunks), generic mode
Part of the tagpdf package

Ulrike Fischer
Version 0.99x, released 2026-01-12

91

Part VI

1 Marked content code – generic mode
1 ⟨@@=tag⟩
2 ⟨∗generic⟩
3 \ProvidesExplPackage {tagpdf-mc-code-generic} {2026-01-12} {0.99x}
4 {part of tagpdf - code related to marking chunks - generic mode}
5 ⟨/generic⟩
6 ⟨∗debug⟩
7 \ProvidesExplPackage {tagpdf-debug-generic} {2026-01-12} {0.99x}
8 {part of tagpdf - debugging code related to marking chunks - generic mode}
9 ⟨/debug⟩

1.1 Variables
10 ⟨∗generic⟩

\l__tag_mc_ref_abspage_tl We need a ref-label system to ensure that the MCID cnt restarts at 0 on a new page This
will be used to store the tagabspage attribute retrieved from a label.

11 \tl_new:N \l__tag_mc_ref_abspage_tl

(End of definition for \l__tag_mc_ref_abspage_tl.)

\l__tag_mc_tmpa_tl temporary variable
12 \tl_new:N \l__tag_mc_tmpa_tl

(End of definition for \l__tag_mc_tmpa_tl.)

\g__tag_mc_marks a marks register to keep track of the mc’s at page breaks and a sequence to keep track
of the data for the continuation extra-tmb. We probably will need to track mc-marks in
more than one stream, so the seq contains the name of the stream.

13 \newmarks \g__tag_mc_marks

(End of definition for \g__tag_mc_marks.)

\g__tag_mc_main_marks_seq
\g__tag_mc_footnote_marks_seq
\g__tag_mc_multicol_marks_seq

Each stream has an associated global seq variable holding the bottom marks from the/a
previous chunk in the stream. We provide three by default: main, footnote and multicol.
TODO: perhaps an interface for more streams will be needed.

14 \seq_new:N \g__tag_mc_main_marks_seq
15 \seq_new:N \g__tag_mc_footnote_marks_seq
16 \seq_new:N \g__tag_mc_multicol_marks_seq

(End of definition for \g__tag_mc_main_marks_seq , \g__tag_mc_footnote_marks_seq , and \g__tag_­
mc_multicol_marks_seq.)

\tag_mc_new_stream:n

17 \cs_new_protected:Npn \tag_mc_new_stream:n #1
18 {
19 \seq_new:c { g__tag_mc_multicol_#1_seq }
20 }

92

(End of definition for \tag_mc_new_stream:n. This function is documented on page 84.)

\l__tag_mc_firstmarks_seq
\l__tag_mc_botmarks_seq

The marks content contains a number of data which we will have to access and compare,
so we will store it locally in two sequences. topmarks is unusable in LaTeX so we ignore
it.

21 \seq_new:N \l__tag_mc_firstmarks_seq
22 \seq_new:N \l__tag_mc_botmarks_seq

(End of definition for \l__tag_mc_firstmarks_seq and \l__tag_mc_botmarks_seq.)

1.2 Functions
__tag_mc_begin_marks:nn

__tag_mc_artifact_begin_marks:n
__tag_mc_end_marks:

Generic mode need to set marks for the page break and split stream handling. We always
set two marks to be able to detect the case when no mark is on a page/galley. MC-begin
commands will set (b,-,data) and (b,+,data), MC-end commands will set (e,-,data) and
(e,+,data).

23 \cs_new_protected:Npn __tag_mc_begin_marks:nn #1 #2 %#1 tag, #2 label
24 {
25 \tex_marks:D \g__tag_mc_marks
26 {
27 b-, %first of begin pair
28 \int_use:N\c@g__tag_MCID_abs_int, %mc-num
29 \g__tag_struct_stack_current_tl, %structure num
30 #1, %tag
31 \bool_if:NT \l__tag_mc_key_stash_bool{stash}, % stash info
32 #2, %label
33 }
34 \tex_marks:D \g__tag_mc_marks
35 {
36 b+, % second of begin pair
37 \int_use:N\c@g__tag_MCID_abs_int, %mc-num
38 \g__tag_struct_stack_current_tl, %structure num
39 #1, %tag
40 \bool_if:NT \l__tag_mc_key_stash_bool{stash}, % stash info
41 #2, %label
42 }
43 }
44 \cs_generate_variant:Nn __tag_mc_begin_marks:nn {oo}
45 \cs_new_protected:Npn __tag_mc_artifact_begin_marks:n #1 %#1 type
46 {
47 \tex_marks:D \g__tag_mc_marks
48 {
49 b-, %first of begin pair
50 \int_use:N\c@g__tag_MCID_abs_int, %mc-num
51 -1, %structure num
52 #1 %type
53 }
54 \tex_marks:D \g__tag_mc_marks
55 {
56 b+, %first of begin pair
57 \int_use:N\c@g__tag_MCID_abs_int, %mc-num
58 -1, %structure num
59 #1 %Type

93

60 }
61 }
62

63 \cs_new_protected:Npn __tag_mc_end_marks:
64 {
65 \tex_marks:D \g__tag_mc_marks
66 {
67 e-, %first of end pair
68 \int_use:N\c@g__tag_MCID_abs_int, %mc-num
69 \g__tag_struct_stack_current_tl, %structure num
70 }
71 \tex_marks:D \g__tag_mc_marks
72 {
73 e+, %second of end pair
74 \int_use:N\c@g__tag_MCID_abs_int, %mc-num
75 \g__tag_struct_stack_current_tl, %structure num
76 }
77 }

(End of definition for __tag_mc_begin_marks:nn , __tag_mc_artifact_begin_marks:n , and __tag_­
mc_end_marks:.)

__tag_mc_disable_marks: This disables the marks. They can’t be reenabled, so it should only be used in groups.

78 \cs_new_protected:Npn __tag_mc_disable_marks:
79 {
80 \cs_set_eq:NN __tag_mc_begin_marks:nn \use_none:nn
81 \cs_set_eq:NN __tag_mc_artifact_begin_marks:n \use_none:n
82 \cs_set_eq:NN __tag_mc_end_marks: \prg_do_nothing:
83 }

(End of definition for __tag_mc_disable_marks:.)

__tag_mc_get_marks: This stores the current content of the marks in the sequences. It naturally should only
be used in places where it makes sense.

84 \cs_new_protected:Npn __tag_mc_get_marks:
85 {
86 \exp_args:NNe
87 \seq_set_from_clist:Nn \l__tag_mc_firstmarks_seq
88 { \tex_firstmarks:D \g__tag_mc_marks }
89 \exp_args:NNe
90 \seq_set_from_clist:Nn \l__tag_mc_botmarks_seq
91 { \tex_botmarks:D \g__tag_mc_marks }
92 }

(End of definition for __tag_mc_get_marks:.)

__tag_mc_store:nnn This inserts the mc-chunk ⟨mc-num⟩ into the structure struct-num after the ⟨mc-prev⟩.
The structure must already exist. The additional mcid dictionary is stored in a property.
The item is retrieved when the kid entry is built. We test if there is already an addition
and append if needed.

93 \cs_new_protected:Npn __tag_mc_store:nnn #1 #2 #3 %#1 mc-prev, #2 mc-num #3 structure-
num

94

94 {
95 %\prop_show:N \g__tag_struct_cont_mc_prop
96 \prop_get:NnNTF \g__tag_struct_cont_mc_prop {#1} \l__tag_tmpa_tl
97 {
98 \prop_gput:Nne \g__tag_struct_cont_mc_prop {#1}{ \l__tag_tmpa_tl __tag_struct_mcid_dict:n {#2}}
99 }

100 {
101 \prop_gput:Nne \g__tag_struct_cont_mc_prop {#1}{ __tag_struct_mcid_dict:n {#2}}
102 }
103 \prop_gput:Nee \g__tag_mc_parenttree_prop
104 {#2}
105 {#3}
106 }
107 \cs_generate_variant:Nn __tag_mc_store:nnn {eee}

(End of definition for __tag_mc_store:nnn.)

__tag_mc_insert_extra_tmb:n
__tag_mc_insert_extra_tme:n

These two functions should be used in the output routine at the place where a mc-literal
could be missing due to a page break or some other split. They check (with the help
of the marks) if a extra-tmb or extra-tme is needed. The tmb command stores also the
mc into the structure, the tme has to store the data for a following extra-tmb. The
argument takes a stream name like main or footnote to allow different handling there.
The content of the marks must be stored before (with \@@_mc_get_marks: or manually)
into \l_@@_mc_firstmarks_seq and \l_@@_mc_botmarks_seq so that the tests can use
them.

108 \cs_new_protected:Npn __tag_mc_insert_extra_tmb:n #1 % #1 stream: e.g. main or footnote
109 {
110 __tag_check_typeout_v:n {=>~ first~ \seq_use:Nn \l__tag_mc_firstmarks_seq {,~}}
111 __tag_check_typeout_v:n {=>~ bot~ \seq_use:Nn \l__tag_mc_botmarks_seq {,~}}
112 __tag_check_if_mc_tmb_missing:TF
113 {
114 __tag_check_typeout_v:n {=>~ TMB~ ~ missing~ --~ inserted}
115 %test if artifact
116 \int_compare:nNnTF { \seq_item:cn { g__tag_mc_#1_marks_seq } {3} } = {-1}
117 {
118 \tl_set:Ne \l__tag_tmpa_tl { \seq_item:cn { g__tag_mc_#1_marks_seq } {4} }
119 __tag_mc_handle_artifact:N \l__tag_tmpa_tl
120 }
121 {
122 \exp_args:Ne
123 __tag_mc_bdc_mcid:n
124 {
125 \seq_item:cn { g__tag_mc_#1_marks_seq } {4}
126 }
127 \str_if_eq:eeTF
128 {
129 \seq_item:cn { g__tag_mc_#1_marks_seq } {5}
130 }
131 {}
132 {
133 %store
134 __tag_mc_store:eee
135 {

95

136 \seq_item:cn { g__tag_mc_#1_marks_seq } {2}
137 }
138 { \int_eval:n{\c@g__tag_MCID_abs_int} }
139 {
140 \seq_item:cn { g__tag_mc_#1_marks_seq } {3}
141 }
142 }
143 {
144 %stashed -> warning!!
145 }
146 }
147 }
148 {
149 __tag_check_typeout_v:n {=>~ TMB~ not~ missing}
150 }
151 }
152

153 \cs_new_protected:Npn __tag_mc_insert_extra_tme:n #1 % #1 stream, eg. main or footnote
154 {
155 __tag_check_if_mc_tme_missing:TF
156 {
157 __tag_check_typeout_v:n {=>~ TME~ ~ missing~ --~ inserted}
158 __tag_mc_emc:
159 \seq_gset_eq:cN
160 { g__tag_mc_#1_marks_seq }
161 \l__tag_mc_botmarks_seq
162 }
163 {
164 __tag_check_typeout_v:n {=>~ TME~ not~ missing}
165 }
166 }

(End of definition for __tag_mc_insert_extra_tmb:n and __tag_mc_insert_extra_tme:n.)

1.3 Looking at MC marks in boxes
__tag_add_missing_mcs:Nn Assumptions:

• test for tagging active outside;

• mark retrieval also outside.

This takes a box register as its first argument (or the register number in a count register,
as used by multicol). It adds an extra tmb at the top of the box if necessary and similarly
an extra tme at the end. This is done by adding hboxes in a way that the positioning
and the baseline of the given box is not altered. The result is written back to the box.
The second argument is the stream this box belongs to und is currently either main for
the main galley, footnote for footnote note text, or multicol for boxes produced for
columns in that environment. Other streams may follow over time.

167 \cs_new_protected:Npn__tag_add_missing_mcs:Nn #1 #2 {
168 \vbadness \@M
169 \vfuzz \c_max_dim

96

170 \vbox_set_to_ht:Nnn #1 { \box_ht:N #1 } {
171 \hbox_set:Nn \l__tag_tmpa_box { __tag_mc_insert_extra_tmb:n {#2} }
172 \hbox_set:Nn \l__tag_tmpb_box { __tag_mc_insert_extra_tme:n {#2} }
173 \int_compare:nNnT {\l__tag_loglevel_int} > { 0 }
174 {
175 \seq_log:c { g__tag_mc_#2_marks_seq}
176 }

The box placed on the top gets zero size and thus will not affect the box dimensions of
the box we are modifying.

177 \box_set_ht:Nn \l__tag_tmpa_box \c_zero_dim
178 \box_set_dp:Nn \l__tag_tmpa_box \c_zero_dim

The box added at the bottom will get the depth of the original box. This way we can
arrange that from the outside everything looks as before.

179 \box_set_ht:Nn \l__tag_tmpb_box \c_zero_dim
180 \box_set_dp:Nn \l__tag_tmpb_box { \box_dp:N #1 }

We need to set \boxmaxdepth in case the original box has an unusually large depth,
otherwise that depth is not preserved when we string things together.

181 \boxmaxdepth \@maxdepth
182 \box_use_drop:N \l__tag_tmpa_box
183 \vbox_unpack_drop:N #1

Back up by the depth of the box as we add that later again.

184 \tex_kern:D -\box_dp:N \l__tag_tmpb_box

And we don’t want any glue added when we add the box.

185 \nointerlineskip
186 \box_use_drop:N \l__tag_tmpb_box
187 }
188 }

(End of definition for __tag_add_missing_mcs:Nn.)

\tag_mc_add_missing_to_stream:Nn
__tag_add_missing_mcs_to_stream:Nn

This is the main command to add mc to the stream. It is therefore guarded by the
mc-boolean.
If we aren’t in the main stream then processing is a bit more complicated because to get
at the marks in the box we need to artificially split it and then look at the split marks.
First argument is the box to update and the second is the “stream”. In lua mode the
command is a no-op.

189 \cs_new_protected:Npn __tag_add_missing_mcs_to_stream:Nn #1#2
190 {
191 __tag_check_if_active_mc:T {

First set up a temp box for trial splitting.

97

192 \vbadness\maxdimen
193 \box_set_eq:NN \l__tag_tmpa_box #1

Split the box to the largest size available. This should give us all content (but to be sure
that there is no issue we could test out test box is empty now (not done).

194 \vbox_set_split_to_ht:NNn \l__tag_tmpa_box \l__tag_tmpa_box \c_max_dim

As a side effect of this split we should now have the first and bottom split marks set up.
We use this to set up \l__tag_mc_firstmarks_seq

195 \exp_args:NNe
196 \seq_set_from_clist:Nn \l__tag_mc_firstmarks_seq
197 { \tex_splitfirstmarks:D \g__tag_mc_marks }

Some debugging info:

198 % \iow_term:n { First~ mark~ from~ this~ box: }
199 % \seq_log:N \l__tag_mc_firstmarks_seq

If this mark was empty then clearly the bottom mark will too be empty. Thus in this
case we make use of the saved bot mark from the previous chunk. Note that if this is the
first chunk in the stream the global seq would contain a random value, but then we can’t
end in this branch because the basis assumption is that streams are properly marked up
so the first chunk would always have a mark at the beginning!

200 \seq_if_empty:NTF \l__tag_mc_firstmarks_seq
201 {
202 __tag_check_typeout_v:n
203 {
204 No~ marks~ so~ use~ saved~ bot~ mark:~
205 \seq_use:cn {g__tag_mc_#2_marks_seq} {,~} \iow_newline:
206 }
207 \seq_set_eq:Nc \l__tag_mc_firstmarks_seq {g__tag_mc_#2_marks_seq}

We also update the bot mark to the same value so that we can later apply __tag_add_­
missing_mcs:Nn with the data structures in place (see assumptions made there).

208 \seq_set_eq:NN \l__tag_mc_botmarks_seq \l__tag_mc_firstmarks_seq
209 }

If there was a first mark then there is also a bot mark (and it can’t be the same as
our marks always come in pairs). So if that branch is chosen we update \l__tag_mc_­
botmarks_seq from the bot mark.

210 {
211 __tag_check_typeout_v:n
212 {
213 Pick~ up~ new~ bot~ mark!
214 }
215 \exp_args:NNe
216 \seq_set_from_clist:Nn \l__tag_mc_botmarks_seq
217 { \tex_splitbotmarks:D \g__tag_mc_marks }
218 }

98

Finally we call __tag_add_missing_mcs:Nn to add any missing tmb/tme as needed,

219 __tag_add_missing_mcs:Nn #1 {#2}
220 %%
221 \seq_gset_eq:cN {g__tag_mc_#2_marks_seq} \l__tag_mc_botmarks_seq
222 %%
223 }
224 }
225 \cs_set_eq:NN \tag_mc_add_missing_to_stream:Nn __tag_add_missing_mcs_to_stream:Nn

(End of definition for \tag_mc_add_missing_to_stream:Nn and __tag_add_missing_mcs_to_stream:Nn.
This function is documented on page 84.)

__tag_mc_if_in_p:
__tag_mc_if_in:TF

\tag_mc_if_in_p:
\tag_mc_if_in:TF

This is a test if a mc is open or not. It depends simply on a global boolean: mc-chunks
are added linearly so nesting should not be relevant.
One exception are header and footer (perhaps they are more, but for now it doesn’t
seem so, so there are no dedicated code to handle this situation): When they are built
and added to the page we could be both inside or outside a mc-chunk. But header and
footer should ignore this and not push/pop or warn about nested mc. It is therefore
important there to set and reset the boolean manually. See the tagpddocu-patches.sty
for an example.

226 \prg_new_conditional:Nnn __tag_mc_if_in: {p,T,F,TF}
227 {
228 \bool_if:NTF \g__tag_in_mc_bool
229 { \prg_return_true: }
230 { \prg_return_false: }
231 }
232

233 \prg_new_eq_conditional:NNn \tag_mc_if_in: __tag_mc_if_in: {p,T,F,TF}

(End of definition for __tag_mc_if_in:TF and \tag_mc_if_in:TF. This function is documented on page
83.)

__tag_mc_bmc:n
__tag_mc_emc:

__tag_mc_bdc:nn

These are the low-level commands. There are now equal to the pdfmanagement com­
mands generic mode, but we use an indirection in case luamode need something else.
change 04.08.2018: the commands do not check the validity of the arguments or try to
escape them, this should be done before using them. change 2023-08-18: we are delaying
the writing to the shipout.

234 % #1 tag, #2 properties
235 \cs_set_eq:NN __tag_mc_bmc:n \pdf_bmc:n
236 \cs_set_eq:NN __tag_mc_emc: \pdf_emc:
237 \cs_set_eq:NN __tag_mc_bdc:nn \pdf_bdc:nn
238 \cs_set_eq:NN __tag_mc_bdc_shipout:ee \pdf_bdc_shipout:ee

(End of definition for __tag_mc_bmc:n , __tag_mc_emc: , and __tag_mc_bdc:nn.)

__tag_mc_bdc_mcid:nn
__tag_mc_bdc_mcid:n

__tag_mc_handle_mcid:nn
__tag_mc_handle_mcid:oo

This create a BDC mark with an /MCID key. Most of the work here is to get the current
number value for the MCID: they must be numbered by page starting with 0 and then
successively. The first argument is the tag, e.g. P or Span, the second is used to pass
more properties. Starting with texlive 2023 this is much simpler and faster as we can
use delay the numbering to the shipout. We also define a wrapper around the low-level
command as luamode will need something different.

99

239 \hook_gput_code:nnn {shipout/before}{tagpdf}{ \flag_clear:n { __tag/mcid } }
240 \cs_set_protected:Npn __tag_mc_bdc_mcid:nn #1 #2
241 {
242 \int_gincr:N \c@g__tag_MCID_abs_int
243 __tag_property_record:eo
244 {
245 mcid-\int_use:N \c@g__tag_MCID_abs_int
246 }
247 { \c__tag_property_mc_clist }
248 __tag_mc_bdc_shipout:ee
249 {#1}
250 {
251 /MCID~\flag_height:n { __tag/mcid }
252 \flag_raise:n { __tag/mcid }~ #2
253 }
254 }
255 \cs_new_protected:Npn __tag_mc_bdc_mcid:n #1
256 {
257 __tag_mc_bdc_mcid:nn {#1} {}
258 }
259

260 \cs_new_protected:Npn __tag_mc_handle_mcid:nn #1 #2 %#1 tag, #2 properties
261 {
262 __tag_mc_bdc_mcid:nn {#1} {#2}
263 }
264

265 \cs_generate_variant:Nn __tag_mc_handle_mcid:nn {oo}

(End of definition for __tag_mc_bdc_mcid:nn , __tag_mc_bdc_mcid:n , and __tag_mc_handle_­
mcid:nn.)

__tag_mc_handle_stash:n
__tag_mc_handle_stash:e

This is the handler which puts a mc into the the current structure. The argument is the
number of the mc. Beside storing the mc into the structure, it also has to record the
structure for the parent tree. The name is a bit confusing, it does not handle mc with
the stash key …. TODO: why does luamode use it for begin + use, but generic mode
only for begin?

266 \cs_new_protected:Npn __tag_mc_handle_stash:n #1 %1 mcidnum
267 {
268 __tag_check_mc_used:n {#1}
269 __tag_struct_kid_mc_gput_right:nn
270 { \g__tag_struct_stack_current_tl }
271 {#1}
272 \prop_gput:Nee \g__tag_mc_parenttree_prop
273 {#1}
274 { \g__tag_struct_stack_current_tl }
275 }
276 \cs_generate_variant:Nn __tag_mc_handle_stash:n { e }

(End of definition for __tag_mc_handle_stash:n.)

__tag_mc_bmc_artifact:
__tag_mc_bmc_artifact:n

__tag_mc_handle_artifact:N

Two commands to create artifacts, one without type, and one with. We define also a
wrapper handler as luamode will need a different definition. TODO: perhaps later: more
properties for artifacts

100

277 \cs_new_protected:Npn __tag_mc_bmc_artifact:
278 {
279 __tag_mc_bmc:n {Artifact}
280 }
281 \cs_new_protected:Npn __tag_mc_bmc_artifact:n #1
282 {
283 __tag_mc_bdc:nn {Artifact}{/Type/#1}
284 }
285 \cs_new_protected:Npn __tag_mc_handle_artifact:N #1
286 % #1 is a var containing the artifact type
287 {
288 \int_gincr:N \c@g__tag_MCID_abs_int
289 \tl_if_empty:NTF #1
290 { __tag_mc_bmc_artifact: }
291 { \exp_args:No__tag_mc_bmc_artifact:n {#1} }
292 }

(End of definition for __tag_mc_bmc_artifact: , __tag_mc_bmc_artifact:n , and __tag_mc_handle_­
artifact:N.)

__tag_get_data_mc_tag: This allows to retrieve the active mc-tag. It is use by the get command.

293 \cs_new:Nn __tag_get_data_mc_tag: { \g__tag_mc_key_tag_tl }
294 ⟨/generic⟩

(End of definition for __tag_get_data_mc_tag:.)

\tag_mc_begin:n
\tag_mc_end:

These are the core public commands to open and close an mc. They don’t need to be
in the same group or grouping level, but the code expect that they are issued linearly.
The tag and the state is passed to the end command through a global var and a global
boolean.

295 ⟨base⟩\cs_new_protected:Npn \tag_mc_begin:n #1 { __tag_whatsits: \int_gincr:N \c@g__tag_MCID_abs_int }
296 ⟨base⟩\cs_new_protected:Nn \tag_mc_end:{ __tag_whatsits: }
297 ⟨∗generic | debug⟩
298 ⟨∗generic⟩
299 \cs_set_protected:Npn \tag_mc_begin:n #1 %#1 keyval
300 {
301 __tag_check_if_active_mc:T
302 {
303 ⟨/generic⟩
304 ⟨∗debug⟩
305 \cs_set_protected:Npn \tag_mc_begin:n #1 %#1 keyval
306 {
307 __tag_check_if_active_mc:TF
308 {
309 __tag_debug_mc_begin_insert:n { #1 }
310 ⟨/debug⟩
311 \group_begin: %hm
312 __tag_check_mc_if_nested:
313 \bool_gset_true:N \g__tag_in_mc_bool

set default MC tags to structure:

101

314 \tl_set_eq:NN \l__tag_mc_key_tag_tl \g__tag_struct_tag_tl
315 \tl_gset_eq:NN\g__tag_mc_key_tag_tl \g__tag_struct_tag_tl
316 \tl_if_empty:NTF\l__tag_mc_lang_tl
317 {
318 \keys_set:nn { __tag / mc }{ #1 }
319 }
320 {
321 \keys_set:nn { __tag / mc }{ lang=\l__tag_mc_lang_tl, #1 }
322 }
323 \bool_if:NTF \l__tag_mc_artifact_bool
324 { %handle artifact
325 __tag_mc_handle_artifact:N \l__tag_mc_artifact_type_tl
326 \exp_args:No
327 __tag_mc_artifact_begin_marks:n { \l__tag_mc_artifact_type_tl }
328 }
329 { %handle mcid type
330 __tag_check_mc_tag:N \l__tag_mc_key_tag_tl
331 __tag_mc_handle_mcid:oo
332 { \l__tag_mc_key_tag_tl }
333 { \l__tag_mc_key_properties_tl }
334 __tag_mc_begin_marks:oo{\l__tag_mc_key_tag_tl}{\l__tag_mc_key_label_tl}
335 \tl_if_empty:NF {\l__tag_mc_key_label_tl}
336 {
337 __tag_mc_handle_mc_label:e { \l__tag_mc_key_label_tl }
338 }

check if the MC can be used here. This is guarded by the stash boolean.

339 \bool_if:NF \l__tag_mc_key_stash_bool
340 {
341 \socket_use:nn{tag/check/parent-child}
342 {
343 __tag_mc_check_parent_child:o
344 { \g__tag_struct_stack_current_tl }
345 }
346 __tag_mc_handle_stash:e { \int_use:N \c@g__tag_MCID_abs_int }
347

348 }
349 }
350 \group_end:
351 }
352 ⟨∗debug⟩
353 {
354 __tag_debug_mc_begin_ignore:n { #1 }
355 }
356 ⟨/debug⟩
357 }
358 ⟨∗generic⟩
359 \cs_set_protected:Nn \tag_mc_end:
360 {
361 __tag_check_if_active_mc:T
362 {
363 ⟨/generic⟩
364 ⟨∗debug⟩

102

365 \cs_set_protected:Nn \tag_mc_end:
366 {
367 __tag_check_if_active_mc:TF
368 {
369 __tag_debug_mc_end_insert:
370 ⟨/debug⟩
371 __tag_check_mc_if_open:
372 \bool_gset_false:N \g__tag_in_mc_bool
373 \tl_gset:Nn \g__tag_mc_key_tag_tl { }
374 __tag_mc_emc:
375 __tag_mc_end_marks:
376 }
377 ⟨∗debug⟩
378 {
379 __tag_debug_mc_end_ignore:
380 }
381 ⟨/debug⟩
382 }
383 ⟨/generic | debug⟩

(End of definition for \tag_mc_begin:n and \tag_mc_end:. These functions are documented on page
83.)

1.4 Keys
Definitions are different in luamode. tag and raw are expanded as \lua_now:e in lua
does it too and we assume that their values are safe.

tag (mc-key)
raw (mc-key)
alt (mc-key)

actualtext (mc-key)
label (mc-key)

artifact (mc-key)

384 ⟨∗generic⟩
385 \keys_define:nn { __tag / mc }
386 {
387 tag .code:n = % the name (H,P,Span) etc
388 {
389 \tl_set:Ne \l__tag_mc_key_tag_tl { #1 }
390 \tl_gset:Ne \g__tag_mc_key_tag_tl { #1 }
391 },
392 raw .code:n =
393 {
394 \tl_put_right:Ne \l__tag_mc_key_properties_tl { #1 }
395 },
396 alt .code:n = % Alt property
397 {
398 \str_set_convert:Noon
399 \l__tag_tmpa_str
400 { #1 }
401 { default }
402 { utf16/hex }
403 \tl_put_right:Nn \l__tag_mc_key_properties_tl { /Alt~< }
404 \tl_put_right:No \l__tag_mc_key_properties_tl { \l__tag_tmpa_str>~ }
405 },
406 alttext .meta:n = {alt=#1},

103

lang is not according to the spec, but it works in acrobat …. We assume that this are
simple strings that do not need escaping.

407 lang .code:n = % Lang property
408 {
409 \tl_put_right:Ne \l__tag_mc_key_properties_tl { /Lang~(#1) }
410 },
411 actualtext .code:n = % ActualText property
412 {
413 \tl_if_empty:oF{#1}
414 {
415 \str_set_convert:Noon
416 \l__tag_tmpa_str
417 { #1 }
418 { default }
419 { utf16/hex }
420 \tl_put_right:Nn \l__tag_mc_key_properties_tl { /ActualText~< }
421 \tl_put_right:No \l__tag_mc_key_properties_tl { \l__tag_tmpa_str>~ }
422 }
423 },
424 label .tl_set:N = \l__tag_mc_key_label_tl,
425 artifact .code:n =
426 {
427 \exp_args:Nne
428 \keys_set:nn
429 { __tag / mc }
430 { __artifact-bool, __artifact-type=#1 }
431 },
432 artifact .default:n = {notype}
433 }
434 ⟨/generic⟩

(End of definition for tag (mc-key) and others. These functions are documented on page 84.)

The tagpdf-mc-luacode module
Code related to Marked Content (mc-chunks), luamode-specific
Part of the tagpdf package

Ulrike Fischer
Version 0.99x, released 2026-01-12

104

Part VII

The code is split into three parts: code shared by all engines, code specific to luamode
and code not used by luamode.

1 Marked content code – luamode code
luamode uses attributes to mark mc-chunks. The two attributes used are defined in
the backend file. The backend also load the lua file, as it can contain functions needed
elsewhere. The attributes for mc are global (between 0.6 and 0.81 they were local but this
was reverted). The attributes are setup only in lua, and one should use the lua functions
to set and get them.
g_@@_mc_type_attr: the value represent the type
g_@@_mc_cnt_attr: will hold the \c@g_@@_MCID_abs_int value

Handling attribute needs a different system to number the page wise mcid’s:
a \tagmcbegin ... \tagmcend pair no longer surrounds exactly one mc chunk: it
can be split at page breaks. We know the included mcid(s) only after the ship
out. So for the struct -> mcid mapping we need to record struct -> mc-cnt (in
\g_@@_mc_parenttree_prop and/or a lua table and at shipout mc-cnt-> {mcid, mcid, ...}
and when building the trees connect both.

Key definitions are overwritten for luatex to store that data in lua-tables. The data
for the mc are in ltx.@@.mc[absnum]. The fields of the table are:
tag : the type (a string)
raw : more properties (string)
label: a string.
artifact: the presence indicates an artifact, the value (string) is the type.
kids: a array of tables
{1={kid=num2,page=pagenum1}, 2={kid=num2,page=pagenum2},...},
this describes the chunks the mc has been split to by the traversing code
parent: the number of the structure it is in. Needed to build the parent tree.

1 ⟨@@=tag⟩
2 ⟨∗luamode⟩
3 \ProvidesExplPackage {tagpdf-mc-code-lua} {2026-01-12} {0.99x}
4 {tagpdf - mc code only for the luamode }
5 ⟨/luamode⟩
6 ⟨∗debug⟩
7 \ProvidesExplPackage {tagpdf-debug-lua} {2026-01-12} {0.99x}
8 {part of tagpdf - debugging code related to marking chunks - lua mode}
9 ⟨/debug⟩

The main function which wanders through the shipout box to inject the literals. if the
new callback is there, it is used.

10 ⟨∗luamode⟩
11 \hook_gput_code:nnn{begindocument}{tagpdf/mc}
12 {
13 \bool_if:NT\g__tag_active_space_bool
14 {
15 \lua_now:e
16 {

105

17 if~luatexbase.callbacktypes.pre_shipout_filter~then~
18 luatexbase.add_to_callback("pre_shipout_filter", function(TAGBOX)~
19 ltx.__tag.func.space_chars_shipout(TAGBOX)~return~true~
20 end, "tagpdf")~
21 if~luatexbase.declare_callback_rule~then~
22 luatexbase.declare_callback_rule("pre_shipout_filter", "luaotfload.dvi", "after", "tagpdf")
23 end~
24 end
25 }
26 \lua_now:e
27 {
28 if~luatexbase.callbacktypes.pre_shipout_filter~then~
29 token.get_next()~
30 end
31 }\@secondoftwo\@gobble
32 {
33 \hook_gput_code:nnn{shipout/before}{tagpdf/lua}
34 {
35 \lua_now:e
36 { ltx.__tag.func.space_chars_shipout (tex.box["ShipoutBox"]) }
37 }
38 }
39 }
40 \bool_if:NT\g__tag_active_mc_bool
41 {
42 \lua_now:e
43 {
44 if~luatexbase.callbacktypes.pre_shipout_filter~then~
45 luatexbase.add_to_callback("pre_shipout_filter", function(TAGBOX)~
46 ltx.__tag.func.mark_shipout(TAGBOX)~return~true~
47 end, "tagpdf")~
48 end
49 }
50 \lua_now:e
51 {
52 if~luatexbase.callbacktypes.pre_shipout_filter~then~
53 token.get_next()~
54 end
55 }\@secondoftwo\@gobble
56 {
57 \hook_gput_code:nnn{shipout/before}{tagpdf/lua}
58 {
59 \lua_now:e
60 { ltx.__tag.func.mark_shipout (tex.box["ShipoutBox"]) }
61 }
62 }
63 }
64 }

1.1 Commands
__tag_add_missing_mcs_to_stream:Nn This command is used in the output routine by the ptagging code. It should do nothing

in luamode.

106

65 \cs_new_protected:Npn __tag_add_missing_mcs_to_stream:Nn #1#2 {}
66 \cs_set_eq:NN \tag_mc_add_missing_to_stream:Nn __tag_add_missing_mcs_to_stream:Nn

(End of definition for __tag_add_missing_mcs_to_stream:Nn.)

\tag_mc_new_stream:n

67 \cs_new_protected:Npn \tag_mc_new_stream:n #1 {}

(End of definition for \tag_mc_new_stream:n. This function is documented on page 84.)

__tag_mc_if_in_p:
__tag_mc_if_in:TF

\tag_mc_if_in_p:
\tag_mc_if_in:TF

This tests, if we are in an mc, for attributes this means to check against a number.

68 \prg_new_conditional:Nnn __tag_mc_if_in: {p,T,F,TF}
69 {
70 \int_compare:nNnTF
71 { -2147483647 }
72 =
73 {\lua_now:e
74 {
75 tex.print(\int_use:N \c_document_cctab,tex.getattribute(luatexbase.attributes.g__tag_mc_type_attr))
76 }
77 }
78 { \prg_return_false: }
79 { \prg_return_true: }
80 }
81

82 \prg_new_eq_conditional:NNn \tag_mc_if_in: __tag_mc_if_in: {p,T,F,TF}

(End of definition for __tag_mc_if_in:TF and \tag_mc_if_in:TF. This function is documented on page
83.)

__tag_mc_lua_set_mc_type_attr:n
__tag_mc_lua_set_mc_type_attr:o
__tag_mc_lua_unset_mc_type_attr:

This takes a tag name, and sets the attributes globally to the related number.

83 \cs_new:Nn __tag_mc_lua_set_mc_type_attr:n % #1 is a tag name
84 {
85 %TODO ltx.__tag.func.get_num_from("#1") seems not to return a suitable number??
86 \tl_set:Ne\l__tag_tmpa_tl{\lua_now:e{ltx.__tag.func.output_num_from ("#1")} }
87 \lua_now:e
88 {
89 tex.setattribute
90 (
91 "global",
92 luatexbase.attributes.g__tag_mc_type_attr,
93 \l__tag_tmpa_tl
94)
95 }
96 \lua_now:e
97 {
98 tex.setattribute
99 (

100 "global",
101 luatexbase.attributes.g__tag_mc_cnt_attr,
102 __tag_get_mc_abs_cnt:
103)

107

104 }
105 }
106

107 \cs_generate_variant:Nn__tag_mc_lua_set_mc_type_attr:n { o }
108

109 \cs_new:Nn __tag_mc_lua_unset_mc_type_attr:
110 {
111 \lua_now:e
112 {
113 tex.setattribute
114 (
115 "global",
116 luatexbase.attributes.g__tag_mc_type_attr,
117 -2147483647
118)
119 }
120 \lua_now:e
121 {
122 tex.setattribute
123 (
124 "global",
125 luatexbase.attributes.g__tag_mc_cnt_attr,
126 -2147483647
127)
128 }
129 }
130

(End of definition for __tag_mc_lua_set_mc_type_attr:n and __tag_mc_lua_unset_mc_type_attr:.)

__tag_mc_insert_mcid_kids:n
__tag_mc_insert_mcid_single_kids:n

These commands will in the finish code replace the dummy for a mc by the real mcid
kids we need a variant for the case that it is the only kid, to get the array right

131 \cs_new:Nn __tag_mc_insert_mcid_kids:n
132 {
133 \lua_now:e { ltx.__tag.func.mc_insert_kids (#1,0) }
134 }
135

136 \cs_new:Nn __tag_mc_insert_mcid_single_kids:n
137 {
138 \lua_now:e {ltx.__tag.func.mc_insert_kids (#1,1) }
139 }

(End of definition for __tag_mc_insert_mcid_kids:n and __tag_mc_insert_mcid_single_kids:n.)

__tag_mc_handle_stash:n
__tag_mc_handle_stash:e

This is the lua variant for the command to put an mcid absolute number in the current
structure.

140 ⟨/luamode⟩
141 ⟨∗luamode | debug⟩
142 ⟨luamode⟩\cs_new_protected:Npn __tag_mc_handle_stash:n #1 %1 mcidnum
143 ⟨debug⟩\cs_set_protected:Npn __tag_mc_handle_stash:n #1 %1 mcidnum
144 {
145 __tag_check_mc_used:n { #1 }

108

146 \seq_gput_right:cn % Don't fill a lua table due to the command in the item,
147 % so use the kernel command
148 { g__tag_struct_kids_\g__tag_struct_stack_current_tl _seq }
149 {
150 __tag_mc_insert_mcid_kids:n {#1}%
151 }
152 ⟨debug⟩ \seq_gput_right:cn % Don't fill a lua table due to the command in the item,
153 ⟨debug⟩ % so use the kernel command
154 ⟨debug⟩ { g__tag_struct_debug_kids_\g__tag_struct_stack_current_tl _seq }
155 ⟨debug⟩ {
156 ⟨debug⟩ MC~#1%
157 ⟨debug⟩ }
158 \lua_now:e
159 {
160 ltx.__tag.func.store_struct_mcabs
161 (
162 \g__tag_struct_stack_current_tl,#1
163)
164 }
165 }
166 ⟨/luamode | debug⟩
167 ⟨∗luamode⟩
168 \cs_generate_variant:Nn __tag_mc_handle_stash:n { e }

(End of definition for __tag_mc_handle_stash:n.)

\tag_mc_begin:n This is the lua version of the user command. We currently don’t check if there is nesting
as it doesn’t matter so much in lua.

169 \cs_set_protected:Nn \tag_mc_begin:n
170 {
171 __tag_check_if_active_mc:T
172 {
173 \group_begin:
174 %__tag_check_mc_if_nested:
175 \bool_gset_true:N \g__tag_in_mc_bool
176 \bool_set_false:N\l__tag_mc_artifact_bool
177 \tl_clear:N \l__tag_mc_key_properties_tl
178 \int_gincr:N \c@g__tag_MCID_abs_int

set the default tag to the structure:

179 \tl_set_eq:NN \l__tag_mc_key_tag_tl \g__tag_struct_tag_tl
180 \tl_gset_eq:NN\g__tag_mc_key_tag_tl \g__tag_struct_tag_tl
181 \lua_now:e
182 {
183 ltx.__tag.func.store_mc_data(__tag_get_mc_abs_cnt:,"tag","\g__tag_struct_tag_tl")
184 }

2025-05-23 allow lang on the MC (not really spec conform, but does work in acrobat).

185 \tl_if_empty:NTF\l__tag_mc_lang_tl
186 {
187 \keys_set:nn { __tag / mc }{ label={}, #1 }

109

188 }
189 {
190 \keys_set:nn { __tag / mc }{ label={},lang=\l__tag_mc_lang_tl, #1 }
191 }
192 %check that a tag or artifact has been used
193 __tag_check_mc_tag:N \l__tag_mc_key_tag_tl
194 %set the attributes:
195 __tag_mc_lua_set_mc_type_attr:o { \l__tag_mc_key_tag_tl }
196 \bool_if:NF \l__tag_mc_artifact_bool
197 { % store the absolute num name in a label:
198 \tl_if_empty:NF {\l__tag_mc_key_label_tl}
199 {
200 __tag_mc_handle_mc_label:e { \l__tag_mc_key_label_tl }
201 }
202 % if not stashed record the absolute number
203 \bool_if:NF \l__tag_mc_key_stash_bool
204 {
205 \socket_use:nn{tag/check/parent-child}
206 {
207 __tag_mc_check_parent_child:o
208 { \g__tag_struct_stack_current_tl }
209 }
210 __tag_mc_handle_stash:e { __tag_get_mc_abs_cnt: }
211 }
212 }
213 \group_end:
214 }
215 }

(End of definition for \tag_mc_begin:n. This function is documented on page 83.)

\tag_mc_end:

TODO: check how the use command must be guarded.

216 \cs_set_protected:Nn \tag_mc_end:
217 {
218 __tag_check_if_active_mc:T
219 {
220 %__tag_check_mc_if_open:
221 \bool_gset_false:N \g__tag_in_mc_bool
222 \bool_set_false:N\l__tag_mc_artifact_bool
223 __tag_mc_lua_unset_mc_type_attr:
224 \tl_set:Nn \l__tag_mc_key_tag_tl { }
225 \tl_gset:Nn \g__tag_mc_key_tag_tl { }
226 }
227 }

(End of definition for \tag_mc_end:. This function is documented on page 83.)

\tag_mc_reset_box:N This allows to reset the mc-attributes in box. On base and generic mode it should do
nothing.

228 \cs_set_protected:Npn \tag_mc_reset_box:N #1
229 {

110

230 \lua_now:e
231 {
232 local~type=tex.getattribute(luatexbase.attributes.g__tag_mc_type_attr)
233 local~mc=tex.getattribute(luatexbase.attributes.g__tag_mc_cnt_attr)
234 ltx.__tag.func.update_mc_attributes(tex.getbox(\int_use:N #1),mc,type)
235 }
236 }

(End of definition for \tag_mc_reset_box:N. This function is documented on page 83.)

__tag_get_data_mc_tag: The command to retrieve the current mc tag. TODO: Perhaps this should use the
attribute instead.

237 \cs_new:Npn __tag_get_data_mc_tag: { \g__tag_mc_key_tag_tl }

(End of definition for __tag_get_data_mc_tag:.)

1.2 Key definitions
tag (mc-key)
raw (mc-key)
alt (mc-key)
lang (mc-key=

actualtext (mc-key)
label (mc-key)

artifact (mc-key)

TODO: check conversion, check if local/global setting is right.

238 \keys_define:nn { __tag / mc }
239 {
240 tag .code:n = %
241 {
242 \tl_set:Ne \l__tag_mc_key_tag_tl { #1 }
243 \tl_gset:Ne \g__tag_mc_key_tag_tl { #1 }
244 \lua_now:e
245 {
246 ltx.__tag.func.store_mc_data(__tag_get_mc_abs_cnt:,"tag","#1")
247 }
248 },
249 raw .code:n =
250 {
251 \tl_put_right:Ne \l__tag_mc_key_properties_tl { #1 }
252 \lua_now:e
253 {
254 ltx.__tag.func.store_mc_data(__tag_get_mc_abs_cnt:,"raw","#1")
255 }
256 },
257 alt .code:n = % Alt property
258 {
259 \tl_if_empty:oF{#1}
260 {
261 \str_set_convert:Noon
262 \l__tag_tmpa_str
263 { #1 }
264 { default }
265 { utf16/hex }
266 \tl_put_right:Nn \l__tag_mc_key_properties_tl { /Alt~< }
267 \tl_put_right:No \l__tag_mc_key_properties_tl { \l__tag_tmpa_str>~ }
268 \lua_now:e
269 {
270 ltx.__tag.func.store_mc_data

111

271 (
272 __tag_get_mc_abs_cnt:,"alt","/Alt~<\str_use:N \l__tag_tmpa_str>"
273)
274 }
275 }
276 },
277 lang .code:n = % Lang property
278 {
279 \tl_if_empty:oF{#1}
280 {
281 \tl_put_right:Ne \l__tag_mc_key_properties_tl { /Lang~(#1) }
282 \lua_now:e
283 {
284 ltx.__tag.func.store_mc_data
285 (
286 __tag_get_mc_abs_cnt:,"lang","/Lang~(#1)"
287)
288 }
289 }
290 },
291 alttext .meta:n = {alt=#1},
292 actualtext .code:n = % Alt property
293 {
294 \tl_if_empty:oF{#1}
295 {
296 \str_set_convert:Noon
297 \l__tag_tmpa_str
298 { #1 }
299 { default }
300 { utf16/hex }
301 \tl_put_right:Nn \l__tag_mc_key_properties_tl { /Alt~< }
302 \tl_put_right:No \l__tag_mc_key_properties_tl { \l__tag_tmpa_str>~ }
303 \lua_now:e
304 {
305 ltx.__tag.func.store_mc_data
306 (
307 __tag_get_mc_abs_cnt:,
308 "actualtext",
309 "/ActualText~<\str_use:N \l__tag_tmpa_str>"
310)
311 }
312 }
313 },
314 label .code:n =
315 {
316 \tl_set:Nn\l__tag_mc_key_label_tl { #1 }
317 \lua_now:e
318 {
319 ltx.__tag.func.store_mc_data
320 (
321 __tag_get_mc_abs_cnt:,"label","#1"
322)
323 }
324 },

112

325 __artifact-store .code:n =
326 {
327 \lua_now:e
328 {
329 ltx.__tag.func.store_mc_data
330 (
331 __tag_get_mc_abs_cnt:,"artifact","#1"
332)
333 }
334 },
335 artifact .code:n =
336 {
337 \exp_args:Nne
338 \keys_set:nn
339 { __tag / mc}
340 { __artifact-bool, __artifact-type=#1, tag=Artifact }
341 \exp_args:Nne
342 \keys_set:nn
343 { __tag / mc }
344 { __artifact-store=\l__tag_mc_artifact_type_tl }
345 },
346 artifact .default:n = { notype }
347 }
348

349 ⟨/luamode⟩

(End of definition for tag (mc-key) and others. These functions are documented on page 84.)

The tagpdf-struct module
Commands to create the structure
Part of the tagpdf package

Ulrike Fischer
Version 0.99x, released 2026-01-12

113

Part VIII

1 Public Commands

\tag_struct_begin:n {⟨key-values⟩}
\tag_struct_end:
\tag_struct_end:n {⟨tag⟩}
These commands start and end a new structure. They don’t start a group. They set
all their values globally. \tag_struct_end:n does nothing special normally (apart from
swallowing its argument, but if tagpdf-debug is loaded, it will check if the {⟨tag⟩} (after
expansion) is identical to the current structure on the stack. The tag is not role mapped!

\tag_struct_begin:n
\tag_struct_end:
\tag_struct_end:n

\tag_struct_use:n {⟨label⟩}
\tag_struct_use_num:n {⟨structure number⟩}
These commands insert a structure previously stashed away as kid into the currently
active structure. A structure should be used only once, if the structure already has a
parent a warning is issued.

\tag_struct_use:n
\tag_struct_use_num:n

\tag_struct_object_ref:n {⟨structure number⟩}

This is a small wrapper around \pdf_object_ref:n to retrieve the object reference of
the structure with the number ⟨struct number⟩. This number can be retrieved and
stored for the current structure for example with \tag_get:n{⟨structnum⟩}. Be aware
that it can only be used if the structure has already been created and that it doesn’t
check if the object actually exists!

\tag_struct_object_ref:n
\tag_struct_object_ref:e

The following two functions are used to add annotations. They must be used together
and with care to get the same numbers. Perhaps some improvements are needed here.

\tag_struct_insert_annot:nn {⟨object reference⟩} {⟨struct parent number⟩}\tag_struct_insert_annot:nn

This inserts an annotation in the structure. ⟨object reference⟩ is there reference to
the annotation. ⟨struct parent number⟩ should be the same number as had been in­
serted with \tag_struct_parent_int: as StructParent value to the dictionary of the
annotation. The command will increase the value of the counter used by \tag_struct_­
parent_int:.

\tag_struct_parent_int:

This gives back the next free /StructParent number (assuming that it is together with
\tag_struct_insert_annot:nn which will increase the number.

\tag_struct_parent_int:

\tag_struct_gput:nnn {⟨structure number⟩} {⟨keyword⟩} {⟨value⟩}

This is a command that allows to update the data of a structure. This often can’t done
simply by replacing the value, as we have to preserve and extend existing content. We
use therefore dedicated functions adjusted to the key in question. The first argument is
the number of the structure, the second a keyword referring to a function, the third the
value. Currently the only keyword is ref which updates the Ref key (an array)

\tag_struct_gput:nnn

114

\tag_struct_gput_ref:nnn {⟨structure number⟩} {⟨keyword⟩} {⟨value⟩}

This is an user interface to add a Ref key to an existing structure. The target structure
doesn’t have to exist yet but can be addressed by label, destname or even num. ⟨keyword⟩
is currently either label, dest or num. The value is then either a label name, the name
of a destination or a structure number.

\tag_struct_gput_ref:nnn

2 Public keys
2.1 Keys for the structure commands

tag (struct key) This is required. The value of the key is normally one of the standard types listed in the
main tagpdf documentation. It is possible to setup new tags/types. The value can also
be of the form type/NS, where NS is the shorthand of a declared name space. Currently
the names spaces pdf, pdf2, mathml and user are defined. This allows to use a different
name space than the one connected by default to the tag. But normally this should not
be needed.

stash (struct key) Normally a new structure inserts itself as a kid into the currently active structure.
This key prohibits this. The structure is nevertheless from now on “the current active
structure” and parent for following marked content and structures.

label (struct key) This key sets a label by which one can refer to the structure. It is e.g. used by \tag_­
struct_use:n (where a real label is actually not needed as you can only use structures
already defined), and by the ref key (which can refer to future structures). Internally
the label name will start with tagpdfstruct- and it stores the two attributes tagstruct
(the structure number) and tagstructobj (the object reference).

parent (struct key) By default a structure is added as kid to the currently active structure. With the parent
key one can choose another parent. The value is a structure number which must refer
to an already existing, previously created structure. Such a structure number can for
example be have been stored with \tag_get:n, but one can also use a label on the
parent structure and then use \property_ref:nn{tagpdfstruct-label}{tagstruct}
to retrieve it.

firstkid (struct key) If this key is used the structure is added at the left of the kids of the parent structure
(if the structure is not stashed). This means that it will be the first kid of the structure
(unless some later structure uses the key too).

title (struct key)
title-o (struct key)

This keys allows to set the dictionary entry /Title in the structure object. The value
is handled as verbatim string and hex encoded. Commands are not expanded. title-o
will expand the value once.

alt (struct key) This key inserts an /Alt value in the dictionary of structure object. The value is handled
as verbatim string and hex encoded. The value will be expanded first once. If it is empty,
nothing will happen.

actualtext (struct key) This key inserts an /ActualText value in the dictionary of structure object. The value
is handled as verbatim string and hex encoded. The value will be expanded first once. If
it is empty, nothing will happen.

lang (struct key) This key allows to set the language for a structure element. The value should be a
bcp-identifier, e.g. de-De.

115

ref (struct key) This key allows to add references to other structure elements, it adds the /Ref array to
the structure. The value should be a comma separated list of structure labels set with
the label key. e.g. ref={label1,label2}.

E (struct key) This key sets the /E key, the expanded form of an abbreviation or an acronym (I couldn’t
think of a better name, so I sticked to E).

AF (struct key)
AFref (struct key)

AFinline (struct key)
AFinline-o (struct key)
texsource (struct key)

mathml (struct key)

These keys handle associated files in the structure element.

AF = ⟨object name⟩
AFref = ⟨object reference⟩
AF-inline = ⟨text content⟩

The value ⟨object name⟩ should be the name of an object pointing to the /Filespec
dictionary as expected by \pdf_object_ref:n from a current l3kernel.
The value AF-inline is some text, which is embedded in the PDF as a text file with
mime type text/plain. AF-inline-o is like AF-inline but expands the value once.
Future versions will perhaps extend this to more mime types, but it is still a research
task to find out what is really needed.
texsource is a special variant of AF-inline-o which embeds the content as .tex source
with the /AFrelationship key set to /Source. It also sets the /Desc key to a (currently)
fix text.
mathml is a special variant of AF-inline-o which embeds the content as .xml file with
the /AFrelationship key set to /Supplement. It also sets the /Desc key to a (currently)
fix text.
The argument of AF is an object name referring an embedded file as declared for example
with \pdf_object_new:n or with the l3pdffile module. AF expands its argument (this
allows e.g. to use some variable for automatic numbering) and can be used more than
once, to associate more than one file.
The argument of AFref is an object reference to an embedded file or a variable expanding
to such a object reference in the format as you would get e.g. from \pdf_object_ref_­
last: or \pdf_object_ref:n (and which is different for the various engines!). The key
allows to make use of anonymous objects. Like AF the AFref key expands its argument
and can be used more than once, to associate more than one file. It does not check if the
reference is valid!
The inline keys can be used only once per structure. Additional calls are ignored.

attribute (struct key) This key takes as argument a comma list of attribute names (use braces to protect
the commas from the external key-val parser) and allows to add one or more attribute
dictionary entries in the structure object. As an example

\tagstructbegin{tag=TH,attribute= TH-row}

Attribute names and their content must be declared first in \tagpdfsetup.

attribute-class (struct key) This key takes as argument a comma list of attribute class names (use braces to protect
the commas from the external key-val parser) and allows to add one or more attribute
classes to the structure object.
Attribute class names and their content must be declared first in \tagpdfsetup.

116

2.2 Setup keys

role/new-attribute = {⟨name⟩}{⟨Content⟩}role/new-attribute (setup-key)
newattribute (deprecated)

This key can be used in the setup command \tagpdfsetup and allow to declare a new
attribute, which can be used as attribute or attribute class. The value are two brace
groups, the first contains the name, the second the content.

\tagpdfsetup
{
role/new-attribute =
{TH-col}{/O /Table /Scope /Column},

role/new-attribute =
{TH-row}{/O /Table /Scope /Row},

}

root-AF (setup key)

root-AF = ⟨object name⟩

This key can be used in the setup command \tagpdfsetup and allows to add associated
files to the root structure. Like AF it can be used more than once to add more than one
file.

1 ⟨@@=tag⟩
2 ⟨∗header⟩
3 \ProvidesExplPackage {tagpdf-struct-code} {2026-01-12} {0.99x}
4 {part of tagpdf - code related to storing structure}
5 ⟨/header⟩

3 Variables
\c@g__tag_struct_abs_int Every structure will have a unique, absolute number.

6 ⟨base⟩\int_new:N \c@g__tag_struct_abs_int
7 ⟨base⟩\int_gset:Nn \c@g__tag_struct_abs_int { 1 }

(End of definition for \c@g__tag_struct_abs_int.)

\g__tag_struct_objR_seq a sequence to store mapping between the structure number and the object number. We
assume that structure numbers are assign consecutively and so the index of the seq can
be used. A seq allows easy mapping over the structures.

8 ⟨∗package⟩
9 __tag_seq_new:N \g__tag_struct_objR_seq

(End of definition for \g__tag_struct_objR_seq.)

\c__tag_struct_null_tl In lua mode we have to test if the kids a null

117

10 \tl_const:Nn\c__tag_struct_null_tl {null}

(End of definition for \c__tag_struct_null_tl.)

\g__tag_struct_cont_mc_prop in generic mode it can happen after a page break that we have to inject into a structure
sequence an additional mc after. We will store this additional info in a property. The
key is the absolute mc num, the value the pdf directory.

11 __tag_prop_new:N \g__tag_struct_cont_mc_prop

(End of definition for \g__tag_struct_cont_mc_prop.)

\g__tag_struct_stack_seq A stack sequence for the structure stack. When a sequence is opened it’s number is put
on the stack.

12 \seq_new:N \g__tag_struct_stack_seq
13 \seq_gpush:Nn \g__tag_struct_stack_seq {1}

(End of definition for \g__tag_struct_stack_seq.)

\g__tag_struct_tag_stack_seq We will perhaps also need the tags. While it is possible to get them from the numbered
stack, lets build a tag stack too.

14 \seq_new:N \g__tag_struct_tag_stack_seq
15 \seq_gpush:Nn \g__tag_struct_tag_stack_seq {{Root}{StructTreeRoot}}

(End of definition for \g__tag_struct_tag_stack_seq.)

\g__tag_struct_stack_current_tl
\l__tag_struct_stack_parent_tmpa_tl

The global variable will hold the current structure number. It is already defined in
tagpdf-base. The local temporary variable will hold the parent when we fetch it from
the stack.

16 ⟨/package⟩
17 ⟨base⟩\tl_new:N \g__tag_struct_stack_current_tl
18 ⟨base⟩\tl_gset:Nn \g__tag_struct_stack_current_tl {\int_use:N\c@g__tag_struct_abs_int}
19 ⟨∗package⟩
20 \tl_new:N \l__tag_struct_stack_parent_tmpa_tl

(End of definition for \g__tag_struct_stack_current_tl and \l__tag_struct_stack_parent_tmpa_tl.)

In luatex we will store the structure number as attribute.

21 \sys_if_engine_luatex:TF
22 {
23 \cs_new:Npn __tag_struct_set_attribute:
24 {
25 \lua_now:e
26 {
27 tex.setattribute
28 (
29 "global",
30 luatexbase.attributes.g__tag_structnum_attr,
31 \g__tag_struct_stack_current_tl
32)
33 }

118

34 }
35 }
36 {
37 \cs_new_eq:NN __tag_struct_set_attribute: \prg_do_nothing:
38 }

I will need at least one structure: the StructTreeRoot normally it should have only
one kid, e.g. the document element.

The data of the StructTreeRoot and the StructElem are in properties: \g_@@_struct_1_prop
for the root and \g_@@_struct_N_prop, N ≥= 2 for the other.

This creates quite a number of properties, so perhaps we will have to do this more
efficiently in the future.

All properties have at least the keys

Type StructTreeRoot or StructElem

and the keys from the two following lists (the root has a special set of properties). the
values of the prop should be already escaped properly when the entries are created (ti­
tle,lange,alt,E,actualtext)

\c__tag_struct_StructTreeRoot_entries_seq
\c__tag_struct_StructElem_entries_seq

These seq contain the keys we support in the two object types. They are currently no
longer used, but are provided as documentation and for potential future checks. They
should be adapted if there are changes in the PDF format.

39 \seq_const_from_clist:Nn \c__tag_struct_StructTreeRoot_entries_seq
40 {%p. 857/858
41 Type, % always /StructTreeRoot
42 K, % kid, dictionary or array of dictionaries
43 IDTree, % currently unused
44 ParentTree, % required,obj ref to the parent tree
45 ParentTreeNextKey, % optional
46 RoleMap,
47 ClassMap,
48 Namespaces,
49 AF %pdf 2.0
50 }
51

52 \seq_const_from_clist:Nn \c__tag_struct_StructElem_entries_seq
53 {%p 858 f
54 Type, %always /StructElem
55 S, %tag/type
56 P, %parent
57 ID, %optional
58 Ref, %optional, pdf 2.0 Use?
59 Pg, %obj num of starting page, optional
60 K, %kids
61 A, %attributes, probably unused
62 C, %class ""
63 %R, %attribute revision number, irrelevant for us as we
64 % don't update/change existing PDF and (probably)
65 % deprecated in PDF 2.0
66 T, %title, value in () or <>
67 Lang, %language
68 Alt, % value in () or <>

119

69 E, % abbreviation
70 ActualText,
71 AF, %pdf 2.0, array of dict, associated files
72 NS, %pdf 2.0, dict, namespace
73 PhoneticAlphabet, %pdf 2.0
74 Phoneme %pdf 2.0
75 }

(End of definition for \c__tag_struct_StructTreeRoot_entries_seq and \c__tag_struct_StructElem_­
entries_seq.)

3.1 Variables used by the keys
\g__tag_struct_tag_tl

\g__tag_struct_tag_NS_tl
\l__tag_struct_roletag_tl

\g__tag_struct_roletag_NS_tl
\l__tag_struct_parenttag_tl

\l__tag_struct_parenttag_NS_tl

Use by the tag key to store the tag and the namespace. The roletag variables will hold
locally rolemapping info needed for the parent-child checks. The parenttag variables
allow to set the target role of the parent of stashed structures.

76 \tl_new:N \g__tag_struct_tag_tl
77 \tl_new:N \g__tag_struct_tag_NS_tl
78 \tl_new:N \l__tag_struct_roletag_tl
79 \tl_new:N \l__tag_struct_roletag_NS_tl
80 \tl_new:N \l__tag_struct_parenttag_tl
81 \tl_set:Nn \l__tag_struct_parenttag_tl {STASHED}
82 \tl_new:N \l__tag_struct_parenttag_NS_tl
83 \tl_set:Nn \l__tag_struct_parenttag_NS_tl {latex}

(End of definition for \g__tag_struct_tag_tl and others.)

\g__tag_struct_label_num_prop This will hold for every structure label the associated structure number. The prop will
allow to fill the /Ref key directly at the first compilation if the ref key is used.

84 \prop_new_linked:N \g__tag_struct_label_num_prop

(End of definition for \g__tag_struct_label_num_prop.)

\l__tag_struct_elem_stash_bool This will keep track of the stash status

85 \bool_new:N \l__tag_struct_elem_stash_bool

(End of definition for \l__tag_struct_elem_stash_bool.)

\l__tag_struct_addkid_tl This decides if a structure kid is added at the left or right of the parent. The default is
right.

86 \tl_new:N \l__tag_struct_addkid_tl
87 \tl_set:Nn \l__tag_struct_addkid_tl {right}

(End of definition for \l__tag_struct_addkid_tl.)

120

3.2 Variables used by tagging code of basic elements
\g__tag_struct_dest_num_prop This variable records for (some or all, not clear yet) destination names the related struc­

ture number to allow to reference them in a Ref. The key is the destination. It is currently
used by the toc-tagging and sec-tagging code.

88 ⟨/package⟩
89 ⟨base⟩\prop_new_linked:N \g__tag_struct_dest_num_prop
90 ⟨∗package⟩

(End of definition for \g__tag_struct_dest_num_prop.)

\g__tag_struct_ref_by_dest_prop This variable contains structures whose Ref key should be updated at the end to point
to structured related with this destination. As this is probably need in other places too,
it is not only a toc-variable. TODO: remove after 11/2024 release.

91 \prop_new_linked:N \g__tag_struct_ref_by_dest_prop
92 ⟨/package⟩

(End of definition for \g__tag_struct_ref_by_dest_prop.)

4 Commands
__tag_struct_prop_gput:nnn The structure props must be filled in various places. For this we use a common command

which also takes care of the debug package:

93 ⟨∗package | debug⟩
94 ⟨package⟩\cs_new_protected:Npn __tag_struct_prop_gput:nnn #1 #2 #3
95 ⟨debug⟩\cs_set_protected:Npn __tag_struct_prop_gput:nnn #1 #2 #3
96 {
97 __tag_prop_gput:cnn
98 { g__tag_struct_#1_prop }{#2}{#3}
99 ⟨debug⟩\prop_gput:cnn { g__tag_struct_debug_#1_prop } {#2} {#3}

100 }
101 \cs_generate_variant:Nn __tag_struct_prop_gput:nnn {onn,nne,nee,nno}
102 ⟨/package | debug⟩

(End of definition for __tag_struct_prop_gput:nnn.)

4.1 Initialization of the StructTreeRoot
The first structure element, the StructTreeRoot is special, so created manually. The
underlying object is @@/struct/1 which is currently created in the tree code (TODO
move it here). The ParentTree and RoleMap entries are added at begin document in the
tree code as they refer to object which are setup in other parts of the code. This avoid
timing issues.

103 ⟨∗package⟩
104 \tl_gset:Nn \g__tag_struct_stack_current_tl {1}

__tag_pdf_name_e:n

105 \cs_new:Npn __tag_pdf_name_e:n #1{\pdf_name_from_unicode_e:n{#1}}
106 ⟨/package⟩

121

(End of definition for __tag_pdf_name_e:n.)

g__tag_struct_1_prop
g__tag_struct_kids_1_seq

107 ⟨∗package⟩
108 __tag_prop_new:c { g__tag_struct_1_prop }
109 __tag_seq_new:c { g__tag_struct_kids_1_seq }
110

111 __tag_struct_prop_gput:nne
112 { 1 }
113 { Type }
114 { \pdf_name_from_unicode_e:n {StructTreeRoot} }
115

116 __tag_struct_prop_gput:nne
117 { 1 }
118 { S }
119 { \pdf_name_from_unicode_e:n {StructTreeRoot} }
120

121 __tag_struct_prop_gput:nne
122 { 1 }
123 { tag }
124 { {StructTreeRoot}{pdf} }
125

126 __tag_struct_prop_gput:nne
127 { 1 }
128 { rolemap }
129 { {StructTreeRoot}{pdf} }
130

131 __tag_struct_prop_gput:nne
132 { 1 }
133 { parentrole }
134 { {StructTreeRoot}{pdf} }
135

Namespaces are pdf 2.0. If the code moves into the kernel, the setting must be probably
delayed.

136 \pdf_version_compare:NnF < {2.0}
137 {
138 __tag_struct_prop_gput:nne
139 { 1 }
140 { Namespaces }
141 { \pdf_object_ref:n { __tag/tree/namespaces } }
142 }
143 ⟨/package⟩

In debug mode we have to copy the root manually as it is already setup:

144 ⟨debug⟩\prop_new:c { g__tag_struct_debug_1_prop }
145 ⟨debug⟩\seq_new:c { g__tag_struct_debug_kids_1_seq }
146 ⟨debug⟩\prop_gset_eq:cc { g__tag_struct_debug_1_prop }{ g__tag_struct_1_prop }
147 ⟨debug⟩\prop_gremove:cn { g__tag_struct_debug_1_prop }{Namespaces}

(End of definition for g__tag_struct_1_prop and g__tag_struct_kids_1_seq.)

122

4.2 Adding the /ID key
Every structure gets automatically an ID which is currently simply calculated from the
structure number.

__tag_struct_get_id:n

148 ⟨∗package⟩
149 \cs_new:Npn __tag_struct_get_id:n #1 %#1=struct num
150 {
151 (
152 ID.
153 \prg_replicate:nn
154 { \int_abs:n{\g__tag_tree_id_pad_int - \tl_count:e { \int_to_arabic:n { #1 } }} }
155 { 0 }
156 \int_to_arabic:n { #1 }
157)
158 }

(End of definition for __tag_struct_get_id:n.)

4.3 Filling in the tag info
__tag_struct_set_tag_info:nnn This adds or updates the tag info to a structure given by a number. We need also the

original data, so we store both.

159 \pdf_version_compare:NnTF < {2.0}
160 {
161 \cs_new_protected:Npn __tag_struct_set_tag_info:nnn #1 #2 #3
162 %#1 structure number, #2 tag, #3 NS
163 {
164 __tag_struct_prop_gput:nne
165 { #1 }
166 { S }
167 { \pdf_name_from_unicode_e:n {#2} } %
168 __tag_struct_prop_gput:nnn
169 { #1 }
170 { tag }
171 { {#2} {} }
172 }
173 }
174 {
175 \cs_new_protected:Npn __tag_struct_set_tag_info:nnn #1 #2 #3
176 {
177 __tag_struct_prop_gput:nne
178 { #1 }
179 { S }
180 { \pdf_name_from_unicode_e:n {#2} } %
181 \prop_get:NnNT \g__tag_role_NS_prop {#3} \l__tag_get_tmpc_tl
182 {
183 __tag_struct_prop_gput:nne
184 { #1 }
185 { NS }
186 { \l__tag_get_tmpc_tl } %

123

187 }
188 __tag_struct_prop_gput:nnn
189 { #1 }
190 { tag }
191 { {#2} {#3} }
192 }
193 }
194 \cs_generate_variant:Nn __tag_struct_set_tag_info:nnn {eoo}

(End of definition for __tag_struct_set_tag_info:nnn.)

__tag_struct_get_role:nnNN We also need a way to get the tag info needed for parent child check from parent struc­
tures. The tag info is stored as the value of the rolemap key, but for “transparent”
structures we also have to look into parentrole key.

195 \cs_new_protected:Npn __tag_struct_get_role:nnNN #1 #2 #3 #4
196 %#1 :struct num,
197 %#2 :rolemap or parentrole
198 %#3 :tlvar for tag (rolemapped)
199 %#4 :tlvar for NS (rolemapped, so standard or empty or UNKNOWN)
200 {
201 \prop_get:cnNTF
202 { g__tag_struct_#1_prop }
203 { #2 }
204 \l__tag_get_tmpc_tl
205 {
206 \tl_set:Ne #3{\exp_last_unbraced:No\use_i:nn { \l__tag_get_tmpc_tl }}
207 \tl_set:Ne #4{\exp_last_unbraced:No\use_ii:nn { \l__tag_get_tmpc_tl }}
208 }
209 {
210 \tl_clear:N#3
211 \tl_clear:N#4
212 }
213 }
214 \cs_generate_variant:Nn__tag_struct_get_role:nnNN {enNN}

(End of definition for __tag_struct_get_role:nnNN.)

4.4 Handlings kids
Commands to store the kids. Kids in a structure can be a reference to a mc-chunk,
an object reference to another structure element, or a object reference to an annotation
(through an OBJR object).

__tag_struct_kid_mc_gput_right:nn
__tag_struct_kid_mc_gput_right:ne

The command to store an mc-chunk, this is a dictionary of type MCR. It would be
possible to write out the content directly as unnamed object and to store only the object
reference, but probably this would be slower, and the PDF is more readable like this. The
code doesn’t try to avoid the use of the /Pg key by checking page numbers. That imho
only slows down without much gain. In generic mode the page break code will perhaps
to have to insert an additional mcid after an existing one. For this we use a property list
At first an auxiliary to write the MCID dict. This should normally be expanded!

124

215 \cs_new:Npn __tag_struct_mcid_dict:n #1 %#1 MCID absnum
216 {
217 <<
218 /Type \c_space_tl /MCR \c_space_tl
219 /Pg
220 \c_space_tl
221 \pdf_pageobject_ref:n { \property_ref:enn{mcid-#1}{tagabspage}{1} }
222 /MCID \c_space_tl \property_ref:enn{mcid-#1}{tagmcid}{1}
223 >>
224 }
225 ⟨/package⟩

226 ⟨∗package | debug⟩
227 ⟨package⟩\cs_new_protected:Npn __tag_struct_kid_mc_gput_right:nn #1 #2
228 ⟨debug⟩\cs_set_protected:Npn __tag_struct_kid_mc_gput_right:nn #1 #2
229 %#1 structure num, #2 MCID absnum%
230 {
231 __tag_seq_gput_right:ce
232 { g__tag_struct_kids_#1_seq }
233 {
234 __tag_struct_mcid_dict:n {#2}
235 }
236 ⟨debug⟩ \seq_gput_right:cn
237 ⟨debug⟩ { g__tag_struct_debug_kids_#1_seq }
238 ⟨debug⟩ {
239 ⟨debug⟩ MC~#2
240 ⟨debug⟩ }
241 __tag_seq_gput_right:cn
242 { g__tag_struct_kids_#1_seq }
243 {
244 \prop_item:Nn \g__tag_struct_cont_mc_prop {#2}
245 }
246 }
247 ⟨package⟩\cs_generate_variant:Nn __tag_struct_kid_mc_gput_right:nn {ne}

(End of definition for __tag_struct_kid_mc_gput_right:nn.)

__tag_struct_kid_struct_gput_right:nn
__tag_struct_kid_struct_gput_right:ee

This commands adds a structure as kid. We only need to record the object reference in
the sequence.

248 ⟨package⟩\cs_new_protected:Npn__tag_struct_kid_struct_gput_right:nn #1 #2
249 ⟨debug⟩\cs_set_protected:Npn__tag_struct_kid_struct_gput_right:nn #1 #2
250 %%#1 num of parent struct, #2 kid struct
251 {
252 __tag_seq_gput_right:ce
253 { g__tag_struct_kids_#1_seq }
254 {
255 \pdf_object_ref_indexed:nn { __tag/struct }{ #2 }
256 }
257 ⟨debug⟩ \seq_gput_right:cn
258 ⟨debug⟩ { g__tag_struct_debug_kids_#1_seq }
259 ⟨debug⟩ {
260 ⟨debug⟩ Struct~#2
261 ⟨debug⟩ }

125

262 }
263 ⟨package⟩\cs_generate_variant:Nn __tag_struct_kid_struct_gput_right:nn {ee}

(End of definition for __tag_struct_kid_struct_gput_right:nn.)

__tag_struct_kid_struct_gput_left:nn
__tag_struct_kid_struct_gput_left:ee

This commands adds a structure as kid one the left, so as first kid. We only need to
record the object reference in the sequence.

264 ⟨package⟩\cs_new_protected:Npn__tag_struct_kid_struct_gput_left:nn #1 #2
265 ⟨debug⟩\cs_set_protected:Npn__tag_struct_kid_struct_gput_left:nn #1 #2
266 %%#1 num of parent struct, #2 kid struct
267 {
268 __tag_seq_gput_left:ce
269 { g__tag_struct_kids_#1_seq }
270 {
271 \pdf_object_ref_indexed:nn { __tag/struct }{ #2 }
272 }
273 ⟨debug⟩ \seq_gput_left:cn
274 ⟨debug⟩ { g__tag_struct_debug_kids_#1_seq }
275 ⟨debug⟩ {
276 ⟨debug⟩ Struct~#2
277 ⟨debug⟩ }
278 }
279 ⟨package⟩\cs_generate_variant:Nn __tag_struct_kid_struct_gput_left:nn {ee}

(End of definition for __tag_struct_kid_struct_gput_left:nn.)

__tag_struct_kid_OBJR_gput_right:nnn
__tag_struct_kid_OBJR_gput_right:eee

At last the command to add an OBJR object. This has to write an object first. The
first argument is the number of the parent structure, the second the (expanded) object
reference of the annotation. The last argument is the page object reference

280 ⟨package⟩\cs_new_protected:Npn__tag_struct_kid_OBJR_gput_right:nnn #1 #2 #3
281 ⟨package⟩
282 ⟨package⟩
283 ⟨debug⟩\cs_set_protected:Npn__tag_struct_kid_OBJR_gput_right:nnn #1 #2 #3
284 %%#1 num of parent struct,#2 obj reference,#3 page object reference
285 {
286 \pdf_object_unnamed_write:nn
287 { dict }
288 {
289 /Type/OBJR/Obj~#2/Pg~#3
290 }
291 __tag_seq_gput_right:ce
292 { g__tag_struct_kids_#1_seq }
293 {
294 \pdf_object_ref_last:
295 }
296 ⟨debug⟩ \seq_gput_right:ce
297 ⟨debug⟩ { g__tag_struct_debug_kids_#1_seq }
298 ⟨debug⟩ {
299 ⟨debug⟩ OBJR~reference
300 ⟨debug⟩ }
301 }
302 ⟨/package | debug⟩
303 ⟨∗package⟩
304 \cs_generate_variant:Nn__tag_struct_kid_OBJR_gput_right:nnn { eee }

126

(End of definition for __tag_struct_kid_OBJR_gput_right:nnn.)

__tag_struct_exchange_kid_command:N
__tag_struct_exchange_kid_command:c

In luamode it can happen that a single kid in a structure is split at a page break into
two or more mcid. In this case the lua code has to convert put the dictionary of the kid
into an array. See issue 13 at tagpdf repo. We exchange the dummy command for the
kids to mark this case. Change 2024-03-19: don’t use a regex - that is slow.

305 \cs_new_protected:Npn__tag_struct_exchange_kid_command:N #1 %#1 = seq var
306 {
307 \seq_gpop_left:NN #1 \l__tag_tmpa_tl
308 \tl_replace_once:Nnn \l__tag_tmpa_tl
309 {__tag_mc_insert_mcid_kids:n}
310 {__tag_mc_insert_mcid_single_kids:n}
311 \seq_gput_left:No #1 { \l__tag_tmpa_tl }
312 }
313

314 \cs_generate_variant:Nn__tag_struct_exchange_kid_command:N { c }

(End of definition for __tag_struct_exchange_kid_command:N.)

__tag_struct_fill_kid_key:n This command adds the kid info to the K entry. In lua mode the content contains
commands which are expanded later. The argument is the structure number.

315 \cs_new_protected:Npn __tag_struct_fill_kid_key:n #1 %#1 is the struct num
316 {
317 \bool_if:NF \g__tag_mode_lua_bool
318 {
319 \seq_clear:N \l__tag_tmpa_seq
320 \seq_map_inline:cn { g__tag_struct_kids_#1_seq }
321 { \seq_put_right:Ne \l__tag_tmpa_seq { ##1 } }
322 %\seq_show:c { g__tag_struct_kids_#1_seq }
323 %\seq_show:N \l__tag_tmpa_seq
324 \seq_remove_all:Nn \l__tag_tmpa_seq {}
325 %\seq_show:N \l__tag_tmpa_seq
326 \seq_gset_eq:cN { g__tag_struct_kids_#1_seq } \l__tag_tmpa_seq
327 }
328

329 \int_case:nnF
330 {
331 \seq_count:c
332 {
333 g__tag_struct_kids_#1_seq
334 }
335 }
336 {
337 { 0 }
338 { } %no kids, do nothing
339 { 1 } % 1 kid, insert
340 {
341 % in this case we need a special command in
342 % luamode to get the array right. See issue #13
343 \sys_if_engine_luatex:TF
344 {
345 __tag_struct_exchange_kid_command:c
346 {g__tag_struct_kids_#1_seq}

127

check if we get null

347 \tl_set:Ne\l__tag_tmpa_tl
348 {\use:e{\seq_item:cn {g__tag_struct_kids_#1_seq} {1}}}
349 \tl_if_eq:NNF\l__tag_tmpa_tl \c__tag_struct_null_tl
350 {
351 __tag_struct_prop_gput:nne
352 {#1}
353 {K}
354 {
355 \seq_item:cn
356 {
357 g__tag_struct_kids_#1_seq
358 }
359 {1}
360 }
361 }
362 }
363 {
364 __tag_struct_prop_gput:nne
365 {#1}
366 {K}
367 {
368 \seq_item:cn
369 {
370 g__tag_struct_kids_#1_seq
371 }
372 {1}
373 }
374 }
375 } %
376 }
377 { %many kids, use an array
378 __tag_struct_prop_gput:nne
379 {#1}
380 {K}
381 {
382 [
383 \seq_use:cn
384 {
385 g__tag_struct_kids_#1_seq
386 }
387 {
388 \c_space_tl
389 }
390]
391 }
392 }
393 }
394

(End of definition for __tag_struct_fill_kid_key:n.)

128

4.5 Output of the object
__tag_struct_get_dict_content:nN This maps the dictionary content of a structure into a tl-var. Basically it does what

\pdfdict_use:n does. This is used a lot so should be rather fast.

395 \cs_new_protected:Npn __tag_struct_get_dict_content:nN #1 #2 %#1: structure num
396 {
397 \tl_clear:N #2
398 \prop_map_inline:cn { g__tag_struct_#1_prop }
399 {

Some keys needs the option to format the value, e.g. add brackets for an array, we also
need the option to ignore some entries in the properties.

400 \cs_if_exist_use:cTF {__tag_struct_format_##1:nnN}
401 {
402 {##1}{##2}#2
403 }
404 {
405 \tl_put_right:Ne #2 { \c_space_tl/##1~##2 }
406 }
407 }
408 }

(End of definition for __tag_struct_get_dict_content:nN.)

__tag_struct_format_rolemap:nnN
__tag_struct_format_parentrole:nnN

__tag_struct_format_P:nnN
__tag_struct_format_tag:nnN

This three entries should not end in the PDF. Todo: check if the S/NS keys can be
dropped and replaced by a processing of the tag key.

409 \cs_new:Nn__tag_struct_format_rolemap:nnN{}
410 \cs_new:Nn__tag_struct_format_parentrole:nnN{}
411 \cs_new:Nn__tag_struct_format_tag:nnN{}

(End of definition for __tag_struct_format_rolemap:nnN and others.)

__tag_struct_format_parentnum:nnN parent is a structure number and should expand to the object reference.

412 \cs_new_protected:Nn__tag_struct_format_parentnum:nnN
413 {
414 \tl_put_right:Ne #3 { ~/P~\pdf_object_ref_indexed:nn { __tag/struct} { #2 } }
415 }

(End of definition for __tag_struct_format_parentnum:nnN.)

__tag_struct_format_Ref:nnN Ref is an array, we store values as a clist of commands that must be executed here, the
formatting has to add also brackets.

416 \cs_new_protected:Nn__tag_struct_format_Ref:nnN
417 {
418 \tl_put_right:Nn #3 { ~/#1~[} %]
419 \clist_map_inline:nn{ #2 }
420 {
421 ##1 #3
422 }

129

423 \tl_put_right:Nn #3
424 { %[
425 \c_space_tl]
426 }
427 }

(End of definition for __tag_struct_format_Ref:nnN.)

__tag_struct_write_obj:n This writes out the structure object. This is done in the finish code, in the tree module
and guarded by the tree boolean.

428 \cs_new_protected:Npn __tag_struct_write_obj:n #1 % #1 is the struct num
429 {
430 \prop_if_exist:cTF { g__tag_struct_#1_prop }
431 {

It can happen that a structure is not used and so has not parent. Simply ignoring it is
problematic as it is also recorded in the IDTree, so we make an artifact out of it.

432 \prop_get:cnNF { g__tag_struct_#1_prop } {parentnum}\l__tag_tmpb_tl
433 {
434 % \prop_gput:cne { g__tag_struct_#1_prop } {P}
435 % {\pdf_object_ref_indexed:nn { __tag/struct }{1}}
436 \prop_gput:cne { g__tag_struct_#1_prop } {parentnum}{1}
437 \prop_gput:cne { g__tag_struct_#1_prop } {S}{/Artifact}
438 \seq_if_empty:cF {g__tag_struct_kids_#1_seq}
439 {
440 \msg_warning:nnee
441 {tag}
442 {struct-orphan}
443 { #1 }
444 {\seq_count:c{g__tag_struct_kids_#1_seq}}
445 }
446 }
447 __tag_struct_fill_kid_key:n { #1 }
448 __tag_struct_get_dict_content:nN { #1 } \l__tag_tmpa_tl
449 \pdf_object_write_indexed:nnne
450 { __tag/struct }{ #1 }
451 {dict}
452 {
453 \l__tag_tmpa_tl\c_space_tl
454 /ID~__tag_struct_get_id:n{#1}
455 }
456

457 }
458 {
459 \msg_error:nnn { tag } { struct-no-objnum } { #1}
460 }
461 }

(End of definition for __tag_struct_write_obj:n.)

__tag_struct_insert_annot:nn This is the command to insert an annotation into the structure. It can probably be used
for xform too.
Annotations used as structure content must

130

1. add a StructParent integer to their dictionary

2. push the object reference as OBJR object in the structure

3. Add a Structparent/obj-nr reference to the parent tree.

For a link this looks like this

\tag_struct_begin:n { tag=Link }
\tag_mc_begin:n { tag=Link }

(1) \pdfannot_dict_put:nne
{ link/URI }
{ StructParent }
{ \int_use:N\c@g_@@_parenttree_obj_int }

<start link> link text <stop link>
(2+3) \@@_struct_insert_annot:nn {obj ref}{parent num}

\tag_mc_end:
\tag_struct_end:

462 \cs_new_protected:Npn __tag_struct_insert_annot:nn #1 #2
463 %#1 object reference to the annotation/xform
464 %#2 structparent number
465 {
466 \bool_if:NT \g__tag_active_struct_bool
467 {
468 %get the number of the parent structure:
469 \seq_get:NNF
470 \g__tag_struct_stack_seq
471 \l__tag_struct_stack_parent_tmpa_tl
472 {
473 \msg_error:nn { tag } { struct-faulty-nesting }
474 }
475 %put the obj number of the annot in the kid entry, this also creates
476 %the OBJR object
477 __tag_property_record:nn {@tag@objr@page@#2 }{ tagabspage }
478 __tag_struct_kid_OBJR_gput_right:eee
479 {
480 \l__tag_struct_stack_parent_tmpa_tl
481 }
482 {
483 #1 %
484 }
485 {
486 \pdf_pageobject_ref:n
487 { \property_ref:nnn {@tag@objr@page@#2 }{ tagabspage }{1} }
488 }
489 % add the parent obj number to the parent tree:
490 % the command always expands its arguments!
491 __tag_parenttree_add_objr:nn
492 {
493 #2
494 }
495 {

131

496 \pdf_object_ref_indexed:nn
497 { __tag/struct }{ \l__tag_struct_stack_parent_tmpa_tl }
498 }
499 % increase the int:
500 \int_gincr:N \c@g__tag_parenttree_obj_int
501 }
502 }

(End of definition for __tag_struct_insert_annot:nn.)

__tag_struct_insert_annot_shipout:nnn This command is similar to the previous one but is meant to be used at shipout (currently
only sensible for luatex). To move the OBJR into the right structure it has to get the
structure number additionally as argument. But as it is used at shipout it doesn’t need
a label to get the page reference but can use \g_shipout_readonly_int. It does not
increase the parenttree integer (timing is wrong in lua), instead code using the command
has to do it. See the lua code.

503 \cs_new_protected:Npn__tag_struct_insert_annot_shipout:nnn #1#2#3
504 % #1 structnum, #2 object reference, #3 StructParentNum
505 {
506 __tag_struct_kid_OBJR_gput_right:eee
507 {
508 #1
509 }
510 {
511 #2
512 }
513 {
514 \pdf_pageobject_ref:n
515 { \int_use:N \g_shipout_readonly_int } %
516 }
517 % add the parent obj number to the parent tree:
518 % the command always expands its arguments!
519 __tag_parenttree_add_objr:nn
520 {
521 #3
522 }
523 {
524 \pdf_object_ref_indexed:nn
525 { __tag/struct }{ #1 }
526 }
527 }

(End of definition for __tag_struct_insert_annot_shipout:nnn.)

__tag_get_data_struct_tag: this command allows \tag_get:n to get the current structure tag with the keyword
struct_tag.

528 \cs_new:Npn __tag_get_data_struct_tag:
529 {
530 \exp_args:Ne
531 \tl_tail:n
532 {
533 \prop_item:cn {g__tag_struct_\g__tag_struct_stack_current_tl _prop}{S}

132

534 }
535 }

(End of definition for __tag_get_data_struct_tag:.)

__tag_get_data_struct_id: this command allows \tag_get:n to get the current structure id with the keyword
struct_id.

536 \cs_new:Npn __tag_get_data_struct_id:
537 {
538 __tag_struct_get_id:n {\g__tag_struct_stack_current_tl}
539 }
540 ⟨/package⟩

(End of definition for __tag_get_data_struct_id:.)

__tag_get_data_struct_num: this command allows \tag_get:n to get the current structure number with the keyword
struct_num. We will need to handle nesting

541 ⟨∗base⟩
542 \cs_new:Npn __tag_get_data_struct_num:
543 {
544 \g__tag_struct_stack_current_tl
545 }
546 ⟨/base⟩

(End of definition for __tag_get_data_struct_num:.)

__tag_get_data_struct_counter: this command allows \tag_get:n to get the current state of the structure counter with
the keyword struct_counter. By comparing the numbers it can be used to check the
number of structure commands in a piece of code.

547 ⟨∗base⟩
548 \cs_new:Npn __tag_get_data_struct_counter:
549 {
550 \int_use:N \c@g__tag_struct_abs_int
551 }
552 ⟨/base⟩

(End of definition for __tag_get_data_struct_counter:.)

4.6 Commands for the parent-child checks
__tag_struct_check_parent_child_aux:nnnnN

553 ⟨∗package⟩
554 \cs_new_protected:Npn __tag_struct_check_parent_child_aux:nnnnN #1#2#3#4#5
555 {
556 % #1 structure number of parent
557 % #2 key to use to retrieve role of parent (either rolemap or parentrole field)
558 % #3 structure number of parent
559 % #4 key to use to retrieve role of child (either rolemap or parentrole field)
560 % #5 tl for return value

133

get parent rolemap

561 __tag_struct_get_role:nnNN
562 {#1}
563 {#2}
564 \l__tag_get_parent_tmpa_tl
565 \l__tag_get_parent_tmpb_tl

get child rolemap

566 __tag_struct_get_role:nnNN
567 {#3}
568 {#4}
569 \l__tag_get_child_tmpa_tl
570 \l__tag_get_child_tmpb_tl

check

571 __tag_role_check_parent_child:ooooN
572 { \l__tag_get_parent_tmpa_tl } % rolemapped from above
573 { \l__tag_get_parent_tmpb_tl } % rolemapped from above
574 { \l__tag_get_child_tmpa_tl } %
575 { \l__tag_get_child_tmpb_tl } %
576 #5
577 }

(End of definition for __tag_struct_check_parent_child_aux:nnnnN.)

__tag_struct_check_parent_child:nn When comparing the relation between structures we use the structure numbers.

578 \cs_new_protected:Npn __tag_struct_check_parent_child:nn #1 #2
579 % #1 structure number of parent
580 % #2 structure number of child. %
581 % This assumes that the fields rolemap/parentrole has already been filled.
582 {

This records if logging is on

583 \int_compare:nNnT {\l__tag_loglevel_int} > { 0 }
584 {
585 \prop_get:cnN{g__tag_struct_#1_prop}{tag}\l__tag_get_parent_tmpa_tl
586 \prop_get:cnN{g__tag_struct_#2_prop}{tag}\l__tag_get_parent_tmpb_tl
587 \msg_note:nnee
588 { tag }
589 { role-parent-child-check }
590 {
591 \quark_if_no_value:NTF \l__tag_get_parent_tmpa_tl
592 {??}
593 {
594 \exp_last_unbraced:No\use_ii:nn
595 { \l__tag_get_parent_tmpa_tl }
596 :
597 \exp_last_unbraced:No\use_i:nn
598 { \l__tag_get_parent_tmpa_tl }

134

599 }
600 }
601 {
602 \quark_if_no_value:NTF \l__tag_get_parent_tmpb_tl
603 {??}
604 {
605 \exp_last_unbraced:No\use_ii:nn
606 { \l__tag_get_parent_tmpb_tl }
607 :
608 \exp_last_unbraced:No\use_i:nn
609 { \l__tag_get_parent_tmpb_tl }
610 }
611 }
612 }
613 __tag_struct_check_parent_child_aux:nnnnN
614 {#1}
615 {rolemap}
616 {#2}
617 {rolemap}
618 \l__tag_parent_child_check_tl

if the return value is 7 we have to check against the parentrole field.

619 \int_compare:nNnT {\l__tag_parent_child_check_tl} = { \c__tag_role_rule_checkparent_tl }
620 {
621 __tag_struct_check_parent_child_aux:nnnnN
622 {#1}
623 {parentrole}
624 {#2}
625 {rolemap}
626 \l__tag_parent_child_check_tl
627 }
628 __tag_check_struct_forbidden_parent_child:onn
629 {\l__tag_parent_child_check_tl}
630 {#1}
631 {#2}
632 }
633 \cs_generate_variant:Nn __tag_struct_check_parent_child:nn {oo}

(End of definition for __tag_struct_check_parent_child:nn.)

__tag_struct_use_check_parent_child:nn A similar command is needed if a structure is stashed and used. The child can be - a
normal tag (e.g. H1) then rolemap = parentrole = H1pdf2 and we should test rolemap
(parent) and rolemap (child) if = 7 parentrole (parent) and rolemap (child) That is the
normal check above.
- Part/Div/Nonstruct then rolemap = Partpdf2 and parentrole = STASHEDlatex or
target parentNS
If parentrole =STASHED we can’t test if the child fits here. If parentrole is not
STASHED, then would should test if target parent= rolemap (parent) or parentrole (par­
ent) and if yet then test rolemap (child) against rolemap (parent) and if =7 rolemap(child)
against parentrole(parent). that is again the normal check.

634 \cs_new_protected:Npn __tag_struct_use_check_parent_child:nn #1 #2

135

635 % #1 structure number of parent
636 % #2 structure number of child. %
637 {
638 __tag_struct_get_role:enNN
639 {#2}
640 {rolemap}
641 \l__tag_get_child_tmpa_tl
642 \l__tag_get_child_tmpb_tl
643 \str_case:onTF { \l__tag_get_child_tmpa_tl }
644 {
645 {Part} {}
646 {Div} {}
647 {NonStruct} {}
648 }
649 { %child=Part etc
650 __tag_struct_get_role:enNN
651 {#2}
652 {parentrole}
653 \l__tag_get_child_tmpa_tl
654 \l__tag_get_child_tmpb_tl
655 \str_if_eq:noTF
656 {STASHED}{\l__tag_get_child_tmpa_tl}
657 {
658 % warn about unknown relationship
659 }
660 {
661 % test if
662 __tag_struct_get_role:enNN
663 {#1}
664 {parentrole}
665 \l__tag_get_parent_tmpa_tl
666 \l__tag_get_parent_tmpb_tl
667 \tl_if_eq:NNTF\l__tag_get_parent_tmpa_tl \l__tag_get_child_tmpa_tl
668 {
669 __tag_struct_check_parent_child:nn {#1}{#2}
670 }
671 {
672 %warn that parent-tag was misused.
673 }
674 }
675 }
676 {
677 %child not Part etc, normal parent child test.
678 __tag_struct_check_parent_child:nn {#1}{#2}
679 }
680 }
681 \cs_generate_variant:Nn { __tag_struct_use_check_parent_child:nn }{oo}

(End of definition for __tag_struct_use_check_parent_child:nn.)

136

5 Keys
This are the keys for the user commands. we store the tag in a variable. But we should
be careful, it is only reliable at the begin.

This socket is used by the tag key. It allows to switch between the latex-tabs and
the standard tags.

682 \socket_new:nn { tag/struct/tag }{1}
683 \socket_new_plug:nnn { tag/struct/tag }{ latex-tags }
684 {
685 \prop_get:NeNTF \g__tag_role_tags_NS_prop {#1} \l__tag_tmp_unused_tl
686 {
687 \seq_set_split:Nne \l__tag_tmpa_seq { / }
688 {#1/\l__tag_tmp_unused_tl}
689 }
690 {
691 \seq_set_split:Nne \l__tag_tmpa_seq { / }
692 {#1/}
693 }
694 \tl_gset:Ne \g__tag_struct_tag_tl { \seq_item:Nn\l__tag_tmpa_seq {1} }
695 \tl_gset:Ne \g__tag_struct_tag_NS_tl{ \seq_item:Nn\l__tag_tmpa_seq {2} }
696 __tag_check_structure_tag:N \g__tag_struct_tag_tl
697 }
698

699 \socket_new_plug:nnn { tag/struct/tag }{ pdf-tags }
700 {
701 \prop_get:NeNTF \g__tag_role_tags_NS_prop {#1} \l__tag_tmp_unused_tl
702 {
703 \seq_set_split:Nne \l__tag_tmpa_seq { / }
704 {#1/\l__tag_tmp_unused_tl}
705 }
706 {
707 \seq_set_split:Nne \l__tag_tmpa_seq { / }
708 {#1/}
709 }
710 \tl_gset:Ne \g__tag_struct_tag_tl { \seq_item:Nn\l__tag_tmpa_seq {1} }
711 \tl_gset:Ne \g__tag_struct_tag_NS_tl{ \seq_item:Nn\l__tag_tmpa_seq {2} }
712 __tag_role_get:ooNN
713 { \g__tag_struct_tag_tl }
714 { \g__tag_struct_tag_NS_tl}
715 \l__tag_tmpa_tl
716 \l__tag_tmpb_tl
717 \tl_gset:Ne \g__tag_struct_tag_tl {\l__tag_tmpa_tl}
718 \tl_gset:Ne \g__tag_struct_tag_NS_tl{\l__tag_tmpb_tl}
719 __tag_check_structure_tag:N \g__tag_struct_tag_tl
720 }
721 \socket_assign_plug:nn { tag/struct/tag } {latex-tags}

label (struct key)
stash (struct key)
parent (struct key)

firstkid (struct key)
tag (struct key)

title (struct key)
title-o (struct key)

alt (struct key)
actualtext (struct key)

lang (struct key)
ref (struct key)
E (struct key)

phoneme (struct key)

722 \keys_define:nn { __tag / struct }
723 {
724 label .code:n =
725 {

137

726 \prop_gput:Nee\g__tag_struct_label_num_prop
727 {#1}{\int_use:N \c@g__tag_struct_abs_int}
728 __tag_property_record:eo
729 {tagpdfstruct-#1}
730 { \c__tag_property_struct_clist }
731 },
732 stash .bool_set:N = \l__tag_struct_elem_stash_bool,
733 parent .code:n =
734 {
735 \bool_lazy_and:nnTF
736 {
737 \prop_if_exist_p:c { g__tag_struct_\int_eval:n {#1}_prop }
738 }
739 {
740 \int_compare_p:nNn {#1}<{\c@g__tag_struct_abs_int}
741 }
742 { \tl_set:Ne \l__tag_struct_stack_parent_tmpa_tl { \int_eval:n {#1} } }
743 {
744 \msg_warning:nnee { tag } { struct-unknown }
745 { \int_eval:n {#1} }
746 { parent~key~ignored }
747 }
748 },
749 parent .default:n = {-1},
750 parent-tag .code:n =
751 {
752 \prop_get:NeNTF \g__tag_role_tags_NS_prop {#1} \l__tag_tmp_unused_tl
753 {
754 \seq_set_split:Nne \l__tag_tmpa_seq { / }
755 {#1/\l__tag_tmp_unused_tl}
756 }
757 {
758 \seq_set_split:Nne \l__tag_tmpa_seq { / }
759 {#1/}
760 }
761 \tl_set:Ne \l__tag_struct_parenttag_tl { \seq_item:Nn\l__tag_tmpa_seq {1} }
762 \tl_set:Ne \l__tag_struct_parenttag_NS_tl{ \seq_item:Nn\l__tag_tmpa_seq {2} }
763 __tag_role_get:ooNN
764 { \l__tag_struct_parenttag_tl }
765 { \l__tag_struct_parenttag_NS_tl}
766 \l__tag_tmpa_tl
767 \l__tag_tmpb_tl
768 \tl_set:No \l__tag_struct_parenttag_tl {\l__tag_tmpa_tl}
769 \tl_set:No \l__tag_struct_parenttag_NS_tl{\l__tag_tmpb_tl}
770 __tag_check_structure_tag:N \l__tag_struct_parenttag_tl
771 },
772 firstkid .code:n = { \tl_set:Nn \l__tag_struct_addkid_tl {left} },
773 tag .code:n = % S property
774 {
775 \socket_use:nn { tag/struct/tag }{#1}
776 },
777 title .code:n = % T property
778 {
779 \str_set_convert:Nnnn

138

780 \l__tag_tmpa_str
781 { #1 }
782 { default }
783 { utf16/hex }
784 __tag_struct_prop_gput:nne
785 { \int_use:N \c@g__tag_struct_abs_int }
786 { T }
787 { <\l__tag_tmpa_str> }
788 },
789 title-o .code:n = % T property
790 {
791 \str_set_convert:Nonn
792 \l__tag_tmpa_str
793 { #1 }
794 { default }
795 { utf16/hex }
796 __tag_struct_prop_gput:nne
797 { \int_use:N \c@g__tag_struct_abs_int }
798 { T }
799 { <\l__tag_tmpa_str> }
800 },
801 alt .code:n = % Alt property
802 {
803 \tl_if_empty:oF{#1}
804 {
805 \str_set_convert:Noon
806 \l__tag_tmpa_str
807 { #1 }
808 { default }
809 { utf16/hex }
810 __tag_struct_prop_gput:nne
811 { \int_use:N \c@g__tag_struct_abs_int }
812 { Alt }
813 { <\l__tag_tmpa_str> }
814 }
815 },
816 alttext .meta:n = {alt=#1},
817 actualtext .code:n = % ActualText property
818 {
819 \tl_if_empty:oF{#1}
820 {
821 \str_set_convert:Noon
822 \l__tag_tmpa_str
823 { #1 }
824 { default }
825 { utf16/hex }
826 __tag_struct_prop_gput:nne
827 { \int_use:N \c@g__tag_struct_abs_int }
828 { ActualText }
829 { <\l__tag_tmpa_str>}
830 }
831 },
832 phoneme .code:n = % Phoneme property
833 {

139

834 \tl_if_empty:oF{#1}
835 {
836 \str_set_convert:Noon
837 \l__tag_tmpa_str
838 { #1 }
839 { default }
840 { utf16/hex }
841 __tag_struct_prop_gput:nne
842 { \int_use:N \c@g__tag_struct_abs_int }
843 { Phoneme }
844 { <\l__tag_tmpa_str>}
845 }
846 },
847 lang .code:n = % Lang property
848 {
849 __tag_struct_prop_gput:nne
850 { \int_use:N \c@g__tag_struct_abs_int }
851 { Lang }
852 { (#1) }
853 },
854 }

Ref is rather special as it values are often known only at the end of the document. It
therefore stores it values as clist of commands which are executed at the end of the
document, when the structure elements are written.

__tag_struct_Ref_obj:nN
__tag_struct_Ref_label:nN
__tag_struct_Ref_dest:nN
__tag_struct_Ref_num:nN

this commands are helper commands that are stored as clist in the Ref key of a structure.
They are executed when the structure elements are written in __tag_struct_write_­
obj. They are used in __tag_struct_format_Ref. They allow to add a Ref by object
reference, label, destname and structure number

855 \cs_new_protected:Npn __tag_struct_Ref_obj:nN #1 #2 %#1 a object reference
856 {
857 \tl_put_right:Ne#2
858 {
859 \c_space_tl#1
860 }
861 }
862

863 \cs_new_protected:Npn __tag_struct_Ref_label:nN #1 #2 %#1 a label
864 {
865 \prop_get:NnNTF \g__tag_struct_label_num_prop {#1} \l__tag_tmpb_tl
866 {
867 \tl_put_right:Ne#2
868 {
869 \c_space_tl\tag_struct_object_ref:e{ \l__tag_tmpb_tl }
870 }
871 }
872 {
873 \msg_warning:nnn {tag}{struct-Ref-unknown}{Label~'#1'}
874 }
875 }
876 \cs_new_protected:Npn __tag_struct_Ref_dest:nN #1 #2 %#1 a dest name
877 {

140

878 \prop_get:NnNTF \g__tag_struct_dest_num_prop {#1} \l__tag_tmpb_tl
879 {
880 \tl_put_right:Ne#2
881 {
882 \c_space_tl\tag_struct_object_ref:e{ \l__tag_tmpb_tl }
883 }
884 }
885 {
886 \msg_warning:nnn {tag}{struct-Ref-unknown}{Destination~'#1'}
887 }
888 }
889 \cs_new_protected:Npn __tag_struct_Ref_num:nN #1 #2 %#1 a structure number
890 {
891 \tl_put_right:Ne#2
892 {
893 \c_space_tl\tag_struct_object_ref:e{ #1 }
894 }
895 }
896

(End of definition for __tag_struct_Ref_obj:nN and others.)

ref (struct key)
E (struct key)

897 \keys_define:nn { __tag / struct }
898 {
899 ref .code:n = % ref property
900 {
901 \clist_map_inline:on {#1}
902 {
903 \tag_struct_gput:nne
904 {\int_use:N \c@g__tag_struct_abs_int}{ref_label}{ ##1 }
905 }
906 },
907 E .code:n = % E property
908 {
909 \str_set_convert:Nnon
910 \l__tag_tmpa_str
911 { #1 }
912 { default }
913 { utf16/hex }
914 __tag_struct_prop_gput:nne
915 { \int_use:N \c@g__tag_struct_abs_int }
916 { E }
917 { <\l__tag_tmpa_str> }
918 },
919 }

AF (struct key)
AFref (struct key)

AFinline (struct key)
AFinline-o (struct key)
texsource (struct key)

mathml (struct key)

keys for the AF keys (associated files). They use commands from l3pdffile! The stream
variants use txt as extension to get the mimetype. TODO: check if this should be
configurable. For math we will perhaps need another extension. AF/AFref is an array
and can be used more than once, so we store it in a tl. which is expanded. AFinline
currently uses the fix extension txt. texsource is a special variant which creates a tex-file,
it expects a tl-var as value (e.g. from math grabbing)

141

\g__tag_struct_AFobj_int This variable is used to number the AF-object names

920 \int_new:N\g__tag_struct_AFobj_int

921 \cs_generate_variant:Nn \pdffile_embed_stream:nnN {neN}
922 \cs_new_protected:Npn __tag_struct_add_inline_AF:nn #1 #2
923 % #1 content, #2 extension
924 {
925 \tl_if_empty:nF{#1}
926 {
927 \group_begin:
928 \int_gincr:N \g__tag_struct_AFobj_int
929 \pdffile_embed_stream:neN
930 {#1}
931 {tag-AFfile\int_use:N\g__tag_struct_AFobj_int.#2}
932 \l__tag_tmpa_tl
933 __tag_struct_add_AF:ee
934 { \int_use:N \c@g__tag_struct_abs_int }
935 { \l__tag_tmpa_tl }
936 __tag_struct_prop_gput:nne
937 { \int_use:N \c@g__tag_struct_abs_int }
938 { AF }
939 {
940 [
941 \tl_use:c
942 { g__tag_struct_\int_eval:n {\c@g__tag_struct_abs_int}_AF_tl }
943]
944 }
945 \group_end:
946 }
947 }
948

949 \cs_generate_variant:Nn __tag_struct_add_inline_AF:nn {on}

950 \cs_new_protected:Npn __tag_struct_add_AF:nn #1 #2
951 % #1 struct num #2 object reference
952 {
953 \tl_if_exist:cTF
954 {
955 g__tag_struct_#1_AF_tl
956 }
957 {
958 \tl_gput_right:ce
959 { g__tag_struct_#1_AF_tl }
960 { \c_space_tl #2 }
961 }
962 {
963 \tl_new:c
964 { g__tag_struct_#1_AF_tl }
965 \tl_gset:ce
966 { g__tag_struct_#1_AF_tl }
967 { #2 }
968 }
969 }

142

970 \cs_generate_variant:Nn __tag_struct_add_AF:nn {en,ee}
971 \keys_define:nn { __tag / struct }
972 {
973 AF .code:n = % AF property
974 {
975 \pdf_object_if_exist:eTF {#1}
976 {
977 __tag_struct_add_AF:ee
978 { \int_use:N \c@g__tag_struct_abs_int }{\pdf_object_ref:e {#1}}
979 __tag_struct_prop_gput:nne
980 { \int_use:N \c@g__tag_struct_abs_int }
981 { AF }
982 {
983 [
984 \tl_use:c
985 { g__tag_struct_\int_eval:n {\c@g__tag_struct_abs_int}_AF_tl }
986]
987 }
988 }
989 {
990 % message?
991 }
992 },
993 AFref .code:n = % AF property
994 {
995 \tl_if_empty:eF {#1}
996 {
997 __tag_struct_add_AF:ee { \int_use:N \c@g__tag_struct_abs_int }{#1}
998 __tag_struct_prop_gput:nne
999 { \int_use:N \c@g__tag_struct_abs_int }

1000 { AF }
1001 {
1002 [
1003 \tl_use:c
1004 { g__tag_struct_\int_eval:n {\c@g__tag_struct_abs_int}_AF_tl }
1005]
1006 }
1007 }
1008 },
1009 ,AFinline .code:n =
1010 {
1011 __tag_struct_add_inline_AF:nn {#1}{txt}
1012 }
1013 ,AFinline-o .code:n =
1014 {
1015 __tag_struct_add_inline_AF:on {#1}{txt}
1016 }
1017 ,texsource .code:n =
1018 {
1019 \group_begin:
1020 \pdfdict_put:nnn { l_pdffile/Filespec } {Desc}{(TeX~source)}
1021 \pdfdict_put:nnn { l_pdffile/Filespec }{AFRelationship} { /Source }
1022 __tag_struct_add_inline_AF:on {#1}{tex}
1023 \group_end:

143

1024 }
1025 ,mathml .code:n =
1026 {
1027 \group_begin:
1028 \pdfdict_put:nnn { l_pdffile/Filespec } {Desc}{(mathml~representation)}
1029 \pdfdict_put:nnn { l_pdffile/Filespec }{AFRelationship} { /Supplement }
1030 \pdfdict_put:nne { l_pdffile }{Subtype}
1031 { \pdf_name_from_unicode_e:n{application/mathml+xml} }
1032 __tag_struct_add_inline_AF:on {#1}{xml}
1033 \group_end:
1034 }
1035 }

root-AF (setup key) The root structure can take AF keys too, so we provide a key for it. This key is used
with \tagpdfsetup, not in a structure!

1036 \keys_define:nn { __tag / setup }
1037 {
1038 root-AF .code:n =
1039 {
1040 \pdf_object_if_exist:nTF {#1}
1041 {
1042 __tag_struct_add_AF:ee { 1 }{\pdf_object_ref:n {#1}}
1043 __tag_struct_prop_gput:nne
1044 { 1 }
1045 { AF }
1046 {
1047 [
1048 \tl_use:c
1049 { g__tag_struct_1_AF_tl }
1050]
1051 }
1052 }
1053 {
1054

1055 }
1056 },
1057 }

root-supplemental-file (setup key) This key allows to add a file as root-AF with relationship Supplement. This is typically
need to add a css or an html

1058 \keys_define:nn { __tag / setup }
1059 {
1060 root-supplemental-file .code:n =
1061 {
1062 \group_begin:
1063 \pdfdict_put:nnn {l_pdffile/Filespec} {AFRelationship}{/Supplement}
1064 \int_gincr:N \g__tag_unique_cnt_int
1065 \pdffile_embed_file:eee
1066 {#1}
1067 {#1}
1068 {__tag_latex_css_\int_use:N\g__tag_unique_cnt_int}
1069 \keys_set:nn

144

1070 {__tag / setup}
1071 {root-AF={__tag_latex_css_\int_use:N\g__tag_unique_cnt_int}}
1072 \group_end:
1073 }
1074 }

catalog-supplemental-file (setup key) This key allows to add a file as AF with relationship Supplement to the Catalog. This
is typically need to add a css or an html.

1075 \keys_define:nn { __tag / setup }
1076 {
1077 catalog-supplemental-file .code:n =
1078 {
1079 \group_begin:
1080 \pdfdict_put:nnn {l_pdffile/Filespec} {AFRelationship}{/Supplement}
1081 \int_gincr:N \g__tag_unique_cnt_int
1082 \pdffile_embed_file:eee
1083 {#1}
1084 {#1}
1085 {__tag_latex_css_\int_use:N\g__tag_unique_cnt_int}
1086 \pdfmanagement_add:nne
1087 {Catalog}
1088 {AF}
1089 {\pdf_object_ref:e{__tag_latex_css_\int_use:N\g__tag_unique_cnt_int }}
1090 \group_end:
1091 }
1092 }

6 User commands
We allow to set a language by default

\l__tag_struct_lang_tl

1093 \tl_new:N \l__tag_struct_lang_tl
1094 ⟨/package⟩

(End of definition for \g__tag_struct_AFobj_int and \l__tag_struct_lang_tl.)

\tag_struct_begin:n
\tag_struct_end:

1095 ⟨base⟩\cs_new_protected:Npn \tag_struct_begin:n #1 {\int_gincr:N \c@g__tag_struct_abs_int}
1096 ⟨base⟩\cs_new_protected:Npn \tag_struct_end:{}
1097 ⟨base⟩\cs_new_protected:Npn \tag_struct_end:n{}
1098 ⟨∗package | debug⟩
1099 ⟨package⟩\cs_set_protected:Npn \tag_struct_begin:n #1 %#1 key-val
1100 ⟨debug⟩\cs_set_protected:Npn \tag_struct_begin:n #1 %#1 key-val
1101 {
1102 ⟨package⟩__tag_check_if_active_struct:T
1103 ⟨debug⟩__tag_check_if_active_struct:TF
1104 {
1105 \group_begin:
1106 \int_gincr:N \c@g__tag_struct_abs_int

145

1107 __tag_prop_new:c { g__tag_struct_\int_eval:n { \c@g__tag_struct_abs_int }_prop }
1108 ⟨debug⟩ \prop_new:c { g__tag_struct_debug_\int_eval:n {\c@g__tag_struct_abs_int}_prop }
1109 __tag_seq_new:c { g__tag_struct_kids_\int_eval:n { \c@g__tag_struct_abs_int }_seq}
1110 ⟨debug⟩ \seq_new:c { g__tag_struct_debug_kids_\int_eval:n {\c@g__tag_struct_abs_int}_seq }
1111 \pdf_object_new_indexed:nn { __tag/struct }
1112 { \c@g__tag_struct_abs_int }
1113 __tag_struct_prop_gput:nnn
1114 { \int_use:N \c@g__tag_struct_abs_int }
1115 { Type }
1116 { /StructElem }
1117 \tl_if_empty:NF \l__tag_struct_lang_tl
1118 {
1119 __tag_struct_prop_gput:nne
1120 { \int_use:N \c@g__tag_struct_abs_int }
1121 { Lang }
1122 { (\l__tag_struct_lang_tl) }
1123 }
1124 __tag_struct_prop_gput:nnn
1125 { \int_use:N \c@g__tag_struct_abs_int }
1126 { Type }
1127 { /StructElem }
1128

1129 \tl_set:Nn \l__tag_struct_stack_parent_tmpa_tl {-1}
1130 \keys_set:nn { __tag / struct} { #1 }

1131 __tag_struct_set_tag_info:eoo
1132 { \int_use:N \c@g__tag_struct_abs_int }
1133 { \g__tag_struct_tag_tl }
1134 { \g__tag_struct_tag_NS_tl }
1135 __tag_check_structure_has_tag:n { \int_use:N \c@g__tag_struct_abs_int }

The structure number of the parent is either taken from the stack or has been set with
the parent key.

1136 \int_compare:nNnT { \l__tag_struct_stack_parent_tmpa_tl } = { -1 }
1137 {
1138 \seq_get:NNF
1139 \g__tag_struct_stack_seq
1140 \l__tag_struct_stack_parent_tmpa_tl
1141 {
1142 \msg_error:nn { tag } { struct-faulty-nesting }
1143 }
1144 }
1145 \seq_gpush:NV \g__tag_struct_stack_seq \c@g__tag_struct_abs_int
1146 __tag_role_get:ooNN
1147 { \g__tag_struct_tag_tl }
1148 { \g__tag_struct_tag_NS_tl }
1149 \l__tag_struct_roletag_tl
1150 \l__tag_struct_roletag_NS_tl

We push the role tag on the stack:

1151 \seq_gpush:Ne \g__tag_struct_tag_stack_seq

146

1152 {{\g__tag_struct_tag_tl}{\l__tag_struct_roletag_tl}}
1153 \tl_gset:NV \g__tag_struct_stack_current_tl \c@g__tag_struct_abs_int
1154 __tag_struct_set_attribute:
1155 %\seq_show:N \g__tag_struct_stack_seq

the rolemapped role and its NS are stored in the rolemap key.

1156 __tag_struct_prop_gput:nne
1157 { \int_use:N \c@g__tag_struct_abs_int }
1158 { rolemap }
1159 {
1160 {\l__tag_struct_roletag_tl}{\l__tag_struct_roletag_NS_tl}
1161 }

If the role is one of Part, Div, NonStruct we have to (sometimes) retrieve the “real” parent
for the parent/child test. The role of this real parent is stored in the key parentrole. If
the current structure is stashed we use UNKNOWN as real parent if the current structure
is rolemapped to Part, Div or NonStruct so that the children can detect that no reliable
check is possible. For structures that are not rolemapped to Part, Div, NonStruct,
parentrole and rolemap are always equal.

1162 \str_case:onTF { \l__tag_struct_roletag_tl }
1163 {
1164 {Part} {}
1165 {Div} {}
1166 {NonStruct} {}
1167 }
1168 {
1169 \bool_if:NTF \l__tag_struct_elem_stash_bool
1170 {
1171 __tag_struct_prop_gput:nne
1172 { \int_use:N \c@g__tag_struct_abs_int }
1173 { parentrole }
1174 {
1175 {\l__tag_struct_parenttag_tl}{\l__tag_struct_parenttag_NS_tl}
1176 }
1177 }
1178 {
1179 \prop_get:cnNT
1180 { g__tag_struct_ \l__tag_struct_stack_parent_tmpa_tl _prop }
1181 { parentrole }
1182 \l__tag_get_tmpc_tl
1183 {
1184 __tag_struct_prop_gput:nno
1185 { \int_use:N \c@g__tag_struct_abs_int }
1186 { parentrole }
1187 {
1188 \l__tag_get_tmpc_tl
1189 }
1190 }
1191 }
1192 }
1193 {
1194 __tag_struct_prop_gput:nne

147

1195 { \int_use:N \c@g__tag_struct_abs_int }
1196 { parentrole }
1197 {
1198 {\l__tag_struct_roletag_tl}{\l__tag_struct_roletag_NS_tl}
1199 }
1200 }

1201 \bool_if:NF
1202 \l__tag_struct_elem_stash_bool
1203 {

check if the tag can be used inside the parent. It only makes sense, if the structure is
actually used here, so it is guarded by the stash boolean.

1204 \socket_use:nn{tag/check/parent-child}
1205 {
1206 __tag_struct_check_parent_child:oo
1207 { \l__tag_struct_stack_parent_tmpa_tl }
1208 { \int_use:N \c@g__tag_struct_abs_int }
1209 }

Set the Parent structure number.

1210 __tag_struct_prop_gput:nne
1211 { \int_use:N \c@g__tag_struct_abs_int }
1212 { parentnum }
1213 {
1214 \l__tag_struct_stack_parent_tmpa_tl
1215 }

1216 %record this structure as kid:
1217 %\tl_show:N \g__tag_struct_stack_current_tl
1218 %\tl_show:N \l__tag_struct_stack_parent_tmpa_tl
1219 \use:c { __tag_struct_kid_struct_gput_ \l__tag_struct_addkid_tl :ee }
1220 { \l__tag_struct_stack_parent_tmpa_tl }
1221 { \g__tag_struct_stack_current_tl }
1222 %\prop_show:c { g__tag_struct_\g__tag_struct_stack_current_tl _prop }
1223 %\seq_show:c {g__tag_struct_kids_\l__tag_struct_stack_parent_tmpa_tl _seq}
1224 }

the debug mode stores in second prop and replaces value with more suitable ones. (If the
structure is updated later this gets perhaps lost, but well ...) This must be done outside
of the stash boolean.

1225 ⟨debug⟩ \prop_gset_eq:cc
1226 ⟨debug⟩ { g__tag_struct_debug_\int_eval:n {\c@g__tag_struct_abs_int}_prop }
1227 ⟨debug⟩ { g__tag_struct_\int_eval:n {\c@g__tag_struct_abs_int}_prop }
1228 ⟨debug⟩ \prop_gput:cne
1229 ⟨debug⟩ { g__tag_struct_debug_\int_eval:n {\c@g__tag_struct_abs_int}_prop }
1230 ⟨debug⟩ { parentnum }
1231 ⟨debug⟩ {
1232 ⟨debug⟩ \bool_if:NTF \l__tag_struct_elem_stash_bool
1233 ⟨debug⟩ {no~parent:~stashed}

148

1234 ⟨debug⟩ {
1235 ⟨debug⟩ \l__tag_struct_stack_parent_tmpa_tl\c_space_tl =~
1236 ⟨debug⟩ \prop_item:cn{ g__tag_struct_\l__tag_struct_stack_parent_tmpa_tl _prop }{S}
1237 ⟨debug⟩ }
1238 ⟨debug⟩ }
1239 ⟨debug⟩ \prop_gput:cne
1240 ⟨debug⟩ { g__tag_struct_debug_\int_eval:n {\c@g__tag_struct_abs_int}_prop }
1241 ⟨debug⟩ { NS }
1242 ⟨debug⟩ { \g__tag_struct_tag_NS_tl }

1243 %\prop_show:c { g__tag_struct_\g__tag_struct_stack_current_tl _prop }
1244 %\seq_show:c {g__tag_struct_kids_\l__tag_struct_stack_parent_tmpa_tl _seq}
1245 ⟨debug⟩ __tag_debug_struct_begin_insert:n { #1 }
1246 \group_end:
1247 }
1248 ⟨debug⟩{ __tag_debug_struct_begin_ignore:n { #1 }}
1249 }
1250 ⟨package⟩\cs_set_protected:Nn \tag_struct_end:
1251 ⟨debug⟩\cs_set_protected:Nn \tag_struct_end:
1252 { %take the current structure num from the stack:
1253 %the objects are written later, lua mode hasn't all needed info yet
1254 %\seq_show:N \g__tag_struct_stack_seq
1255 ⟨package⟩__tag_check_if_active_struct:T
1256 ⟨debug⟩__tag_check_if_active_struct:TF
1257 {
1258 \seq_gpop:NN \g__tag_struct_tag_stack_seq \l__tag_tmpa_tl
1259 \seq_gpop:NNTF \g__tag_struct_stack_seq \l__tag_tmpa_tl
1260 {
1261 __tag_check_info_closing_struct:o { \g__tag_struct_stack_current_tl }
1262 }
1263 { __tag_check_no_open_struct: }
1264 % get the previous one, shouldn't be empty as the root should be there
1265 \seq_get:NNTF \g__tag_struct_stack_seq \l__tag_tmpa_tl
1266 {
1267 \tl_gset:No \g__tag_struct_stack_current_tl { \l__tag_tmpa_tl }
1268 __tag_struct_set_attribute:
1269 }
1270 {
1271 __tag_check_no_open_struct:
1272 }
1273 \seq_get:NNT \g__tag_struct_tag_stack_seq \l__tag_tmpa_tl
1274 {
1275 \tl_gset:Ne \g__tag_struct_tag_tl
1276 { \exp_last_unbraced:No\use_i:nn { \l__tag_tmpa_tl } }
1277 \prop_get:NoNT\g__tag_role_tags_NS_prop { \g__tag_struct_tag_tl} \l__tag_tmpa_tl
1278 {
1279 \tl_gset:Ne \g__tag_struct_tag_NS_tl { \l__tag_tmpa_tl }
1280 }
1281 }
1282 ⟨debug⟩__tag_debug_struct_end_insert:
1283 }
1284 ⟨debug⟩{__tag_debug_struct_end_ignore:}
1285 }
1286

149

1287 \cs_set_protected:Npn \tag_struct_end:n #1
1288 {
1289 ⟨debug⟩ __tag_check_if_active_struct:T{__tag_debug_struct_end_check:n{#1}}
1290 \tag_struct_end:
1291 }
1292 ⟨/package | debug⟩

(End of definition for \tag_struct_begin:n and \tag_struct_end:. These functions are documented
on page 114.)

\tag_struct_use:n This command allows to use a stashed structure in another place. TODO: decide how it
should be guarded. Probably by the struct-check.

1293 ⟨base⟩\cs_new_protected:Npn \tag_struct_use:n #1 {}
1294 ⟨∗package | debug⟩
1295 \cs_set_protected:Npn \tag_struct_use:n #1 %#1 is the label
1296 {
1297 __tag_check_if_active_struct:T
1298 {
1299 \prop_if_exist:cTF
1300 { g__tag_struct_\property_ref:enn{tagpdfstruct-#1}{tagstruct}{unknown}_prop } %
1301 {
1302 __tag_check_struct_used:n {#1}
1303 \tl_set:Ne \l__tag_get_child_tmpa_tl
1304 { \property_ref:enn{tagpdfstruct-#1}{tagstruct}{1} }

add the label structure as kid to the current structure (can be the root)

1305 __tag_struct_kid_struct_gput_right:ee
1306 { \g__tag_struct_stack_current_tl }
1307 { \l__tag_get_child_tmpa_tl }

add the current structure to the labeled one as parents

1308 __tag_prop_gput:cne
1309 { g__tag_struct_ \l__tag_get_child_tmpa_tl _prop }
1310 { parentnum }
1311 {
1312 \g__tag_struct_stack_current_tl
1313 }

debug code

1314 ⟨debug⟩ \prop_gput:cne
1315 ⟨debug⟩ { g__tag_struct_debug_ \l__tag_get_child_tmpa_tl _prop }
1316 ⟨debug⟩ { parentnum }
1317 ⟨debug⟩ {
1318 ⟨debug⟩ \g__tag_struct_stack_current_tl\c_space_tl=~
1319 ⟨debug⟩ \g__tag_struct_tag_tl
1320 ⟨debug⟩ }

check if the tag is allowed as child. If the tag of the child after rolemapping is not one
of Part, Div, NonStruct, then the parentrole field will be identically to the rolemap field
and can be used for a check. Otherwise the parentrole will contain latex:STASHED (if
not changed with the parent-tag key when the structure was stashed) and will produce
a warning.

150

1321 \socket_use:nn{tag/check/parent-child}
1322 {
1323 __tag_struct_use_check_parent_child:oo
1324 { \g__tag_struct_stack_current_tl }
1325 { \l__tag_get_child_tmpa_tl }
1326 }
1327 }
1328 {
1329 \msg_warning:nnn{ tag }{struct-label-unknown}{#1}
1330 }
1331 }
1332 }
1333 ⟨/package | debug⟩

(End of definition for \tag_struct_use:n. This function is documented on page 114.)

\tag_struct_use_num:n This command allows to use a stashed structure in another place. differently to the
previous command it doesn’t use a label but directly a structure number to find the
parent. TODO: decide how it should be guarded. Probably by the struct-check.

1334 ⟨base⟩\cs_new_protected:Npn \tag_struct_use_num:n #1 {}
1335 ⟨∗package | debug⟩
1336 \cs_set_protected:Npn \tag_struct_use_num:n #1 %#1 is structure number
1337 {
1338 __tag_check_if_active_struct:T
1339 {
1340 \prop_if_exist:cTF
1341 { g__tag_struct_#1_prop } %
1342 {
1343 \prop_get:cnNT
1344 {g__tag_struct_#1_prop}
1345 {parentnum}
1346 \l__tag_tmpa_tl
1347 {
1348 \msg_warning:nnn { tag } {struct-used-twice} {#1}
1349 }

add the #1 structure as kid to the current structure (can be the root)

1350 __tag_struct_kid_struct_gput_right:ee
1351 { \g__tag_struct_stack_current_tl }
1352 { #1 }

add the current structure to #1 as parent

1353 __tag_struct_prop_gput:nne
1354 { #1 }
1355 { parentnum }
1356 {
1357 \g__tag_struct_stack_current_tl
1358 }
1359 ⟨debug⟩ \prop_gput:cne
1360 ⟨debug⟩ { g__tag_struct_debug_#1_prop }
1361 ⟨debug⟩ { parentnum }

151

1362 ⟨debug⟩ {
1363 ⟨debug⟩ \g__tag_struct_stack_current_tl\c_space_tl=~
1364 ⟨debug⟩ \g__tag_struct_tag_tl
1365 ⟨debug⟩ }

check if the tag is allowed as child.

1366 \socket_use:nn{tag/check/parent-child}
1367 {
1368 __tag_struct_use_check_parent_child:oo
1369 {\g__tag_struct_stack_current_tl}
1370 {#1}
1371 }
1372 }
1373 {
1374 \msg_warning:nnn{ tag }{struct-label-unknown}{#1}
1375 }
1376 }
1377 }
1378 ⟨/package | debug⟩

(End of definition for \tag_struct_use_num:n. This function is documented on page 114.)

\tag_struct_object_ref:n This is a command that allows to reference a structure. The argument is the number
which can be get for the current structure with \tag_get:n{struct_num} TODO check
if it should be in base too.

1379 ⟨∗package⟩
1380 \cs_new:Npn \tag_struct_object_ref:n #1
1381 {
1382 \pdf_object_ref_indexed:nn {__tag/struct}{ #1 }
1383 }
1384 \cs_generate_variant:Nn \tag_struct_object_ref:n {e}
1385 ⟨/package⟩

(End of definition for \tag_struct_object_ref:n. This function is documented on page 114.)

\tag_struct_gput:nnn This is a command that allows to update the data of a structure. This often can’t done
simply by replacing the value, as we have to preserve and extend existing content. We
use therefore dedicated functions adjusted to the key in question. The first argument is
the number of the structure, the second a keyword referring to a function, the third the
value. Currently the existing keywords are mostly related to the Ref key (an array). The
keyword ref takes as value an explicit object reference to a structure. The keyword ref_­
label expects as value a label name (from a label set in a \tagstructbegin command).
The keyword ref_dest expects a destination name set with \MakeLinkTarget. It then
will refer to the structure in which this \MakeLinkTarget was used. The keyword ref_­
num expects a structure number. At last there is the keyword attribute which allows
to add or extend the /A key of the structure. The value is the content of one attribute
dictionary, so for example /O /Layout /BBox [10 10 50 50]. The content is stored in
an object and the object reference is than added to the /A.

1386 ⟨base⟩\cs_new_protected:Npn \tag_struct_gput:nnn #1 #2 #3{}
1387 ⟨∗package⟩

152

1388 \cs_set_protected:Npn \tag_struct_gput:nnn #1 #2 #3
1389 {
1390 \cs_if_exist_use:cF {__tag_struct_gput_data_#2:nn}
1391 { %warning??
1392 \use_none:nn
1393 }
1394 {#1}{#3}
1395 }
1396 \cs_generate_variant:Nn \tag_struct_gput:nnn {ene,nne}
1397 ⟨/package⟩

(End of definition for \tag_struct_gput:nnn. This function is documented on page 114.)

__tag_struct_gput_data_ref_aux:nnn

1398 ⟨∗package⟩
1399 \cs_new_protected:Npn __tag_struct_gput_data_ref_aux:nnn #1 #2 #3
1400 % #1 receiving struct num, #2 key word #3 value
1401 {
1402 \prop_get:cnNTF
1403 { g__tag_struct_#1_prop }
1404 {Ref}
1405 \l__tag_get_tmpc_tl
1406 {
1407 \tl_put_right:No \l__tag_get_tmpc_tl
1408 {\cs:w __tag_struct_Ref_#2:nN \cs_end: {#3},}
1409 }
1410 {
1411 \tl_set:No \l__tag_get_tmpc_tl
1412 {\cs:w __tag_struct_Ref_#2:nN \cs_end: {#3},}
1413 }
1414 __tag_struct_prop_gput:nno
1415 { #1 }
1416 { Ref }
1417 { \l__tag_get_tmpc_tl }
1418 }
1419 \cs_new_protected:Npn __tag_struct_gput_data_ref:nn #1 #2
1420 {
1421 __tag_struct_gput_data_ref_aux:nnn {#1}{obj}{#2}
1422 }
1423 \cs_new_protected:Npn __tag_struct_gput_data_ref_label:nn #1 #2
1424 {
1425 __tag_struct_gput_data_ref_aux:nnn {#1}{label}{#2}
1426 }
1427 \cs_new_protected:Npn __tag_struct_gput_data_ref_dest:nn #1 #2
1428 {
1429 __tag_struct_gput_data_ref_aux:nnn {#1}{dest}{#2}
1430 }
1431 \cs_new_protected:Npn __tag_struct_gput_data_ref_num:nn #1 #2
1432 {
1433 __tag_struct_gput_data_ref_aux:nnn {#1}{num}{#2}
1434 }
1435

1436 \cs_generate_variant:Nn __tag_struct_gput_data_ref:nn {ee,no}

153

(End of definition for __tag_struct_gput_data_ref_aux:nnn.)

__tag_struct_gput_data_attribute:nn

1437 \cs_new_protected:Npn __tag_struct_gput_data_attribute:nn #1 #2
1438 {
1439 \pdf_object_unnamed_write:nn {dict} {#2}
1440 \prop_get:cnNTF { g__tag_struct_#1_prop }{A} \l__tag_tmpa_tl
1441 {
1442 \tl_remove_once:Nn\l__tag_tmpa_tl{[}
1443 \tl_remove_once:Nn\l__tag_tmpa_tl{]}
1444 __tag_prop_gput:cne { g__tag_struct_#1_prop }
1445 { A }
1446 {
1447 [\l__tag_tmpa_tl \c_space_tl \pdf_object_ref_last:]
1448 }
1449 }
1450 {
1451 __tag_prop_gput:cne { g__tag_struct_#1_prop }
1452 { A }
1453 { \pdf_object_ref_last: }
1454 }
1455 }

(End of definition for __tag_struct_gput_data_attribute:nn.)

\tag_struct_insert_annot:nn
\tag_struct_insert_annot:ee
\tag_struct_insert_annot:ee

\tag_struct_parent_int:

This are the user command to insert annotations. They must be used together to get the
numbers right. They use a counter to the StructParent and \tag_struct_insert_­
annot:nn increases the counter given back by \tag_struct_parent_int:.
It must be used together with \tag_struct_parent_int: to insert an annotation.
TODO: decide how it should be guarded if tagging is deactivated.

1456 \cs_new_protected:Npn \tag_struct_insert_annot:nn #1 #2 %#1 should be an object reference
1457 %#2 struct parent num
1458 {
1459 __tag_check_if_active_struct:T
1460 {
1461 __tag_struct_insert_annot:nn {#1}{#2}
1462 }
1463 }
1464

1465 \cs_generate_variant:Nn \tag_struct_insert_annot:nn {xx,ee}
1466 \cs_new:Npn \tag_struct_parent_int: {\int_use:c { c@g__tag_parenttree_obj_int }}
1467

1468 ⟨/package⟩
1469

(End of definition for \tag_struct_insert_annot:nn and \tag_struct_parent_int:. These functions
are documented on page 114.)

7 Attributes and attribute classes
1470 ⟨∗header⟩

154

1471 \ProvidesExplPackage {tagpdf-attr-code} {2026-01-12} {0.99x}
1472 {part of tagpdf - code related to attributes and attribute classes}
1473 ⟨/header⟩

7.1 Variables
\g__tag_attr_entries_prop

\g__tag_attr_class_used_prop
\g__tag_attr_objref_prop

\l__tag_attr_value_tl

\g_@@_attr_entries_prop will store attribute names and their dictionary content.
\g_@@_attr_class_used_prop will hold the attributes which have been used as class
name. \l_@@_attr_value_tl is used to build the attribute array or key. Every time an
attribute is used for the first time, and object is created with its content, the name-object
reference relation is stored in \g_@@_attr_objref_prop

1474 ⟨∗package⟩
1475 \prop_new:N \g__tag_attr_entries_prop
1476 \prop_new_linked:N \g__tag_attr_class_used_prop
1477 \tl_new:N \l__tag_attr_value_tl
1478 \prop_new:N \g__tag_attr_objref_prop %will contain obj num of used attributes

This seq is currently kept for compatibility with the table code.

1479 \seq_new:N\g__tag_attr_class_used_seq

(End of definition for \g__tag_attr_entries_prop and others.)

7.2 Commands and keys
__tag_attr_new_entry:nn

role/new-attribute (setup-key)
newattribute (deprecated)

This allows to define attributes. Defined attributes are stored in a global property.
role/new-attribute expects two brace group, the name and the content. The content
typically needs an /O key for the owner. An example look like this.
TODO: consider to put them directly in the ClassMap, that is perhaps more effective.

\tagpdfsetup
{
role/new-attribute =
{TH-col}{/O /Table /Scope /Column},

role/new-attribute =
{TH-row}{/O /Table /Scope /Row},

}

1480 \cs_new_protected:Npn __tag_attr_new_entry:nn #1 #2 %#1:name, #2: content
1481 {
1482 \prop_gput:Nen \g__tag_attr_entries_prop
1483 {\pdf_name_from_unicode_e:n{#1}}{#2}
1484 }
1485

1486 \cs_generate_variant:Nn __tag_attr_new_entry:nn {ee}
1487 \keys_define:nn { __tag / setup }
1488 {
1489 role/new-attribute .code:n =
1490 {
1491 __tag_attr_new_entry:nn #1
1492 }

155

deprecated name

1493 ,newattribute .code:n =
1494 {
1495 __tag_attr_new_entry:nn #1
1496 },
1497 }

(End of definition for __tag_attr_new_entry:nn , role/new-attribute (setup-key) , and newattribute
(deprecated). These functions are documented on page 117.)

attribute-class (struct key) attribute-class has to store the used attribute names so that they can be added to the
ClassMap later.

1498 \keys_define:nn { __tag / struct }
1499 {
1500 attribute-class .code:n =
1501 {
1502 \clist_set:Ne \l__tag_tmpa_clist { #1 }
1503 \seq_set_from_clist:NN \l__tag_tmpb_seq \l__tag_tmpa_clist

we convert the names into pdf names with slash

1504 \seq_set_map_e:NNn \l__tag_tmpa_seq \l__tag_tmpb_seq
1505 {
1506 \pdf_name_from_unicode_e:n {##1}
1507 }
1508 \seq_map_inline:Nn \l__tag_tmpa_seq
1509 {
1510 \prop_get:NnNF \g__tag_attr_entries_prop {##1}\l__tag_tmpa_tl
1511 {
1512 \msg_error:nnn { tag } { attr-unknown } { ##1 }
1513 }
1514 \prop_gput:Nnn\g__tag_attr_class_used_prop { ##1} {}
1515 }
1516 \tl_set:Ne \l__tag_tmpa_tl
1517 {
1518 \int_compare:nT { \seq_count:N \l__tag_tmpa_seq > 1 }{[}
1519 \seq_use:Nn \l__tag_tmpa_seq { \c_space_tl }
1520 \int_compare:nT { \seq_count:N \l__tag_tmpa_seq > 1 }{]}
1521 }
1522 \int_compare:nT { \seq_count:N \l__tag_tmpa_seq > 0 }
1523 {
1524 __tag_struct_prop_gput:nne
1525 { \int_use:N \c@g__tag_struct_abs_int }
1526 { C }
1527 { \l__tag_tmpa_tl }
1528 %\prop_show:c { g__tag_struct_\int_eval:n {\c@g__tag_struct_abs_int}_prop }
1529 }
1530 }
1531 }

attribute (struct key)

156

1532 \keys_define:nn { __tag / struct }
1533 {
1534 attribute .code:n = % A property (attribute, value currently a dictionary)
1535 {
1536 \clist_set:Ne \l__tag_tmpa_clist { #1 }
1537 \clist_if_empty:NF \l__tag_tmpa_clist
1538 {
1539 \seq_set_from_clist:NN \l__tag_tmpb_seq \l__tag_tmpa_clist

we convert the names into pdf names with slash

1540 \seq_set_map_e:NNn \l__tag_tmpa_seq \l__tag_tmpb_seq
1541 {
1542 \pdf_name_from_unicode_e:n {##1}
1543 }
1544 \tl_set:Ne \l__tag_attr_value_tl
1545 {
1546 \int_compare:nT { \seq_count:N \l__tag_tmpa_seq > 1 }{[}%]
1547 }
1548 \seq_map_inline:Nn \l__tag_tmpa_seq
1549 {
1550 \prop_get:NnNF \g__tag_attr_entries_prop {##1}\l__tag_tmp_unused_tl
1551 {
1552 \msg_error:nnn { tag } { attr-unknown } { ##1 }
1553 }
1554 \prop_get:NnNF \g__tag_attr_objref_prop {##1}\l__tag_tmpa_tl
1555 {%\prop_show:N \g__tag_attr_entries_prop
1556 \pdf_object_unnamed_write:ne
1557 { dict }
1558 {
1559 \prop_item:Nn\g__tag_attr_entries_prop {##1}
1560 }
1561 \prop_gput:Nne \g__tag_attr_objref_prop {##1} {\pdf_object_ref_last:}
1562 }
1563 \tl_put_right:Ne \l__tag_attr_value_tl
1564 {
1565 \c_space_tl
1566 \prop_item:Nn \g__tag_attr_objref_prop {##1}
1567 }
1568 % \tl_show:N \l__tag_attr_value_tl
1569 }
1570 \tl_put_right:Ne \l__tag_attr_value_tl
1571 { %[
1572 \int_compare:nT { \seq_count:N \l__tag_tmpa_seq > 1 }{]}%
1573 }
1574 % \tl_show:N \l__tag_attr_value_tl
1575 __tag_struct_prop_gput:nne
1576 { \int_use:N \c@g__tag_struct_abs_int }
1577 { A }
1578 { \l__tag_attr_value_tl }
1579 }
1580 },
1581 }
1582 ⟨/package⟩

157

The tagpdf-luatex.def
Driver for luatex
Part of the tagpdf package

Ulrike Fischer
Version 0.99x, released 2026-01-12

158

Part IX
1 ⟨@@=tag⟩
2 ⟨∗luatex⟩
3 \ProvidesExplFile {tagpdf-luatex.def} {2026-01-12} {0.99x}
4 {tagpdf~driver~for~luatex}

1 Loading the lua
The space code requires that the fall back font has been loaded and initialized, so we
force that first. But perhaps this could be done in the kernel.

5 {
6 \fontencoding{TU}\fontfamily{lmr}\fontseries{m}\fontshape{n}\fontsize{10pt}{10pt}\selectfont
7 }
8 \lua_now:e { tagpdf=require('tagpdf.lua') }

The following defines wrappers around prop and seq commands to store the data also
in lua tables. I probably want also lua tables I put them in the ltx.@@.tables namespaces
The tables will be named like the variables but without backslash To access such a table
with a dynamical name create a string and then use ltx.@@.tables[string] Old code, I’m
not quite sure if this was a good idea. Now I have mix of table in ltx.@@.tables and
ltx.@@.mc/struct. And a lot is probably not needed. TODO: this should be cleaned up,
but at least roles are currently using the table!

__tag_prop_new:N
__tag_seq_new:N

__tag_prop_gput:Nnn
__tag_seq_gput_right:Nn
__tag_seq_gput_left:Nn

__tag_seq_item:cn
__tag_prop_item:cn

__tag_seq_show:N
__tag_prop_show:N

9 \cs_set_protected:Npn __tag_prop_new:N #1
10 {
11 \prop_new:N #1
12 \lua_now:e { ltx.__tag.tables['\cs_to_str:N#1'] = {} }
13 }
14

15 \cs_set_protected:Npn __tag_prop_new_linked:N #1
16 {
17 \prop_new_linked:N #1
18 \lua_now:e { ltx.__tag.tables['\cs_to_str:N#1'] = {} }
19 }
20

21

22 \cs_set_protected:Npn __tag_seq_new:N #1
23 {
24 \seq_new:N #1
25 \lua_now:e { ltx.__tag.tables['\cs_to_str:N#1'] = {} }
26 }
27

28

29 \cs_set_protected:Npn __tag_prop_gput:Nnn #1 #2 #3
30 {
31 \prop_gput:Nnn #1 { #2 } { #3 }
32 \lua_now:e { ltx.__tag.tables['\cs_to_str:N#1'] ["#2"] = "\lua_escape:n{#3}" }
33 }
34

159

35 \cs_set_protected:Npn __tag_seq_gput_right:Nn #1 #2
36 {
37 \seq_gput_right:Nn #1 { #2 }
38 \lua_now:e { table.insert(ltx.__tag.tables['\cs_to_str:N#1'], "#2") }
39 }

this inserts on the right of the lua table, but as the lua table is not used for kids this is
ignored for now.

40 \cs_set_protected:Npn __tag_seq_gput_left:Nn #1 #2
41 {
42 \seq_gput_left:Nn #1 { #2 }
43 \lua_now:e { table.insert(ltx.__tag.tables['\cs_to_str:N#1'], "#2") }
44 }
45

46 %Hm not quite sure about the naming
47 \cs_set:Npn __tag_seq_item:cn #1 #2
48 {
49 \lua_now:e { tex.sprint(\int_use:N\c_document_cctab,ltx.__tag.tables['#1'][#2]) }
50 }
51

52 \cs_set:Npn __tag_prop_item:cn #1 #2
53 {
54 \lua_now:e { tex.sprint(\int_use:N\c_document_cctab,ltx.__tag.tables['#1']["#2"]) }
55 }
56

57 %for debugging commands that show both the seq/prop and the lua tables
58 \cs_set_protected:Npn __tag_seq_show:N #1
59 {
60 \seq_show:N #1
61 \lua_now:e { ltx.__tag.trace.log ("lua~sequence~array~\cs_to_str:N#1",1) }
62 \lua_now:e { ltx.__tag.trace.show_seq (ltx.__tag.tables['\cs_to_str:N#1']) }
63 }
64

65 \cs_set_protected:Npn __tag_prop_show:N #1
66 {
67 \prop_show:N #1
68 \lua_now:e {ltx.__tag.trace.log ("lua~property~table~\cs_to_str:N#1",1) }
69 \lua_now:e {ltx.__tag.trace.show_prop (ltx.__tag.tables['\cs_to_str:N#1']) }
70 }

(End of definition for __tag_prop_new:N and others.)

71 ⟨/luatex⟩

The module declaration

72 ⟨∗lua⟩
73 -- tagpdf.lua
74 -- Ulrike Fischer
75

76 local ProvidesLuaModule = {
77 name = "tagpdf",
78 version = "0.99x", --TAGVERSION
79 date = "2026-01-12", --TAGDATE

160

80 description = "tagpdf lua code",
81 license = "The LATEX Project Public License 1.3c"
82 }
83

84 if luatexbase and luatexbase.provides_module then
85 luatexbase.provides_module (ProvidesLuaModule)
86 end
87

88 --[[
89 The code has quite probably a number of problems
90 - more variables should be local instead of global
91 - the naming is not always consistent due to the development of the code
92 - the traversing of the shipout box must be tested with more complicated setups
93 - it should probably handle more node types
94 -
95 --]]
96

Some comments about the lua structure.

97 --[[
98 the main table is named ltx.__tag. It contains the functions and also the data
99 collected during the compilation.

100

101 ltx.__tag.mc will contain mc connected data.
102 ltx.__tag.role will contain data related to parent-child relations.
103 ltx.__tag.struct will contain structure related data.
104 ltx.__tag.page will contain page data
105 ltx.__tag.tables contains also data from mc and struct (from older code). This needs cleaning up.
106 There are certainly dublettes, but I don't dare yet ...
107 ltx.__tag.func will contain (public) functions.
108 ltx.__tag.trace will contain tracing/logging functions.
109 local functions starts with __
110 functions meant for users will be in ltx.tag
111

112 functions
113 ltx.__tag.func.get_num_from (tag): takes a tag (string) and returns the id number
114 ltx.__tag.func.output_num_from (tag): takes a tag (string) and prints (to tex) the id number
115 ltx.__tag.func.get_tag_from (num): takes a num and returns the tag
116 ltx.__tag.func.output_tag_from (num): takes a num and prints (to tex) the tag
117 ltx.__tag.func.store_mc_data (num,key,data): stores key=data in ltx.__tag.mc[num]
118 ltx.__tag.func.store_mc_label (label,num): stores label=num in ltx.__tag.mc.labels
119 ltx.__tag.func.store_mc_kid (mcnum,kid,page): stores the mc-kids of mcnum on page page
120 ltx.__tag.func.store_mc_in_page(mcnum,mcpagecnt,page): stores in the page table the number of mcnum on this page
121 ltx.__tag.func.store_struct_mcabs (structnum,mcnum): stores relations structnum<->mcnum (abs)
122 ltx.__tag.func.mc_insert_kids (mcnum): inserts the /K entries for mcnum by wandering through the [kids] table
123 ltx.__tag.func.mark_page_elements(box,mcpagecnt,mccntprev,mcopen,name,mctypeprev) : the main function
124 ltx.__tag.func.mark_shipout (): a wrapper around the core function which inserts the last EMC
125 ltx.__tag.func.fill_parent_tree_line (page): outputs the entries of the parenttree for this page
126 ltx.__tag.func.output_parenttree(): outputs the content of the parenttree
127 ltx.__tag.func.pdf_object_ref(name,index): outputs the object reference for the object name
128 ltx.__tag.func.markspaceon(), ltx.__tag.func.markspaceoff(): (de)activates the marking of positions for space chars
129 ltx.__tag.trace.show_mc_data (num,loglevel): shows ltx.__tag.mc[num] is the current log level is >= loglevel
130 ltx.__tag.trace.show_all_mc_data (max,loglevel): shows a maximum about mc's if the current log level is >= loglevel
131 ltx.__tag.trace.show_seq: shows a sequence (array)

161

132 ltx.__tag.trace.show_struct_data (num): shows data of structure num
133 ltx.__tag.trace.show_prop: shows a prop
134 ltx.__tag.trace.log
135 ltx.__tag.trace.showspaces : boolean
136

137 ltx.tag.get_structnum: number, shows the current structure number
138 ltx.tag.get_structnum_next: number, shows the next structure number
139 --]]
140

This set-ups the main attribute registers. The mc_type attribute stores the type (P,
Span etc) encoded as a num, The mc_cnt attribute stores the absolute number and
allows so to see if a node belongs to the same mc-chunk. The structnum attribute stores
the structure number. The interwordspace attr is set by the function @@_mark_spaces,
and marks the place where spaces should be inserted. The interwordfont attr is set by
the function @@_mark_spaces too and stores the font, so that we can decide which font
to use for the real space char. The interwordspaceOff attr allows to locally suppress the
insertion of real space chars, e.g. when they are inserted by other means (e.g. with
\char).

141 local mctypeattributeid = luatexbase.new_attribute ("g__tag_mc_type_attr")
142 local mccntattributeid = luatexbase.new_attribute ("g__tag_mc_cnt_attr")
143 local structnumattributeid = luatexbase.new_attribute ("g__tag_structnum_attr")
144 local iwspaceOffattributeid = luatexbase.new_attribute ("g__tag_interwordspaceOff_attr")
145 local iwspaceattributeid = luatexbase.new_attribute ("g__tag_interwordspace_attr")
146 local iwfontattributeid = luatexbase.new_attribute ("g__tag_interwordfont_attr")

with this token we can query the state of the boolean and so detect if unmarked nodes
should be marked as attributes

147 local tagunmarkedbool= token.create("g__tag_tagunmarked_bool")
148 local truebool = token.create("c_true_bool")

with this token we can query the state of the softhyphen boolean and so detect if hyphens
from hyphenation should be replaced by soft-hyphens.

149 local softhyphenbool = token.create("g__tag_softhyphen_bool")

Now a number of local versions from global tables. Not all is perhaps needed, most
node variants were copied from lua-debug.

150 local catlatex = luatexbase.registernumber("catcodetable@latex")
151 local tableinsert = table.insert
152 local nodeid = node.id
153 local nodecopy = node.copy
154 local nodegetattribute = node.get_attribute
155 local nodesetattribute = node.set_attribute
156 local nodehasattribute = node.has_attribute
157 local nodenew = node.new
158 local nodetail = node.tail
159 local nodeslide = node.slide
160 local noderemove = node.remove
161 local nodetraverseid = node.traverse_id
162 local nodetraverse = node.traverse
163 local nodeinsertafter = node.insert_after

162

164 local nodeinsertbefore = node.insert_before
165 local pdfpageref = pdf.pageref
166

167 local fonthashes = fonts.hashes
168 local identifiers = fonthashes.identifiers
169 local fontid = font.id
170

171 local HLIST = node.id("hlist")
172 local VLIST = node.id("vlist")
173 local RULE = node.id("rule")
174 local DISC = node.id("disc")
175 local GLUE = node.id("glue")
176 local GLYPH = node.id("glyph")
177 local KERN = node.id("kern")
178 local PENALTY = node.id("penalty")
179 local LOCAL_PAR = node.id("local_par")
180 local MATH = node.id("math")
181

182 local NEXT = next
183 local explicit_disc = 1
184 local regular_disc = 3

Now we setup the main table structure. ltx is used by other latex code too!

185 ltx = ltx or { }
186 ltx.tag = ltx.tag or { } -- user commands
187 ltx.__tag = ltx.__tag or { }
188 ltx.__tag.mc = ltx.__tag.mc or { } -- mc data
189 ltx.__tag.role = ltx.__tag.role or { } -- parent-child data
190 ltx.__tag.role.states = ltx.__tag.role.states or { } -- the states
191 ltx.__tag.role.index = ltx.__tag.role.index or { } -- standard types to index
192 --- numbers
193 ltx.__tag.role.matrix = ltx.__tag.role.matrix or { } -- implements the matrix
194 ltx.__tag.struct = ltx.__tag.struct or { } -- struct data
195 ltx.__tag.tables = ltx.__tag.tables or { } -- tables created with new prop and new seq.
196 -- wasn't a so great idea ...
197 -- g__tag_role_tags_seq used by tag<-> is in this tables!
198 -- used for pure lua tables too now!
199 ltx.__tag.page = ltx.__tag.page or { } -- page data, currently only i->{0->mcnum,1->mcnum,...}
200 ltx.__tag.trace = ltx.__tag.trace or { } -- show commands
201 ltx.__tag.func = ltx.__tag.func or { } -- functions
202 ltx.__tag.conf = ltx.__tag.conf or { } -- configuration variables

2 User commands to access data
Code like the one in luamml will have to access the current state in some places.

\

203 local __tag_get_struct_num =
204 function()
205 local a = token.get_macro("g__tag_struct_stack_current_tl")
206 return a
207 end

163

208

209 local __tag_get_struct_counter =
210 function()
211 local a = tex.getcount("c@g__tag_struct_abs_int")
212 return a
213 end
214

215 local __tag_get_struct_num_next =
216 function()
217 local a = tex.getcount("c@g__tag_struct_abs_int") + 1
218 return a
219 end
220

221 ltx.tag.get_struct_num = __tag_get_struct_num
222 ltx.tag.get_struct_counter = __tag_get_struct_counter
223 ltx.tag.get_struct_num_next = __tag_get_struct_num_next

(End of definition for \. This function is documented on page ??.)

3 Logging functions
__tag_log

ltx.__tag.trace.log
This rather simple log function takes as argument a message (string) and a number and
will output the message to the log/terminal if the current loglevel is greater or equal than
num.

224 local __tag_log =
225 function (message,loglevel)
226 if (loglevel or 3) <= tex.count["l__tag_loglevel_int"] then
227 texio.write_nl("tagpdf: ".. message)
228 end
229 end
230

231 ltx.__tag.trace.log = __tag_log

(End of definition for __tag_log and ltx.__tag.trace.log.)

ltx.__tag.trace.show_seq This shows the content of a seq as stored in the tables table. It is used by the
\@@_seq_show:N function. It is not used in user commands, only for debugging, and
so requires log level >0.

232 function ltx.__tag.trace.show_seq (seq)
233 if (type(seq) == "table") then
234 for i,v in ipairs(seq) do
235 __tag_log ("[" .. i .. "] => " .. tostring(v),1)
236 end
237 else
238 __tag_log ("sequence " .. tostring(seq) .. " not found",1)
239 end
240 end

(End of definition for ltx.__tag.trace.show_seq.)

__tag_pairs_prop
ltx.__tag.trace.show_prop

This shows the content of a prop as stored in the tables table. It is used by the
\@@_prop_show:N function.

164

241 local __tag_pairs_prop =
242 function (prop)
243 local a = {}
244 for n in pairs(prop) do tableinsert(a, n) end
245 table.sort(a)
246 local i = 0 -- iterator variable
247 local iter = function () -- iterator function
248 i = i + 1
249 if a[i] == nil then return nil
250 else return a[i], prop[a[i]]
251 end
252 end
253 return iter
254 end
255

256

257 function ltx.__tag.trace.show_prop (prop)
258 if (type(prop) == "table") then
259 for i,v in __tag_pairs_prop (prop) do
260 __tag_log ("[" .. i .. "] => " .. tostring(v),1)
261 end
262 else
263 __tag_log ("prop " .. tostring(prop) .. " not found or not a table",1)
264 end
265 end

(End of definition for __tag_pairs_prop and ltx.__tag.trace.show_prop.)

ltx.__tag.trace.show_mc_data This shows some data for a mc given by num. If something is shown depends on the log
level. The function is used by the following function and then in \ShowTagging

266 function ltx.__tag.trace.show_mc_data (num,loglevel)
267 if ltx.__tag and ltx.__tag.mc and ltx.__tag.mc[num] then
268 for k,v in pairs(ltx.__tag.mc[num]) do
269 __tag_log ("mc"..num..": "..tostring(k).."=>"..tostring(v),loglevel)
270 end
271 if ltx.__tag.mc[num]["kids"] then
272 __tag_log ("mc" .. num .. " has " .. #ltx.__tag.mc[num]["kids"] .. " kids",loglevel)
273 for k,v in ipairs(ltx.__tag.mc[num]["kids"]) do
274 __tag_log ("mc ".. num .. " kid "..k.." =>" .. v.kid.." on page " ..v.page,loglevel)
275 end
276 end
277 else
278 __tag_log ("mc"..num.." not found",loglevel)
279 end
280 end

(End of definition for ltx.__tag.trace.show_mc_data.)

ltx.__tag.trace.show_all_mc_data This shows data for the mc’s between min and max (numbers). It is used by the
\ShowTagging function.

281 function ltx.__tag.trace.show_all_mc_data (min,max,loglevel)
282 for i = min, max do

165

283 ltx.__tag.trace.show_mc_data (i,loglevel)
284 end
285 texio.write_nl("")
286 end

(End of definition for ltx.__tag.trace.show_all_mc_data.)

ltx.__tag.trace.show_struct_data This function shows some struct data. Unused but kept for debugging.

287 function ltx.__tag.trace.show_struct_data (num)
288 if ltx.__tag and ltx.__tag.struct and ltx.__tag.struct[num] then
289 for k,v in ipairs(ltx.__tag.struct[num]) do
290 __tag_log ("struct "..num..": "..tostring(k).."=>"..tostring(v),1)
291 end
292 else
293 __tag_log ("struct "..num.." not found ",1)
294 end
295 end

(End of definition for ltx.__tag.trace.show_struct_data.)

4 Helper functions
4.1 Retrieve data functions

__tag_get_mc_cnt_type_tag This takes a node as argument and returns the mc-cnt, the mc-type and and the tag
(calculated from the mc-cnt.

296 local __tag_get_mc_cnt_type_tag = function (n)
297 local mccnt = nodegetattribute(n,mccntattributeid) or -1
298 local mctype = nodegetattribute(n,mctypeattributeid) or -1
299 local tag = ltx.__tag.func.get_tag_from(mctype)
300 return mccnt,mctype,tag
301 end

(End of definition for __tag_get_mc_cnt_type_tag.)

__tag_get_mathsubtype This function allows to detect if we are at the begin or the end of math. It takes as
argument a mathnode.

302 local function __tag_get_mathsubtype (mathnode)
303 if mathnode.subtype == 0 then
304 subtype = "beginmath"
305 else
306 subtype = "endmath"
307 end
308 return subtype
309 end

(End of definition for __tag_get_mathsubtype.)

ltx.__tag.tables.role_tag_attribute The first is a table with key a tag and value a number (the attribute) The second is an
array with the attribute value as key.

166

310 ltx.__tag.tables.role_tag_attribute = {}
311 ltx.__tag.tables.role_attribute_tag = {}

(End of definition for ltx.__tag.tables.role_tag_attribute.)

ltx.__tag.func.alloctag

312 local __tag_alloctag =
313 function (tag)
314 if not ltx.__tag.tables.role_tag_attribute[tag] then
315 table.insert(ltx.__tag.tables.role_attribute_tag,tag)
316 ltx.__tag.tables.role_tag_attribute[tag]=#ltx.__tag.tables.role_attribute_tag
317 __tag_log ("Add "..tag.." "..ltx.__tag.tables.role_tag_attribute[tag],3)
318 end
319 end
320 ltx.__tag.func.alloctag = __tag_alloctag

(End of definition for ltx.__tag.func.alloctag.)

__tag_get_num_from
ltx.__tag.func.get_num_from

ltx.__tag.func.output_num_from

These functions take as argument a string tag, and return the number under which is
it recorded (and so the attribute value). The first function outputs the number for lua,
while the output function outputs to tex.

321 local __tag_get_num_from =
322 function (tag)
323 if ltx.__tag.tables.role_tag_attribute[tag] then
324 a= ltx.__tag.tables.role_tag_attribute[tag]
325 else
326 a= -1
327 end
328 return a
329 end
330

331 ltx.__tag.func.get_num_from = __tag_get_num_from
332

333 function ltx.__tag.func.output_num_from (tag)
334 local num = __tag_get_num_from (tag)
335 tex.sprint(catlatex,num)
336 if num == -1 then
337 __tag_log ("Unknown tag "..tag.." used")
338 end
339 end

(End of definition for __tag_get_num_from , ltx.__tag.func.get_num_from , and ltx.__tag.func.output_­
num_from.)

__tag_get_tag_from
ltx.__tag.func.get_tag_from

ltx.__tag.func.output_tag_from

These functions are the opposites to the previous function: they take as argument a
number (the attribute value) and return the string tag. The first function outputs the
string for lua, while the output function outputs to tex.

340 local __tag_get_tag_from =
341 function (num)
342 if ltx.__tag.tables.role_attribute_tag[num] then
343 a = ltx.__tag.tables.role_attribute_tag[num]

167

344 else
345 a= "UNKNOWN"
346 end
347 return a
348 end
349

350 ltx.__tag.func.get_tag_from = __tag_get_tag_from
351

352 function ltx.__tag.func.output_tag_from (num)
353 tex.sprint(catlatex,__tag_get_tag_from (num))
354 end

(End of definition for __tag_get_tag_from , ltx.__tag.func.get_tag_from , and ltx.__tag.func.output_­
tag_from.)

ltx.__tag.func.store_mc_data This function stores for key=data for mc-chunk num. It is used in the tagpdf-mc code,
to store for example the tag string, and the raw options.

355 function ltx.__tag.func.store_mc_data (num,key,data)
356 ltx.__tag.mc[num] = ltx.__tag.mc[num] or { }
357 ltx.__tag.mc[num][key] = data
358 __tag_log ("INFO TEX-STORE-MC-DATA: "..num.." => "..tostring(key).." => "..tostring(data),3)
359 end

(End of definition for ltx.__tag.func.store_mc_data.)

ltx.__tag.func.store_mc_label This function stores the label=num relationship in the labels subtable. TODO: this is
probably unused and can go.

360 function ltx.__tag.func.store_mc_label (label,num)
361 ltx.__tag.mc["labels"] = ltx.__tag.mc["labels"] or { }
362 ltx.__tag.mc.labels[label] = num
363 end

(End of definition for ltx.__tag.func.store_mc_label.)

ltx.__tag.func.store_mc_kid This function is used in the traversing code. It stores a sub-chunk of a mc mcnum into
the kids table.

364 function ltx.__tag.func.store_mc_kid (mcnum,kid,page)
365 __tag_log("INFO TAG-STORE-MC-KID: "..mcnum.." => " .. kid.." on page " .. page,3)
366 ltx.__tag.mc[mcnum]["kids"] = ltx.__tag.mc[mcnum]["kids"] or { }
367 local kidtable = {kid=kid,page=page}
368 tableinsert(ltx.__tag.mc[mcnum]["kids"], kidtable)
369 end

(End of definition for ltx.__tag.func.store_mc_kid.)

ltx.__tag.func.mc_num_of_kids This function returns the number of kids a mc mcnum has. We need to account for the
case that a mc can have no kids.

370 function ltx.__tag.func.mc_num_of_kids (mcnum)
371 local num = 0
372 if ltx.__tag.mc[mcnum] and ltx.__tag.mc[mcnum]["kids"] then

168

373 num = #ltx.__tag.mc[mcnum]["kids"]
374 end
375 __tag_log ("INFO MC-KID-NUMBERS: " .. mcnum .. "has " .. num .. "KIDS",4)
376 return num
377 end

(End of definition for ltx.__tag.func.mc_num_of_kids.)

4.2 Functions to insert the pdf literals
__tag_backend_create_emc_node

__tag_insert_emc_node
This insert the emc node. We support also dvips and dvipdfmx backend

378 local __tag_backend_create_emc_node
379 if tex.outputmode == 0 then
380 if token.get_macro("c_sys_backend_str") == "dvipdfmx" then
381 function __tag_backend_create_emc_node ()
382 local emcnode = nodenew("whatsit","special")
383 emcnode.data = "pdf:code EMC"
384 return emcnode
385 end
386 else -- assume a dvips variant
387 function __tag_backend_create_emc_node ()
388 local emcnode = nodenew("whatsit","special")
389 emcnode.data = "ps:SDict begin mark /EMC pdfmark end"
390 return emcnode
391 end
392 end
393 else -- pdf mode
394 function __tag_backend_create_emc_node ()
395 local emcnode = nodenew("whatsit","pdf_literal")
396 emcnode.data = "EMC"
397 emcnode.mode=1
398 return emcnode
399 end
400 end
401

402 local function __tag_insert_emc_node (head,current)
403 local emcnode= __tag_backend_create_emc_node()
404 head = node.insert_before(head,current,emcnode)
405 return head
406 end

(End of definition for __tag_backend_create_emc_node and __tag_insert_emc_node.)

__tag_backend_create_bmc_node
__tag_insert_bmc_node

This inserts a simple bmc node

407 local __tag_backend_create_bmc_node
408 if tex.outputmode == 0 then
409 if token.get_macro("c_sys_backend_str") == "dvipdfmx" then
410 function __tag_backend_create_bmc_node (tag)
411 local bmcnode = nodenew("whatsit","special")
412 bmcnode.data = "pdf:code /"..tag.." BMC"
413 return bmcnode
414 end

169

415 else -- assume a dvips variant
416 function __tag_backend_create_bmc_node (tag)
417 local bmcnode = nodenew("whatsit","special")
418 bmcnode.data = "ps:SDict begin mark/"..tag.." /BMC pdfmark end"
419 return bmcnode
420 end
421 end
422 else -- pdf mode
423 function __tag_backend_create_bmc_node (tag)
424 local bmcnode = nodenew("whatsit","pdf_literal")
425 bmcnode.data = "/"..tag.." BMC"
426 bmcnode.mode=1
427 return bmcnode
428 end
429 end
430

431 local function __tag_insert_bmc_node (head,current,tag)
432 local bmcnode = __tag_backend_create_bmc_node (tag)
433 head = node.insert_before(head,current,bmcnode)
434 return head
435 end

(End of definition for __tag_backend_create_bmc_node and __tag_insert_bmc_node.)

__tag_backend_create_bdc_node
__tag_insert_bdc_node

This inserts a bcd node with a fix dict. TODO: check if this is still used, now that we
create properties.

436 local __tag_backend_create_bdc_node
437

438 if tex.outputmode == 0 then
439 if token.get_macro("c_sys_backend_str") == "dvipdfmx" then
440 function __tag_backend_create_bdc_node (tag,dict)
441 local bdcnode = nodenew("whatsit","special")
442 bdcnode.data = "pdf:code /"..tag.."<<"..dict..">> BDC"
443 return bdcnode
444 end
445 else -- assume a dvips variant
446 function __tag_backend_create_bdc_node (tag,dict)
447 local bdcnode = nodenew("whatsit","special")
448 bdcnode.data = "ps:SDict begin mark/"..tag.."<<"..dict..">> /BDC pdfmark end"
449 return bdcnode
450 end
451 end
452 else -- pdf mode
453 function __tag_backend_create_bdc_node (tag,dict)
454 local bdcnode = nodenew("whatsit","pdf_literal")
455 bdcnode.data = "/"..tag.."<<"..dict..">> BDC"
456 bdcnode.mode=1
457 return bdcnode
458 end
459 end
460

461 local function __tag_insert_bdc_node (head,current,tag,dict)
462 bdcnode= __tag_backend_create_bdc_node (tag,dict)

170

463 head = node.insert_before(head,current,bdcnode)
464 return head
465 end

(End of definition for __tag_backend_create_bdc_node and __tag_insert_bdc_node.)

__tag_pdf_object_ref This allows to reference a pdf object reserved with the l3pdf command by name. The
return value is n 0 R, if the object doesn’t exist, n is 0.

466 local function __tag_pdf_object_ref (name,index)
467 local object
468 if ltx.pdf.object_id then
469 object = ltx.pdf.object_id (name,index) ..' 0 R'
470 else
471 local tokenname = 'c__pdf_object_'..name..'/'..index..'_int'
472 object = token.create(tokenname).mode ..' 0 R'
473 end
474 return object
475 end
476 ltx.__tag.func.pdf_object_ref = __tag_pdf_object_ref

(End of definition for __tag_pdf_object_ref.)

5 Function for the real space chars
__tag_show_spacemark A debugging function, it is used to inserts red color markers in the places where space

chars can go, it can have side effects so not always reliable, but ok.

477 local function __tag_show_spacemark (head,current,color,height)
478 local markcolor = color or "1 0 0"
479 local markheight = height or 10
480 local pdfstring
481 if tex.outputmode == 0 then
482 -- ignore dvi mode for now
483 else
484 pdfstring = node.new("whatsit","pdf_literal")
485 pdfstring.data =
486 string.format("q "..markcolor.." RG "..markcolor.." rg 0.4 w 0 %g m 0 %g l S Q",-

3,markheight)
487 head = node.insert_after(head,current,pdfstring)
488 return head
489 end
490 end

(End of definition for __tag_show_spacemark.)

__tag_fakespace
ltx.__tag.func.fakespace

This is used to define a lua version of \pdffakespace

491 local function __tag_fakespace()
492 tex.setattribute(iwspaceattributeid,1)
493 tex.setattribute(iwfontattributeid,font.current())
494 end
495 ltx.__tag.func.fakespace = __tag_fakespace

171

(End of definition for __tag_fakespace and ltx.__tag.func.fakespace.)

__tag_mark_spaces a function to mark up places where real space chars should be inserted. It only sets
attributes, these are then be used in a later traversing which inserts the actual spaces.
When space handling is activated this function is inserted in some callbacks.

496 --[[a function to mark up places where real space chars should be inserted
497 it only sets an attribute.
498 --]]
499

500 local function __tag_mark_spaces (head)
501 local inside_math = false
502 for n in nodetraverse(head) do
503 local id = n.id
504 if id == GLYPH then
505 local glyph = n
506 default_currfontid = glyph.font
507 if glyph.next and (glyph.next.id == GLUE)
508 and not inside_math and (glyph.next.width >0)
509 then
510 nodesetattribute(glyph.next,iwspaceattributeid,1)
511 nodesetattribute(glyph.next,iwfontattributeid,glyph.font)
512 -- for debugging
513 if ltx.__tag.trace.showspaces then
514 __tag_show_spacemark (head,glyph)
515 end
516 elseif glyph.next and (glyph.next.id==KERN) and not inside_math then
517 local kern = glyph.next
518 if kern.next and (kern.next.id== GLUE) and (kern.next.width >0)
519 -- the attribute is also set on the kern in case the kern+glue is
520 -- discarded at a line break tagging issue #1102
521 -- TODO iterate back through all discardable nodes.
522 then
523 nodesetattribute(kern,iwspaceattributeid,1)
524 nodesetattribute(kern,iwfontattributeid,glyph.font)
525 nodesetattribute(kern.next,iwspaceattributeid,1)
526 nodesetattribute(kern.next,iwfontattributeid,glyph.font)
527 end
528 end
529 -- look also back
530 if glyph.prev and (glyph.prev.id == GLUE)
531 and not inside_math
532 and (glyph.prev.width >0)
533 and not nodehasattribute(glyph.prev,iwspaceattributeid)
534 then
535 nodesetattribute(glyph.prev,iwspaceattributeid,1)
536 nodesetattribute(glyph.prev,iwfontattributeid,glyph.font)
537 -- for debugging
538 if ltx.__tag.trace.showspaces then
539 __tag_show_spacemark (head,glyph)
540 end
541 end
542 elseif id == PENALTY then
543 local glyph = n

172

544 -- __tag_log ("PENALTY ".. n.subtype.."VALUE"..n.penalty,3)
545 if glyph.next and (glyph.next.id == GLUE)
546 and not inside_math and (glyph.next.width >0) and n.subtype==0
547 then
548 nodesetattribute(glyph.next,iwspaceattributeid,1)
549 -- changed 2024-01-18, issue #72
550 nodesetattribute(glyph.next,iwfontattributeid,default_currfontid)
551 -- for debugging
552 if ltx.__tag.trace.showspaces then
553 __tag_show_spacemark (head,glyph)
554 end
555 end
556 elseif id == MATH then
557 inside_math = (n.subtype == 0)
558 end
559 end
560 return head
561 end

(End of definition for __tag_mark_spaces.)

__tag_activate_mark_space
ltx.__tag.func.markspaceon
ltx.__tag.func.markspaceoff

These functions add/remove the function which marks the spaces to the callbacks
pre_linebreak_filter and hpack_filter

562 local function __tag_activate_mark_space ()
563 if not luatexbase.in_callback ("pre_linebreak_filter","markspaces") then
564 luatexbase.add_to_callback("pre_linebreak_filter",__tag_mark_spaces,"markspaces")
565 luatexbase.add_to_callback("hpack_filter",__tag_mark_spaces,"markspaces")
566 end
567 end
568

569 ltx.__tag.func.markspaceon=__tag_activate_mark_space
570

571 local function __tag_deactivate_mark_space ()
572 if luatexbase.in_callback ("pre_linebreak_filter","markspaces") then
573 luatexbase.remove_from_callback("pre_linebreak_filter","markspaces")
574 luatexbase.remove_from_callback("hpack_filter","markspaces")
575 end
576 end
577

578 ltx.__tag.func.markspaceoff=__tag_deactivate_mark_space

(End of definition for __tag_activate_mark_space , ltx.__tag.func.markspaceon , and ltx.__tag.func.markspaceoff.)

We need two local variable to setup a default space char.

579 local default_space_char = nodenew(GLYPH)
580 local default_fontid = fontid("TU/lmr/m/n/10")
581 local default_currfontid = fontid("TU/lmr/m/n/10")
582 default_space_char.char = 32
583 default_space_char.font = default_fontid

And a function to check as best as possible if a font has a space:

173

584 local function __tag_font_has_space (fontid)
585 t= fonts.hashes.identifiers[fontid]
586 if luaotfload.aux.slot_of_name(fontid,"space")
587 or t and t.characters and t.characters[32] and t.characters[32]["unicode"]==32
588 then
589 return true
590 else
591 return false
592 end
593 end

__tag_space_chars_shipout
ltx.__tag.func.space_chars_shipout

These is the main function to insert real space chars. It inserts a glyph before every glue
which has been marked previously. The attributes are copied from the glue, so if the
tagging is done later, it will be tagged like it.

594 local function __tag_space_chars_shipout (box)
595 local head = box.head
596 if head then
597 for n in node.traverse(head) do
598 local spaceattr = -1
599 if not nodehasattribute(n,iwspaceOffattributeid) then
600 spaceattr = nodegetattribute(n,iwspaceattributeid) or -1
601 end
602 if n.id == HLIST then -- enter the hlist
603 __tag_space_chars_shipout (n)
604 elseif n.id == VLIST then -- enter the vlist
605 __tag_space_chars_shipout (n)
606 elseif n.id == GLUE then
607 if ltx.__tag.trace.showspaces and spaceattr==1 then
608 __tag_show_spacemark (head,n,"0 1 0")
609 end
610 if spaceattr==1 then
611 local space
612 local space_char = node.copy(default_space_char)
613 local curfont = nodegetattribute(n,iwfontattributeid)
614 __tag_log ("INFO SPACE-FUNCTION-FONT: ".. tostring(curfont),3)
615 if curfont and
616 -- luaotfload.aux.slot_of_name(curfont,"space")
617 __tag_font_has_space (curfont)
618 then
619 space_char.font=curfont
620 end
621 head, space = node.insert_before(head, n, space_char) --
622 n.width = n.width - space.width
623 space.attr = n.attr
624 end
625 end
626 end
627 box.head = head
628 end
629 end
630

631 function ltx.__tag.func.space_chars_shipout (box)
632 __tag_space_chars_shipout (box)

174

633 end

(End of definition for __tag_space_chars_shipout and ltx.__tag.func.space_chars_shipout.)

6 Function for the tagging
ltx.__tag.func.mc_insert_kids This is the main function to insert the K entry into a StructElem object. It is used in

tagpdf-mc-luacode module. The single attribute allows to handle the case that a single
mc on the tex side can have more than one kid after the processing here, and so we get
the correct array/non array setup.

634 function ltx.__tag.func.mc_insert_kids (mcnum,single)
635 if ltx.__tag.mc[mcnum] then
636 __tag_log("INFO TEX-MC-INSERT-KID-TEST: " .. mcnum,4)
637 if ltx.__tag.mc[mcnum]["kids"] then
638 if #ltx.__tag.mc[mcnum]["kids"] > 1 and single==1 then
639 tex.sprint(catlatex,"[")
640 end
641 for i,kidstable in ipairs(ltx.__tag.mc[mcnum]["kids"]) do
642 local kidnum = kidstable["kid"]
643 local kidpage = kidstable["page"]
644 local kidpageobjnum = pdfpageref(kidpage)
645 __tag_log("INFO TEX-MC-INSERT-KID: " .. mcnum ..
646 " insert KID " ..i..
647 " with num " .. kidnum ..
648 " on page " .. kidpage.."/"..kidpageobjnum,3)
649 tex.sprint(catlatex,"<</Type /MCR /Pg "..kidpageobjnum .. " 0 R /MCID "..kidnum.. ">> ")
650 end
651 if #ltx.__tag.mc[mcnum]["kids"] > 1 and single==1 then
652 tex.sprint(catlatex,"]")
653 end
654 else
655 -- this is typically not a problem, e.g. empty hbox in footer/header can
656 -- trigger this warning.
657 __tag_log("WARN TEX-MC-INSERT-NO-KIDS: "..mcnum.." has no kids",2)
658 if single==1 then
659 tex.sprint(catlatex,"null")
660 end
661 end
662 else
663 __tag_log("WARN TEX-MC-INSERT-MISSING: "..mcnum.." doesn't exist",0)
664 end
665 end

(End of definition for ltx.__tag.func.mc_insert_kids.)

ltx.__tag.func.store_struct_mcabs This function is used in the tagpdf-mc-luacode. It store the absolute count of the mc
into the current structure. This must be done ordered.

666 function ltx.__tag.func.store_struct_mcabs (structnum,mcnum)
667 ltx.__tag.struct[structnum]=ltx.__tag.struct[structnum] or { }
668 ltx.__tag.struct[structnum]["mc"]=ltx.__tag.struct[structnum]["mc"] or { }
669 -- a structure can contain more than on mc chunk, the content should be ordered

175

670 tableinsert(ltx.__tag.struct[structnum]["mc"],mcnum)
671 __tag_log("INFO TEX-MC-INTO-STRUCT: "..
672 mcnum.." inserted in struct "..structnum,3)
673 -- but every mc can only be in one structure
674 ltx.__tag.mc[mcnum]= ltx.__tag.mc[mcnum] or { }
675 ltx.__tag.mc[mcnum]["parent"] = structnum
676 end
677

(End of definition for ltx.__tag.func.store_struct_mcabs.)

ltx.__tag.func.store_mc_in_page This is used in the traversing code and stores the relation between abs count and page
count.

678 -- pay attention: lua counts arrays from 1, tex pages from one
679 -- mcid and arrays in pdf count from 0.
680 function ltx.__tag.func.store_mc_in_page (mcnum,mcpagecnt,page)
681 ltx.__tag.page[page] = ltx.__tag.page[page] or {}
682 ltx.__tag.page[page][mcpagecnt] = mcnum
683 __tag_log("INFO TAG-MC-INTO-PAGE: page " .. page ..
684 ": inserting MCID " .. mcpagecnt .. " => " .. mcnum,3)
685 end

(End of definition for ltx.__tag.func.store_mc_in_page.)

ltx.__tag.func.update_mc_attributes This updates the mc-attributes of a box. It should only be used on boxes which don’t
contain structure elements. The arguments are a box, the mc-num and the type (as a
number)

686 local function __tag_update_mc_attributes (head,mcnum,type)
687 for n in node.traverse(head) do
688 node.set_attribute(n,mccntattributeid,mcnum)
689 node.set_attribute(n,mctypeattributeid,type)
690 if n.id == HLIST or n.id == VLIST then
691 __tag_update_mc_attributes (n.list,mcnum,type)
692 end
693 end
694 return head
695 end
696 ltx.__tag.func.update_mc_attributes = __tag_update_mc_attributes

(End of definition for ltx.__tag.func.update_mc_attributes.)

ltx.__tag.func.mark_page_elements This is the main traversing function. See the lua comment for more details.

697 --[[
698 Now follows the core function
699 It wades through the shipout box and checks the attributes
700 ARGUMENTS
701 box: is a box,
702 mcpagecnt: num, the current page cnt of mc (should start at -1 in shipout box), needed for recursion
703 mccntprev: num, the attribute cnt of the previous node/whatever - if different we have a chunk border
704 mcopen: num, records if some bdc/emc is open
705 These arguments are only needed for log messages, if not present are replaces by fix strings:

176

706 name: string to describe the box
707 mctypeprev: num, the type attribute of the previous node/whatever
708

709 there are lots of logging messages currently. Should be cleaned up in due course.
710 One should also find ways to make the function shorter.
711 --]]
712

713 function ltx.__tag.func.mark_page_elements (box,mcpagecnt,mccntprev,mcopen,name,mctypeprev)
714 local name = name or ("SOMEBOX")
715 local mctypeprev = mctypeprev or -1
716 local abspage = status.total_pages + 1 -- the real counter is increased
717 -- inside the box so one off
718 -- if the callback is not used. (???)
719 __tag_log ("INFO TAG-ABSPAGE: " .. abspage,3)
720 __tag_log ("INFO TAG-ARGS: pagecnt".. mcpagecnt..
721 " prev "..mccntprev ..
722 " type prev "..mctypeprev,4)
723 __tag_log ("INFO TAG-TRAVERSING-BOX: ".. tostring(name)..
724 " TYPE ".. node.type(node.getid(box)),3)
725 local head = box.head -- ShipoutBox is a vlist?
726 if head then
727 mccnthead, mctypehead,taghead = __tag_get_mc_cnt_type_tag (head)
728 __tag_log ("INFO TAG-HEAD: " ..
729 node.type(node.getid(head))..
730 " MC"..tostring(mccnthead)..
731 " => TAG " .. tostring(mctypehead)..
732 " => ".. tostring(taghead),3)
733 else
734 __tag_log ("INFO TAG-NO-HEAD: head is "..
735 tostring(head),3)
736 end
737 for n in node.traverse(head) do
738 local mccnt, mctype, tag = __tag_get_mc_cnt_type_tag (n)
739 local spaceattr = nodegetattribute(n,iwspaceattributeid) or -1
740 __tag_log ("INFO TAG-NODE: "..
741 node.type(node.getid(n))..
742 " MC".. tostring(mccnt)..
743 " => TAG ".. tostring(mctype)..
744 " => " .. tostring(tag),3)
745 if n.id == HLIST
746 then -- enter the hlist
747 mcopen,mcpagecnt,mccntprev,mctypeprev=
748 ltx.__tag.func.mark_page_elements (n,mcpagecnt,mccntprev,mcopen,"INTERNAL HLIST",mctypeprev)
749 elseif n.id == VLIST then -- enter the vlist
750 mcopen,mcpagecnt,mccntprev,mctypeprev=
751 ltx.__tag.func.mark_page_elements (n,mcpagecnt,mccntprev,mcopen,"INTERNAL VLIST",mctypeprev)
752 elseif n.id == GLUE and not n.leader then -- at glue real space chars are inserted, but this has
753 -- been done if the previous shipout wandering, so here it is ignored
754 elseif n.id == LOCAL_PAR then -- local_par is ignored
755 elseif n.id == PENALTY then -- penalty is ignored
756 elseif n.id == KERN then -- kern is ignored
757 __tag_log ("INFO TAG-KERN-SUBTYPE: "..
758 node.type(node.getid(n)).." "..n.subtype,4)
759 else

177

760 -- math is currently only logged.
761 -- we could mark the whole as math
762 -- for inner processing the mlist_to_hlist callback is probably needed.
763 if n.id == MATH then
764 __tag_log("INFO TAG-MATH-SUBTYPE: "..
765 node.type(node.getid(n)).." "..__tag_get_mathsubtype(n),4)
766 end
767 -- endmath
768 __tag_log("INFO TAG-MC-COMPARE: current "..
769 mccnt.." prev "..mccntprev,4)
770 if mccnt~=mccntprev then -- a new mc chunk
771 __tag_log ("INFO TAG-NEW-MC-NODE: "..
772 node.type(node.getid(n))..
773 " MC"..tostring(mccnt)..
774 " <=> PREVIOUS "..tostring(mccntprev),4)
775 if mcopen~=0 then -- there is a chunk open, close it (hope there is only one ...
776 box.list=__tag_insert_emc_node (box.list,n)
777 mcopen = mcopen - 1
778 __tag_log ("INFO TAG-INSERT-EMC: " ..
779 mcpagecnt .. " MCOPEN = " .. mcopen,3)
780 if mcopen ~=0 then
781 __tag_log ("WARN TAG-OPEN-MC: " .. mcopen,1)
782 end
783 end
784 if ltx.__tag.mc[mccnt] then
785 if ltx.__tag.mc[mccnt]["artifact"] then
786 __tag_log("INFO TAG-INSERT-ARTIFACT: "..
787 tostring(ltx.__tag.mc[mccnt]["artifact"]),3)
788 if ltx.__tag.mc[mccnt]["artifact"] == "" then
789 box.list = __tag_insert_bmc_node (box.list,n,"Artifact")
790 else
791 box.list = __tag_insert_bdc_node (box.list,n,"Artifact", "/Type /"..ltx.__tag.mc[mccnt]["artifact"])
792 end
793 else
794 __tag_log("INFO TAG-INSERT-TAG: "..
795 tostring(tag),3)
796 mcpagecnt = mcpagecnt +1
797 __tag_log ("INFO TAG-INSERT-BDC: "..mcpagecnt,3)
798 local dict= "/MCID "..mcpagecnt
799 if ltx.__tag.mc[mccnt]["raw"] then
800 __tag_log("INFO TAG-USE-RAW: "..
801 tostring(ltx.__tag.mc[mccnt]["raw"]),3)
802 dict= dict .. " " .. ltx.__tag.mc[mccnt]["raw"]
803 end
804 if ltx.__tag.mc[mccnt]["alt"] then
805 __tag_log("INFO TAG-USE-ALT: "..
806 tostring(ltx.__tag.mc[mccnt]["alt"]),3)
807 dict= dict .. " " .. ltx.__tag.mc[mccnt]["alt"]
808 end
809 if ltx.__tag.mc[mccnt]["lang"] then
810 __tag_log("INFO TAG-USE-LANG: "..
811 tostring(ltx.__tag.mc[mccnt]["lang"]),3)
812 dict= dict .. " " .. ltx.__tag.mc[mccnt]["lang"]
813 end

178

814 if ltx.__tag.mc[mccnt]["actualtext"] then
815 __tag_log("INFO TAG-USE-ACTUALTEXT: "..
816 tostring(ltx.__tag.mc[mccnt]["actualtext"]),3)
817 dict= dict .. " " .. ltx.__tag.mc[mccnt]["actualtext"]
818 end
819 box.list = __tag_insert_bdc_node (box.list,n,tag, dict)
820 ltx.__tag.func.store_mc_kid (mccnt,mcpagecnt,abspage)
821 ltx.__tag.func.store_mc_in_page(mccnt,mcpagecnt,abspage)
822 ltx.__tag.trace.show_mc_data (mccnt,3)
823 end
824 mcopen = mcopen + 1
825 else
826 if tagunmarkedbool.mode == truebool.mode then
827 __tag_log("INFO TAG-NOT-TAGGED: this has not been tagged, using artifact",2)
828 box.list = __tag_insert_bmc_node (box.list,n,"Artifact")
829 mcopen = mcopen + 1
830 else
831 __tag_log("WARN TAG-NOT-TAGGED: this has not been tagged",1)
832 end
833 end
834 mccntprev = mccnt
835 end
836 end -- end if
837 end -- end for
838 if head then
839 mccnthead, mctypehead,taghead = __tag_get_mc_cnt_type_tag (head)
840 __tag_log ("INFO TAG-ENDHEAD: " ..
841 node.type(node.getid(head))..
842 " MC"..tostring(mccnthead)..
843 " => TAG "..tostring(mctypehead)..
844 " => "..tostring(taghead),4)
845 else
846 __tag_log ("INFO TAG-ENDHEAD: ".. tostring(head),4)
847 end
848 __tag_log ("INFO TAG-QUITTING-BOX "..
849 tostring(name)..
850 " TYPE ".. node.type(node.getid(box)),4)
851 return mcopen,mcpagecnt,mccntprev,mctypeprev
852 end
853

(End of definition for ltx.__tag.func.mark_page_elements.)

ltx.__tag.func.mark_shipout This is the function used in the callback. Beside calling the traversing function it also
checks if there is an open MC-chunk from a page break and insert the needed EMC
literal.

854 function ltx.__tag.func.mark_shipout (box)
855 mcopen = ltx.__tag.func.mark_page_elements (box,-1,-100,0,"Shipout",-1)
856 if mcopen~=0 then -- there is a chunk open, close it (hope there is only one ...
857 local emcnode = __tag_backend_create_emc_node ()
858 local list = box.list
859 if list then
860 list = node.insert_after (list,node.tail(list),emcnode)

179

861 mcopen = mcopen - 1
862 __tag_log ("INFO SHIPOUT-INSERT-LAST-EMC: MCOPEN " .. mcopen,3)
863 else
864 __tag_log ("WARN SHIPOUT-UPS: this shouldn't happen",0)
865 end
866 if mcopen ~=0 then
867 __tag_log ("WARN SHIPOUT-MC-OPEN: " .. mcopen,1)
868 end
869 end
870 end

(End of definition for ltx.__tag.func.mark_shipout.)

7 Parenttree
ltx.__tag.func.fill_parent_tree_line

ltx.__tag.func.output_parenttree
These functions create the parent tree. The second, main function is used in the tagpdf-
tree code. TODO check if the tree code can move into the backend code.

871 function ltx.__tag.func.fill_parent_tree_line (page)
872 -- we need to get page-> i=kid -> mcnum -> structnum
873 -- pay attention: the kid numbers and the page number in the parent tree start with 0!
874 local numsentry =""
875 local pdfpage = page-1
876 if ltx.__tag.page[page] and ltx.__tag.page[page][0] then
877 mcchunks=#ltx.__tag.page[page]
878 __tag_log("INFO PARENTTREE-NUM: page "..
879 page.." has "..mcchunks.."+1 Elements ",4)
880 for i=0,mcchunks do
881 -- what does this log??
882 __tag_log("INFO PARENTTREE-CHUNKS: "..
883 ltx.__tag.page[page][i],4)
884 end
885 if mcchunks == 0 then
886 -- only one chunk so no need for an array
887 local mcnum = ltx.__tag.page[page][0]
888 local structnum = ltx.__tag.mc[mcnum]["parent"]
889 local propname = "g__tag_struct_"..structnum.."_prop"
890 --local objref = ltx.__tag.tables[propname]["objref"] or "XXXX"
891 local objref = __tag_pdf_object_ref('__tag/struct',structnum)
892 __tag_log("INFO PARENTTREE-STRUCT-OBJREF: =====>"..
893 tostring(objref),5)
894 numsentry = pdfpage .. " [".. objref .. "]"
895 __tag_log("INFO PARENTTREE-NUMENTRY: page " ..
896 page.. " num entry = ".. numsentry,3)
897 else
898 numsentry = pdfpage .. " ["
899 for i=0,mcchunks do
900 local mcnum = ltx.__tag.page[page][i]
901 local structnum = ltx.__tag.mc[mcnum]["parent"] or 0
902 local propname = "g__tag_struct_"..structnum.."_prop"
903 --local objref = ltx.__tag.tables[propname]["objref"] or "XXXX"
904 local objref = __tag_pdf_object_ref('__tag/struct',structnum)
905 numsentry = numsentry .. " ".. objref

180

906 end
907 numsentry = numsentry .. "] "
908 __tag_log("INFO PARENTTREE-NUMENTRY: page " ..
909 page.. " num entry = ".. numsentry,3)
910 end
911 else
912 __tag_log ("INFO PARENTTREE-NO-DATA: page "..page,3)
913 numsentry = pdfpage.." []"
914 end
915 return numsentry
916 end
917

918 function ltx.__tag.func.output_parenttree (abspage)
919 for i=1,abspage do
920 line = ltx.__tag.func.fill_parent_tree_line (i) .. "^^J"
921 tex.sprint(catlatex,line)
922 end
923 end

(End of definition for ltx.__tag.func.fill_parent_tree_line and ltx.__tag.func.output_parenttree.)

process_softhyphen_pre process_softhyphen_post First some local definitions. Since these are only needed locally everything gets wrapped
into a block.

924 do
925 local properties = node.get_properties_table()
926 local is_soft_hyphen_prop = 'tagpdf.rewrite-softhyphen.is_soft_hyphen'
927 local hyphen_char = 0x2D
928 local soft_hyphen_char = 0xAD

A lookup table to test if the font supports the soft hyphen glyph.

929 local softhyphen_fonts = setmetatable({}, {__index = function(t, fid)
930 local fdir = identifiers[fid]
931 local format = fdir and fdir.format
932 local result = (format == 'opentype' or format == 'truetype')
933 local characters = fdir and fdir.characters
934 result = result and (characters and characters[soft_hyphen_char]) ~= nil
935 t[fid] = result
936 return result
937 end})

A pre shaping callback to mark hyphens as being hyphenation hyphens. This runs before
shaping to avoid affecting hyphens moved into discretionaries during shaping.

938 local function process_softhyphen_pre(head, _context, _dir)
939 if softhyphenbool.mode ~= truebool.mode then return true end
940 for disc, sub in node.traverse_id(DISC, head) do
941 if sub == explicit_disc or sub == regular_disc then
942 for n, _ch, _f in node.traverse_char(disc.pre) do
943 local props = properties[n]
944 if not props then
945 props = {}
946 properties[n] = props

181

947 end
948 props[is_soft_hyphen_prop] = true
949 end
950 end
951 end
952 return true
953 end
954

Finally do the actual replacement after shaping. No checking for double processing here
since the operation is idempotent.

955 local function process_softhyphen_post(head, _context, _dir)
956 if softhyphenbool.mode ~= truebool.mode then return true end
957 for disc, sub in node.traverse_id(DISC, head) do
958 for n, ch, fid in node.traverse_glyph(disc.pre) do
959 local props = properties[n]
960 if softhyphen_fonts[fid] and ch == hyphen_char and props and props[is_soft_hyphen_prop] then
961 n.char = soft_hyphen_char
962 props.glyph_info = nil
963 end
964 end
965 end
966 return true
967 end
968

969 luatexbase.add_to_callback('pre_shaping_filter', process_softhyphen_pre, 'tagpdf.rewrite-
softhyphen')

970 luatexbase.add_to_callback('post_shaping_filter', process_softhyphen_post, 'tagpdf.rewrite-
softhyphen')

971 end

(End of definition for process_softhyphen_pre process_softhyphen_post. This function is docu­
mented on page ??.)

8 parent-child rules
role_get_parent_child_rule

ltx.__tag.func.role_get_parent_child_rule
972 local function role_get_parent_child_rule (parent,child)
973 local state=
974 ltx.__tag.role.matrix[ltx.__tag.role.index[parent]]
975 and ltx.__tag.role.matrix[ltx.__tag.role.index[parent]][ltx.__tag.role.index[child]] or 0
976 return state
977 end
978 ltx.__tag.func.role_get_parent_child_rule=role_get_parent_child_rule

(End of definition for role_get_parent_child_rule and ltx.__tag.func.role_get_parent_child_rule.
This function is documented on page ??.)

check_update_stashed
check_parent_child_rules

ltx.__tag.func.check_parent_child_rules

These function allows to check the parent-child rules for the current set of structures.
It should normally be used at the end of the document. Some stashed structures can
still have a parentrole setting containing the STASHED keyword, there must be updated

182

first, this is done with a helper command. To avoid that a faulty structure (where e.g.
two structures point to each other) creates an endless loop we check for the real parent
only for 10 loops.

979 function check_update_stashed (struct,loglevel,loop)
980 loop = (loop or 0) + 1
981 if loop > 10 then
982 __tag_log ('Warning: Too deeply nested stashed structures',0)
983 return
984 end
985 __tag_log ('updating parentrole for stashed structure '..struct,loglevel)
986 local parent = ltx.__tag.tables['g__tag_struct_'..struct..'_prop']['parentnum']
987 if parent then
988 local ptag =
989 string.match(ltx.__tag.tables['g__tag_struct_'..parent..'_prop']['parentrole'], "{(.-

)}{(.-)}")
990 if ptag == 'STASHED' then
991 -- look at the parent and update it first
992 check_update_stashed (parent,loglevel,loop)
993 end
994 -- now copy the parent role from the parent
995 ltx.__tag.tables['g__tag_struct_'..struct..'_prop']['parentrole']
996 =
997 ltx.__tag.tables['g__tag_struct_'..parent..'_prop']['parentrole']
998 __tag_log
999 ('new parentrole: ' .. ltx.__tag.tables['g__tag_struct_'..struct..'_prop']['parentrole'], loglevel)

1000 else
1001 __tag_log ('Warning: structure '..struct.. 'has no parent.',0)
1002 end
1003 end
1004

1005 function check_parent_child_rules (loglevel)
1006 texio.write_nl('\n')
1007 __tag_log ('checking parent-child rules ...' ,0)
1008 for i=2,ltx.tag.get_struct_counter() do
1009 local t,tNS=
1010 string.match(ltx.__tag.tables['g__tag_struct_'..i..'_prop']['tag'], "{(.-)}{(.-

)}")
1011 local r,rNS=
1012 string.match(ltx.__tag.tables['g__tag_struct_'..i..'_prop']['rolemap'], "{(.-)}{(.-

)}")
1013 local p,pNS=
1014 string.match(ltx.__tag.tables['g__tag_struct_'..i..'_prop']['parentrole'], "{(.-

)}{(.-)}")
1015 local parent=ltx.__tag.tables['g__tag_struct_'..i..'_prop']['parentnum']
1016 if parent then
1017 __tag_log (i..': '.. t..':'..tNS,loglevel)
1018 __tag_log (i..': '.. r..':'..rNS,loglevel)
1019 __tag_log (i..': '.. p..':'..pNS,loglevel)
1020 __tag_log ('parent of ' ..i..': '.. parent,loglevel)
1021 if p == 'STASHED' then
1022 check_update_stashed (i,loglevel,0)
1023 p,pNS=
1024 string.match(ltx.__tag.tables['g__tag_struct_'..i..'_prop']['parentrole'], "{(.-

183

)}{(.-)}")
1025 end
1026 local pt,ptNS=
1027 string.match(ltx.__tag.tables['g__tag_struct_'..parent..'_prop']['tag'], "{(.-

)}{(.-)}")
1028 local pr,prNS=
1029 string.match(ltx.__tag.tables['g__tag_struct_'..parent..'_prop']['rolemap'], "{(.-

)}{(.-)}")
1030 local pp,ppNS=
1031 string.match(ltx.__tag.tables['g__tag_struct_'..parent..'_prop']['parentrole'], "{(.-

)}{(.-)}")
1032 if pp == 'STASHED' then
1033 check_update_stashed (parent,loglevel,0)
1034 pp,ppNS=
1035 string.match(ltx.__tag.tables['g__tag_struct_'..parent..'_prop']['parentrole'], "{(.-

)}{(.-)}")
1036 end
1037 __tag_log (parent..': '.. pt..':'..ptNS,loglevel)
1038 __tag_log (parent..': '.. pr..':'..prNS,loglevel)
1039 __tag_log (parent..': '.. pp..':'..ppNS,loglevel)
1040 -- now check the rule.
1041 -- at first rolemap of child against rolemap of parent.
1042 local state=ltx.__tag.func.role_get_parent_child_rule (pr,r)
1043 __tag_log ('rule of '..pr.."->"..r..' is '..state,loglevel)
1044 -- if the state is 7 we check against parentrole of the parent
1045 if state == 7 then
1046 state=ltx.__tag.func.role_get_parent_child_rule (pp,r)
1047 __tag_log ('Parent-Child relation '..pp.."->"..r..' is '..state,loglevel)
1048 end
1049 if state == 0 then
1050 __tag_log
1051 ('Warning: Parent-Child relation '
1052 ..ptNS..':'..pt..' -> '..tNS..':'..t..' is unknown',0)
1053 __tag_log
1054 ('Structure ' ..parent..' -> '..i,0)
1055 end
1056 if state == -1 then
1057 __tag_log
1058 ('Warning: Parent-Child relation '
1059 ..ptNS..':'..pt..' -> '..tNS..':'..t..' is not allowed',0)
1060 __tag_log
1061 ('Structure ' ..parent..' -> '..i,0)
1062 end
1063 -- check also for MC
1064 state =ltx.__tag.func.role_get_parent_child_rule (r ,'MC')
1065 local curtag=r
1066 if state == 7 then
1067 state =ltx.__tag.func.role_get_parent_child_rule (p ,'MC')
1068 local curtag=p
1069 end
1070 if state == -1 then
1071 if ltx.__tag.struct[i] and NEXT(ltx.__tag.struct[i]) then
1072 __tag_log
1073 ('Warning: Real content (MC) is not allowed in ' ..curtag,0)

184

1074 end
1075 end
1076 __tag_log('=======================================',loglevel)
1077 end
1078 end -- end for
1079 end
1080

1081 ltx.__tag.func.check_parent_child_rules=check_parent_child_rules
1082

(End of definition for check_update_stashed , check_parent_child_rules , and ltx.__tag.func.check_­
parent_child_rules. These functions are documented on page ??.)

9 Link annotations
If the linksplit code has been loaded we use it to add the OBJR of links to the structure
tree.

1083 if luatexbase.callbacktypes['linksplit'] then
1084 luatexbase.add_to_callback('linksplit', function(start_link, position)
1085 if start_link == nil then return end
1086 local structnum =
1087 node.get_attribute(start_link,luatexbase.attributes.g__tag_structnum_attr)
1088 if structnum and structnum > -1 then
1089 local s = ltx.__tag.tables['g__tag_struct_'..structnum..'_prop']['rolemap']
1090 if s and (string.find(s,'Link') or string.find(s,'Reference')) then
1091 local struct_insert_annot_shipout = token.create'__tag_struct_insert_annot_shipout:nnn'
1092 local parentnum = tex.count['c@g__tag_parenttree_obj_int']
1093 start_link.link_attr =
1094 start_link.link_attr ..
1095 ' /LTEX_position /' .. position ..
1096 '/StructParent ' .. parentnum
1097 tex.sprint(catlatex,struct_insert_annot_shipout,'{'..
1098 structnum..'}{'..
1099 start_link.objnum..' 0 R}{'..
1100 parentnum ..'}')
1101 -- the counter must be set explicitly as struct_insert_annot_shipout doesn't do it!
1102 tex.setcount('global','c@g__tag_parenttree_obj_int',parentnum +1)
1103 __tag_log(position .. " link part has object id " .. start_link.objnum .. " and structparent id " .. parentnum,2)
1104 else
1105 __tag_log('Warning: Link not in Link or Reference structure element',0)
1106 __tag_log('OBJR not created',0)
1107 __tag_log('',0)
1108 end
1109 end
1110 end, 'tagpdf')
1111 end

1112 ⟨/lua⟩

The tagpdf-roles module
Tags, roles and namespace code
Part of the tagpdf package

Ulrike Fischer
Version 0.99x, released 2026-01-12

185

Part X

add-new-tag (setup-key)
tag (rolemap-key)
namespace (rolemap-key)
role (rolemap-key)
role-namespace (rolemap-key)

The add-new-tag key can be used in \tagpdfsetup to declare and rolemap new tags. It
takes as value a key-value list or a simple new-tag/old-tag.

The key-value list knows the following keys:

tag This is the name of the new tag as it should then be used in \tagstructbegin.

namespace This is the namespace of the new tag. The value should be a shorthand of a
namespace. The allowed values are currently pdf, pdf2, mathml,latex, latex-book
and user. The default value (and recommended value for a new tag) is user. The
public name of the user namespace is tag/NS/user. This can be used to reference
the namespace e.g. in attributes.

role This is the tag the tag should be mapped too. In a PDF 1.7 or earlier this is
normally a tag from the pdf set, in PDF 2.0 from the pdf, pdf2 and mathml set.
It can also be a user tag. The tag must be declared before, as the code retrieves
the class of the new tag from it. The PDF format allows mapping to be done
transitively. But tagpdf can’t/won’t check such unusual role mapping.

role-namespace If the role is a known tag the default value is the default namespace of
this tag. With this key a specific namespace can be forced.

Namespaces are mostly a PDF 2.0 property, but it doesn’t harm to set them also in
a PDF 1.7 or earlier.

\tag_check_child:nnTF {⟨tag⟩} {⟨namespace⟩} {⟨true code⟩} {⟨false code⟩}

This checks if the tag ⟨tag⟩ from the name space ⟨namespace⟩ can be used at the current
position. In tagpdf-base it is always true.

\tag_check_child:nnTF

1 ⟨@@=tag⟩
2 ⟨∗header⟩
3 \ProvidesExplPackage {tagpdf-roles-code} {2026-01-12} {0.99x}
4 {part of tagpdf - code related to roles and structure names}
5 ⟨/header⟩

1 Code related to roles and structure names
6 ⟨∗package⟩

1.1 Variables
Tags are used in structures (\tagstructbegin) and mc-chunks (\tagmcbegin).

They have a name (a string), in lua a number (for the lua attribute), and in PDF
2.0 belong to one or more name spaces, with one being the default name space.

186

Tags of structures are classified, e.g. as grouping, inline or block level structure (and a
few special classes like lists and tables), and must follow containments rules depending on
their classification (for example a inline structure can not contain a block level structure).
New tags inherit their classification from their rolemapping to the standard namespaces
(pdf and/or pdf2). We store this classification as it will probably be needed for tests but
currently the data is not much used. The classification for math (and the containment
rules) is unclear currently and so not set.

The attribute number is only relevant in lua and only for the MC chunks (so tags
with the same name from different names spaces can have the same number), and so only
stored if luatex is detected.

Due to the namespaces the storing and processing of tags and there data are different
in various places for PDF 2.0 and PDF <2.0, which makes things a bit difficult and leads
to some duplications. Perhaps at some time there should be a clear split.

This are the main variables used by the code:

\g__tag_role_tags_NS_prop This is the core list of tag names. It uses tags as keys and
the shorthand (e.g. pdf2, or mathml) of the default name space as value.
In pdf 2.0 the value is needed in the structure dictionaries.

\g__tag_role_tags_class_prop This contains for each tag a classification type. It is
used in pdf <2.0.

\g__tag_role_NS_prop This contains the names spaces. The values are the object ref­
erences. They are used in pdf 2.0.

\g__tag_role_rolemap_prop This contains for each tag the role to a standard tag. It
is used in pdf<2.0 for tag checking and to fill at the end the RoleMap dictionary.

g_@@_role/RoleMap_dict This dictionary contains the standard rolemaps. It is relevant
only for pdf <2.0.

\g__tag_role_NS_<ns>_prop This prop contains the tags of a name space and their role.
The props are also use for remapping. As value they contain two brace groups: tag
and namespace. In pdf <2.0 the namespace is empty.

\g__tag_role_NS_<ns>_class_prop This prop contains the tags of a name space and
their type. The value is only needed for pdf 2.0.

\g__tag_role_index_prop This prop contains the standard tags (pdf in pdf<2.0,
pdf,pdf2 + mathml in pdf 2.0) as keys, the values are a two-digit number. These
numbers are used to get the containment rule of two tags from the intarray.

\g__tag_role_tags_NS_prop This is the core list of tag names. It uses tags as keys and the shorthand (e.g. pdf2, or
mathml) of the default name space as value. We store the default name space also in pdf
<2.0, even if not needed: it doesn’t harm and simplifies the code. There is no need to
access this from lua, so we use the standard prop commands.

7 \prop_new_linked:N \g__tag_role_tags_NS_prop

(End of definition for \g__tag_role_tags_NS_prop.)

\g__tag_role_tags_class_prop With pdf 2.0 we store the class in the NS dependent props. With pdf <2.0 we store for
now the type(s) of a tag in a common prop. Tags that are rolemapped should get the
type from the target.

187

8 \prop_new:N \g__tag_role_tags_class_prop

(End of definition for \g__tag_role_tags_class_prop.)

\g__tag_role_NS_prop This holds the list of supported name spaces. The keys are the name tagpdf will use, the
values the object reference. The urls identifier are stored in related dict object.

mathml http://www.w3.org/1998/Math/MathML

pdf2 http://iso.org/pdf2/ssn

pdf http://iso.org/pdf/ssn (default)

user \c__tag_role_userNS_id_str (random id, for user tags)

latex https://www.latex-project.org/ns/dflt

latex-book https://www.latex-project.org/ns/book

More namespaces are possible and their objects references and their rolemaps must be
collected so that an array can be written to the StructTreeRoot at the end (see tagpdf-
tree). We use a prop to store the object reference as it will be needed rather often.

9 \prop_new:N \g__tag_role_NS_prop

(End of definition for \g__tag_role_NS_prop.)

\g__tag_role_index_prop This prop contains the standard tags (pdf in pdf<2.0, pdf,pdf2 + mathml in pdf 2.0) as
keys, the values are a two-digit number. These numbers are used to get the containment
rule of two tags from the intarray.

10 \prop_new:N \g__tag_role_index_prop

(End of definition for \g__tag_role_index_prop.)

\l__tag_role_debug_prop This variable is used to pass more infos to debug messages.

11 \prop_new:N \l__tag_role_debug_prop

(End of definition for \l__tag_role_debug_prop.)

We need also a bunch of temporary variables.

\l__tag_role_tag_tmpa_tl
\l__tag_role_tag_namespace_tmpa_tl

\l__tag_role_tag_namespace_tmpb_tl %
\l__tag_role_role_tmpa_tl

\l__tag_role_role_namespace_tmpa_tl
\l__tag_role_tmpa_seq

12 \tl_new:N \l__tag_role_tag_tmpa_tl
13 \tl_new:N \l__tag_role_tag_namespace_tmpa_tl
14 \tl_new:N \l__tag_role_tag_namespace_tmpb_tl
15 \tl_new:N \l__tag_role_role_tmpa_tl
16 \tl_new:N \l__tag_role_role_namespace_tmpa_tl
17 \seq_new:N\l__tag_role_tmpa_seq

(End of definition for \l__tag_role_tag_tmpa_tl and others.)

188

1.2 Namespaces
The following commands setups a name space. With pdf version <2.0 this is only a
prop with the rolemap. With pdf 2.0 a dictionary must be set up. Such a name space
dictionaries can contain an optional /Schema and /RoleMapNS entry. We only reserve the
objects but delay the writing to the finish code, where we can test if the keys and the
name spaces are actually needed. This commands setups objects for the name space and
its rolemap. It also initialize a dict to collect the rolemaps if needed, and a property with
the tags of the name space and their rolemapping for loops. It is unclear if a reference
to a schema file will be ever needed, but it doesn’t harm ….

g__tag_role/RoleMap_dict
\g__tag_role_rolemap_prop

This is the object which contains the normal RoleMap. It is probably not needed in pdf
2.0 but currently kept.

18 \pdfdict_new:n {g__tag_role/RoleMap_dict}
19 __tag_prop_new:N \g__tag_role_rolemap_prop

(End of definition for g__tag_role/RoleMap_dict and \g__tag_role_rolemap_prop.)

__tag_role_NS_new:nnn {⟨shorthand⟩} {⟨URI-ID⟩} {⟨Schema⟩}__tag_role_NS_new:nnn

__tag_role_NS_new:nnn

20 \pdf_version_compare:NnTF < {2.0}
21 {
22 \cs_new_protected:Npn __tag_role_NS_new:nnn #1 #2 #3
23 {
24 __tag_prop_new:c { g__tag_role_NS_#1_prop }
25 \prop_new:c { g__tag_role_NS_#1_class_prop }
26 \prop_gput:Nne \g__tag_role_NS_prop {#1}{}
27 }
28 }
29 {
30 \cs_new_protected:Npn __tag_role_NS_new:nnn #1 #2 #3
31 {
32 __tag_prop_new:c { g__tag_role_NS_#1_prop }
33 \prop_new:c { g__tag_role_NS_#1_class_prop }
34 \pdf_object_new:n {tag/NS/#1}
35 \pdfdict_new:n {g__tag_role/Namespace_#1_dict}
36 \pdf_object_new:n {__tag/RoleMapNS/#1}
37 \pdfdict_new:n {g__tag_role/RoleMapNS_#1_dict}
38 \pdfdict_gput:nnn
39 {g__tag_role/Namespace_#1_dict}
40 {Type}
41 {/Namespace}
42 \pdf_string_from_unicode:nnN{utf8/string}{#2}\l__tag_tmpa_str
43 \tl_if_empty:NF \l__tag_tmpa_str
44 {
45 \pdfdict_gput:nne
46 {g__tag_role/Namespace_#1_dict}
47 {NS}
48 {\l__tag_tmpa_str}

189

49 }
50 %RoleMapNS is added in tree
51 \tl_if_empty:nF {#3}
52 {
53 \pdfdict_gput:nne{g__tag_role/Namespace_#1_dict}
54 {Schema}{#3}
55 }
56 \prop_gput:Nne \g__tag_role_NS_prop {#1}{\pdf_object_ref:n{tag/NS/#1}~}
57 }
58 }

(End of definition for __tag_role_NS_new:nnn.)

We need an id for the user space. For the tests it should be possible to set it to a fix
value. So we use random numbers which can be fixed by setting a seed. We fake a sort
of GUID but do not try to be really exact as it doesn’t matter ...

\c__tag_role_userNS_id_str

59 \str_const:Ne \c__tag_role_userNS_id_str
60 { data:,
61 \int_to_Hex:n{\int_rand:n {65535}}
62 \int_to_Hex:n{\int_rand:n {65535}}
63 -
64 \int_to_Hex:n{\int_rand:n {65535}}
65 -
66 \int_to_Hex:n{\int_rand:n {65535}}
67 -
68 \int_to_Hex:n{\int_rand:n {65535}}
69 -
70 \int_to_Hex:n{\int_rand:n {16777215}}
71 \int_to_Hex:n{\int_rand:n {16777215}}
72 }

(End of definition for \c__tag_role_userNS_id_str.)

Now we setup the standard names spaces. The mathml space is loaded also for pdf < 2.0
but not added to RoleMap unless a boolean is set to true with tagpdf-setup{mathml-
tags}.

73 \bool_new:N \g__tag_role_add_mathml_bool
74 __tag_role_NS_new:nnn {pdf} {http://iso.org/pdf/ssn}{}
75 __tag_role_NS_new:nnn {pdf2} {http://iso.org/pdf2/ssn}{}
76 __tag_role_NS_new:nnn {mathml}{http://www.w3.org/1998/Math/MathML}{}
77 __tag_role_NS_new:nnn {latex} {https://www.latex-project.org/ns/dflt}{}
78 __tag_role_NS_new:nnn {latex-book} {https://www.latex-project.org/ns/book}{}
79 \exp_args:Nne
80 __tag_role_NS_new:nnn {user}{\c__tag_role_userNS_id_str}{}

1.3 Adding a new tag
Both when reading the files and when setting up a tag manually we have to store data
in various places.

190

__tag_role_alloctag:nnn This command allocates a new tag without role mapping. In the lua backend it will also
record the attribute value.

81 \pdf_version_compare:NnTF < {2.0}
82 {
83 \sys_if_engine_luatex:TF
84 {
85 \cs_new_protected:Npn __tag_role_alloctag:nnn #1 #2 #3 %#1 tagname, ns, type
86 {
87 \lua_now:e { ltx.__tag.func.alloctag ('#1') }
88 \prop_gput:Nnn \g__tag_role_tags_NS_prop {#1}{#2}
89 __tag_prop_gput:cnn {g__tag_role_NS_#2_prop} {#1}{{}{}}
90 \prop_gput:Nnn \g__tag_role_tags_class_prop {#1}{#3}
91 \prop_gput:cnn {g__tag_role_NS_#2_class_prop} {#1}{--UNUSED--}
92 }
93 }
94 {
95 \cs_new_protected:Npn __tag_role_alloctag:nnn #1 #2 #3
96 {
97 \prop_gput:Nnn \g__tag_role_tags_NS_prop {#1}{#2}
98 __tag_prop_gput:cnn {g__tag_role_NS_#2_prop} {#1}{{}{}}
99 \prop_gput:Nnn \g__tag_role_tags_class_prop {#1}{#3}

100 \prop_gput:cnn {g__tag_role_NS_#2_class_prop} {#1}{--UNUSED--}
101 }
102 }
103 }
104 {
105 \sys_if_engine_luatex:TF
106 {
107 \cs_new_protected:Npn __tag_role_alloctag:nnn #1 #2 #3 %#1 tagname, ns, type
108 {
109 \lua_now:e { ltx.__tag.func.alloctag ('#1') }
110 \prop_gput:Nnn \g__tag_role_tags_NS_prop {#1}{#2}
111 __tag_prop_gput:cnn {g__tag_role_NS_#2_prop} {#1}{{}{}}
112 \prop_gput:Nnn \g__tag_role_tags_class_prop {#1}{--UNUSED--}
113 \prop_gput:cnn {g__tag_role_NS_#2_class_prop} {#1}{#3}
114 }
115 }
116 {
117 \cs_new_protected:Npn __tag_role_alloctag:nnn #1 #2 #3
118 {
119 \prop_gput:Nnn \g__tag_role_tags_NS_prop {#1}{#2}
120 __tag_prop_gput:cnn {g__tag_role_NS_#2_prop} {#1}{{}{}}
121 \prop_gput:Nnn \g__tag_role_tags_class_prop {#1}{--UNUSED--}
122 \prop_gput:cnn {g__tag_role_NS_#2_class_prop} {#1}{#3}
123 }
124 }
125 }
126 \cs_generate_variant:Nn __tag_role_alloctag:nnn {nno}

(End of definition for __tag_role_alloctag:nnn.)

191

1.3.1 pdf 1.7 and earlier

__tag_role_add_tag:nn The pdf 1.7 version has only two arguments: new and rolemap name. The role must be
an existing tag and should not be empty. We allow to change the role of an existing tag:
as the rolemap is written at the end not confusion can happen.

127 \cs_new_protected:Nn __tag_role_add_tag:nn % (new) name, reference to old
128 {

checks and messages

129 __tag_check_add_tag_role:nn {#1}{#2}
130 \prop_get:NnNF \g__tag_role_tags_NS_prop {#1}\l__tag_tmp_unused_tl
131 {
132 \int_compare:nNnT {\l__tag_loglevel_int} > { 0 }
133 {
134 \msg_info:nnn { tag }{new-tag}{#1}
135 }
136 }

now the addition

137 \prop_get:NnNF \g__tag_role_tags_class_prop {#2}\l__tag_tmpa_tl
138 {
139 \tl_set:Nn\l__tag_tmpa_tl{--UNKNOWN--}
140 }
141 __tag_role_alloctag:nno {#1}{user} { \l__tag_tmpa_tl }

We resolve rolemapping recursively so that all targets are stored as standard tags.

142 \tl_if_empty:nF { #2 }
143 {
144 \prop_get:NnNTF \g__tag_role_rolemap_prop {#2}\l__tag_tmpa_tl
145 {
146 __tag_prop_gput:Nno \g__tag_role_rolemap_prop {#1}{\l__tag_tmpa_tl}
147 }
148 {
149 __tag_prop_gput:Nne \g__tag_role_rolemap_prop {#1}{\tl_to_str:n{#2}}
150 }
151 }
152 }
153 \cs_generate_variant:Nn __tag_role_add_tag:nn {oo,ne}

(End of definition for __tag_role_add_tag:nn.)

For the parent-child test we must be able to get the role. We use the same number of
arguments as for the 2.0 command. If there is no role, we assume a standard tag. Note:
this is quite fast and a move to lua doesn’t improve speed.

__tag_role_get:nnNN

154 \pdf_version_compare:NnT < {2.0}
155 {
156 \cs_new:Npn __tag_role_get:nnNN #1#2#3#4 %#1 tag, #2 NS, #3 tlvar which hold the role tag #4 empty

192

157 {
158 \prop_get:NnNF \g__tag_role_rolemap_prop {#1}#3
159 {
160 \tl_set:Nn #3 {#1}
161 }
162 \tl_set:Nn #4 {}
163 }
164 \cs_generate_variant:Nn __tag_role_get:nnNN {ooNN}
165 }
166

(End of definition for __tag_role_get:nnNN.)

1.3.2 The pdf 2.0 version

__tag_role_add_tag:nnnn The pdf 2.0 version takes four arguments: tag/namespace/role/namespace

167 \cs_new_protected:Nn __tag_role_add_tag:nnnn %tag/namespace/role/namespace
168 {
169 __tag_check_add_tag_role:nnn {#1/#2}{#3}{#4}
170 \int_compare:nNnT {\l__tag_loglevel_int} > { 0 }
171 {
172 \msg_info:nnn { tag }{new-tag}{#1}
173 }
174 \prop_if_exist:cTF
175 { g__tag_role_NS_#4_class_prop }
176 {
177 \prop_get:cnN { g__tag_role_NS_#4_class_prop } {#3}\l__tag_tmpa_tl
178 \quark_if_no_value:NT \l__tag_tmpa_tl
179 {
180 \tl_set:Nn\l__tag_tmpa_tl{--UNKNOWN--}
181 }
182 }
183 { \tl_set:Nn\l__tag_tmpa_tl{--UNKNOWN--} }
184 __tag_role_alloctag:nno {#1}{#2}{ \l__tag_tmpa_tl }

Do not remap standard tags. TODO add warning?

185 \tl_if_in:nnF {-pdf-pdf2-mathml-}{-#2-}
186 {
187 \pdfdict_gput:nne {g__tag_role/RoleMapNS_#2_dict}{#1}
188 {
189 [
190 \pdf_name_from_unicode_e:n{#3}
191 \c_space_tl
192 \pdf_object_ref:n {tag/NS/#4}
193]
194 }
195 }

We resolve rolemapping recursively so that all targets are stored as standard tags for the
tests.

193

196 \tl_if_empty:nF { #2 }
197 {
198 \prop_get:cnN { g__tag_role_NS_#4_prop } {#3}\l__tag_tmpa_tl
199 \quark_if_no_value:NTF \l__tag_tmpa_tl
200 {
201 __tag_prop_gput:cne { g__tag_role_NS_#2_prop } {#1}
202 {{\tl_to_str:n{#3}}{\tl_to_str:n{#4}}}
203 }
204 {
205 __tag_prop_gput:cno { g__tag_role_NS_#2_prop } {#1}{\l__tag_tmpa_tl}
206 }
207 }

We also store into the pdf 1.7 rolemapping so that we can add that as fallback for pdf
1.7 processor

208 \bool_if:NT \l__tag_role_update_bool
209 {
210 \tl_if_empty:nF { #3 }
211 {
212 \tl_if_eq:nnF{#1}{#3}
213 {
214 \prop_get:NnN \g__tag_role_rolemap_prop {#3}\l__tag_tmpa_tl
215 \quark_if_no_value:NTF \l__tag_tmpa_tl
216 {
217 __tag_prop_gput:Nne \g__tag_role_rolemap_prop {#1}{\tl_to_str:n{#3}}
218 }
219 {
220 __tag_prop_gput:Nno \g__tag_role_rolemap_prop {#1}{\l__tag_tmpa_tl}
221 }
222 }
223 }
224 }
225 }
226 \cs_generate_variant:Nn __tag_role_add_tag:nnnn {oooo}

(End of definition for __tag_role_add_tag:nnnn.)

For the parent-child test we must be able to get the role. We use the same number
of arguments as for the <2.0 command. Note: this is quite fast and a move to lua doesn’t
improve speed.

__tag_role_get:nnNN

227 \pdf_version_compare:NnF < {2.0}
228 {
229 \cs_new:Npn __tag_role_get:nnNN #1#2#3#4
230 %#1 tag, #2 NS,
231 %#3 tlvar which hold the role tag
232 %#4 tlvar which hold the name of the target NS
233 {
234 \prop_if_exist:cTF {g__tag_role_NS_#2_prop}
235 {
236 \prop_get:cnNTF {g__tag_role_NS_#2_prop} {#1}\l__tag_get_tmpc_tl

194

237 {
238 \tl_set:Ne #3 {\exp_last_unbraced:No\use_i:nn {\l__tag_get_tmpc_tl}}
239 \tl_set:Ne #4 {\exp_last_unbraced:No\use_ii:nn {\l__tag_get_tmpc_tl}}
240 }
241 {
242 \msg_warning:nnn { tag } {role-unknown-tag} { #1 }
243 \tl_set:Nn #3 {#1}
244 \tl_set:Nn #4 {#2}
245 }
246 }
247 {
248 \msg_warning:nnn { tag } {role-unknown-NS} { #2 }
249 \tl_set:Nn #3 {#1}
250 \tl_set:Nn #4 {#2}
251 }
252 }
253 \cs_generate_variant:Nn __tag_role_get:nnNN {ooNN}
254 }

(End of definition for __tag_role_get:nnNN.)

1.4 Helper command to read the data from files
In this section we setup the helper command to read namespace files.

__tag_role_read_namespace_line:nw This command will process a line in the name space file. The first argument is the name
of the name space. The definition differ for pdf 2.0. as we have proper name spaces
there. With pdf<2.0 special name spaces shouldn’t update the default role or add to the
rolemap again, they only store the values for later uses. We use a boolean here.

255 \bool_new:N\l__tag_role_update_bool
256 \bool_set_true:N \l__tag_role_update_bool

257 \pdf_version_compare:NnTF < {2.0}
258 {
259 \cs_new_protected:Npn __tag_role_read_namespace_line:nw #1#2,#3,#4,#5,#6\q_stop %
260 % #1 NS, #2 tag, #3 rolemap, #4 NS rolemap #5 type
261 {
262 \tl_if_empty:nF { #2 }
263 {
264 \bool_if:NTF \l__tag_role_update_bool
265 {
266 \tl_if_empty:nTF {#5}
267 {
268 \prop_get:NnN \g__tag_role_tags_class_prop {#3}\l__tag_tmpa_tl
269 \quark_if_no_value:NT \l__tag_tmpa_tl
270 {
271 \tl_set:Nn\l__tag_tmpa_tl{--UNKNOWN--}
272 }
273 }
274 {
275 \tl_set:Nn \l__tag_tmpa_tl {#5}
276 }
277 __tag_role_alloctag:nno {#2} {#1} { \l__tag_tmpa_tl }

195

278 \tl_if_eq:nnF {#2}{#3}
279 {
280 __tag_role_add_tag:nn {#2}{#3}
281 }
282 __tag_prop_gput:cnn {g__tag_role_NS_#1_prop} {#2}{{#3}{}}
283 }
284 {
285 __tag_prop_gput:cnn {g__tag_role_NS_#1_prop} {#2}{{#3}{}}
286 \prop_gput:cnn {g__tag_role_NS_#1_class_prop} {#2}{--UNUSED--}
287 }
288 }
289 }
290 }
291 {
292 \cs_new_protected:Npn __tag_role_read_namespace_line:nw #1#2,#3,#4,#5,#6\q_stop %
293 % #1 NS, #2 tag, #3 rolemap, #4 NS rolemap #5 type
294 {
295 \tl_if_empty:nF {#2}
296 {
297 \tl_if_empty:nTF {#5}
298 {
299 \prop_get:cnN { g__tag_role_NS_#4_class_prop } {#3}\l__tag_tmpa_tl
300 \quark_if_no_value:NT \l__tag_tmpa_tl
301 {
302 \tl_set:Nn\l__tag_tmpa_tl{--UNKNOWN--}
303 }
304 }
305 {
306 \tl_set:Nn \l__tag_tmpa_tl {#5}
307 }
308 __tag_role_alloctag:nno {#2} {#1} { \l__tag_tmpa_tl }
309 \bool_lazy_and:nnT
310 { ! \tl_if_empty_p:n {#3} }{! \str_if_eq_p:nn {#1}{pdf2}}
311 {
312 __tag_role_add_tag:nnnn {#2}{#1}{#3}{#4}
313 }
314 __tag_prop_gput:cnn {g__tag_role_NS_#1_prop} {#2}{{#3}{#4}}
315 }
316 }
317 }

(End of definition for __tag_role_read_namespace_line:nw.)

__tag_role_read_namespace:nn This command reads a namespace file in the format tagpdf-ns-XX.def

318 \cs_new_protected:Npn __tag_role_read_namespace:nn #1 #2 %name of namespace #2 name of file
319 {
320 \prop_if_exist:cF {g__tag_role_NS_#1_prop}
321 { \msg_warning:nnn {tag}{namespace-unknown}{#1} }
322 \file_if_exist:nTF { tagpdf-ns-#2.def }
323 {
324 \ior_open:Nn \g_tmpa_ior {tagpdf-ns-#2.def}
325 \msg_info:nnn {tag}{read-namespace}{#2}
326 \ior_map_inline:Nn \g_tmpa_ior

196

327 {
328 __tag_role_read_namespace_line:nw {#1} ##1,,,,\q_stop
329 }
330 \ior_close:N\g_tmpa_ior
331 }
332 {
333 \msg_info:nnn{tag}{namespace-missing}{#2}
334 }
335 }
336

(End of definition for __tag_role_read_namespace:nn.)

__tag_role_read_namespace:n This command reads the default namespace file.

337 \cs_new_protected:Npn __tag_role_read_namespace:n #1 %name of namespace
338 {
339 __tag_role_read_namespace:nn {#1}{#1}
340 }

(End of definition for __tag_role_read_namespace:n.)

1.5 Reading the default data
The order is important as we want pdf2 and latex as default: if two namespace define the
same tag, the last one defines which one is used if the namespace is not explicitly given.

341 __tag_role_read_namespace:n {pdf}
342 __tag_role_read_namespace:n {pdf2}
343 __tag_role_read_namespace:n {mathml}

in pdf 1.7 the following namespaces should only store the settings for later use:

344 \bool_set_false:N\l__tag_role_update_bool
345 __tag_role_read_namespace:n {latex-book}
346 \bool_set_true:N\l__tag_role_update_bool
347 __tag_role_read_namespace:n {latex}
348 __tag_role_read_namespace:nn {latex} {latex-lab}
349 __tag_role_read_namespace:n {pdf}
350 __tag_role_read_namespace:n {pdf2}

But is the class provides a \chapter command then we switch

351 \pdf_version_compare:NnTF < {2.0}
352 {
353 \hook_gput_code:nnn {begindocument}{tagpdf}
354 {
355 \bool_lazy_and:nnT
356 {
357 \cs_if_exist_p:N \chapter
358 }
359 {
360 \cs_if_exist_p:N \c@chapter
361 }
362 {

197

363 \prop_map_inline:cn{g__tag_role_NS_latex-book_prop}
364 {
365 __tag_role_add_tag:ne {#1}{\use_i:nn #2\c_empty_tl\c_empty_tl}
366 }
367 }
368 }
369 }
370 {
371 \hook_gput_code:nnn {begindocument}{tagpdf}
372 {
373 \bool_lazy_and:nnT
374 {
375 \cs_if_exist_p:N \chapter
376 }
377 {
378 \cs_if_exist_p:N \c@chapter
379 }
380 {
381 \prop_map_inline:cn{g__tag_role_NS_latex-book_prop}
382 {
383 \prop_gput:Nnn \g__tag_role_tags_NS_prop { #1 }{ latex-book }
384 __tag_prop_gput:Nne
385 \g__tag_role_rolemap_prop {#1}{\use_i:nn #2\c_empty_tl\c_empty_tl}
386 }
387 }
388 }
389 }

1.6 Parent-child rules
PDF define various rules about which tag can be a child of another tag. The following
code implements the matrix to allow to use it in tests.

\g__tag_role_parent_child_intarray This intarray will store the rule as a number. For parent nm and child ij (n,m,i,j digits)
the rule is at position nmij. As we have around 56 tags, we need roughly a size 6000.

390 \intarray_new:Nn \g__tag_role_parent_child_intarray {6000}

(End of definition for \g__tag_role_parent_child_intarray.)

\c__tag_role_rules_prop
\c__tag_role_rules_num_prop

These two properties map the rule strings to numbers and back. There are in tagpdf-
data.dtx near the csv files for easier maintenance.
(End of definition for \c__tag_role_rules_prop and \c__tag_role_rules_num_prop.)

__tag_store_parent_child_rule:nnn The helper command is used to store the rule. It assumes that parent and child are given
as 2-digit number!

391 \sys_if_engine_luatex:TF
392 {
393 \cs_new_protected:Npn __tag_store_parent_child_rule:nnn #1 #2 #3 % num parent, num child, #3 string
394 {
395 \prop_get:NeNTF \c__tag_role_rules_prop{#3} \l__tag_tmp_unused_tl
396 {
397 \intarray_gset:Nnn \g__tag_role_parent_child_intarray

198

398 { #1#2 }{0\l__tag_tmp_unused_tl}
399 \lua_now:e
400 {
401 ltx.__tag.role.matrix[#1] = ltx.__tag.role.matrix[#1] or {}
402 ltx.__tag.role.matrix[#1][#2] = 0\l__tag_tmp_unused_tl
403 }
404 }
405 {
406 \intarray_gset:Nnn \g__tag_role_parent_child_intarray
407 { #1#2 }{0}
408 \lua_now:e
409 {
410 ltx.__tag.role.matrix[#1] = ltx.__tag.role.matrix[#1] or {}
411 ltx.__tag.role.matrix[#1][#2] = 0
412 }
413 }
414 }
415 }
416 {
417 \cs_new_protected:Npn __tag_store_parent_child_rule:nnn #1 #2 #3 % num parent, num child, #3 string
418 {
419 \prop_get:NeNTF \c__tag_role_rules_prop{#3} \l__tag_tmp_unused_tl
420 {
421 \intarray_gset:Nnn \g__tag_role_parent_child_intarray
422 { #1#2 }{0\l__tag_tmp_unused_tl}
423 }
424 {
425 \intarray_gset:Nnn \g__tag_role_parent_child_intarray
426 { #1#2 }{0}
427 }
428 }
429 }

(End of definition for __tag_store_parent_child_rule:nnn.)

1.6.1 Reading in the csv-files

This counter will be used to identify the first (non-comment) line

430 \int_zero:N \l__tag_tmpa_int

Open the file depending on the PDF version

431 \pdf_version_compare:NnTF < {2.0}
432 {
433 \ior_open:Nn \g_tmpa_ior {tagpdf-parent-child.csv}
434 }
435 {
436 \ior_open:Nn \g_tmpa_ior {tagpdf-parent-child-2.csv}
437 }

Now the main loop over the file

438 \ior_map_inline:Nn \g_tmpa_ior
439 {

199

ignore lines containing only comments

440 \tl_if_empty:nF{#1}
441 {

count the lines ...

442 \int_incr:N\l__tag_tmpa_int

put the line into a seq. Attention! empty cells are dropped.

443 \seq_set_from_clist:Nn\l__tag_tmpa_seq { #1 }
444 \int_compare:nNnTF {\l__tag_tmpa_int}=1

This handles the header line. It gives the tags 2-digit numbers.

445 {
446 \seq_map_indexed_inline:Nn \l__tag_tmpa_seq
447 {
448 \prop_gput:Nne\g__tag_role_index_prop
449 {##2}
450 {\int_compare:nNnT{##1}<{10}{0}##1}
451 }
452 }

now the data lines.

453 {
454 \seq_set_from_clist:Nn\l__tag_tmpa_seq { #1 }

get the name of the child tag from the first column

455 \seq_pop_left:NN\l__tag_tmpa_seq\l__tag_tmpa_tl

get the number of the child, and store it in \l__tag_tmpb_tl

456 \prop_get:NoN \g__tag_role_index_prop { \l__tag_tmpa_tl } \l__tag_tmpb_tl

remove column 2+3

457 \seq_pop_left:NN\l__tag_tmpa_seq\l__tag_tmpa_tl
458 \seq_pop_left:NN\l__tag_tmpa_seq\l__tag_tmpa_tl

Now map over the rest. The index ##1 gives us the number of the parent, ##2 is the
data.

459 \seq_map_indexed_inline:Nn \l__tag_tmpa_seq
460 {
461 \exp_args:Nne
462 __tag_store_parent_child_rule:nnn {##1}{\l__tag_tmpb_tl}{ ##2 }
463 }
464 }
465 }
466 }

close the read handle.

467 \ior_close:N\g_tmpa_ior

200

The Root, Hn and mathml tags are special and need to be added explicitly

468 \prop_get:NnN\g__tag_role_index_prop{StructTreeRoot}\l__tag_tmpa_tl
469 \prop_gput:Nne\g__tag_role_index_prop{Root}{\l__tag_tmpa_tl}
470 \prop_get:NnN\g__tag_role_index_prop{Hn}\l__tag_tmpa_tl
471 \pdf_version_compare:NnTF < {2.0}
472 {
473 \int_step_inline:nn{6}
474 {
475 \prop_gput:Nne\g__tag_role_index_prop{H#1}{\l__tag_tmpa_tl}
476 }
477 }
478 {
479 \int_step_inline:nn{10}
480 {
481 \prop_gput:Nne\g__tag_role_index_prop{H#1}{\l__tag_tmpa_tl}
482 }

all mathml tags are currently handled identically with the exception of math and mtext

483 \prop_get:NnN\g__tag_role_index_prop {mathml}\l__tag_tmpa_tl
484 \prop_get:NnN\g__tag_role_index_prop {math}\l__tag_tmpb_tl
485 \prop_get:NnN\g__tag_role_index_prop {mtext}\l__tag_tmpc_tl
486 \prop_map_inline:Nn \g__tag_role_NS_mathml_prop
487 {
488 \prop_gput:Nno\g__tag_role_index_prop {#1} {\l__tag_tmpa_tl}
489 }
490 \prop_gput:Nno\g__tag_role_index_prop{math}{\l__tag_tmpb_tl}
491 \prop_gput:Nno\g__tag_role_index_prop{mtext}{\l__tag_tmpc_tl}
492 }
493 \sys_if_engine_luatex:T
494 {
495 \prop_map_inline:Nn\g__tag_role_index_prop
496 {
497 \lua_now:e { ltx.__tag.role.index['#1']=#2 }
498 }
499 }

1.6.2 Retrieving the parent-child rule

__tag_role_get_parent_child_rule:nnN This command retrieves the rule (as a number) and stores it in the tl-var. It assumes
that the tags in #1 and #2 are standard tags after role mapping for which a rule exist.
If the parent is one of Part, Div, NonStruct the result can be state 7, which means that
a check must be repeated for the “real parent”.
TODO check temporary variables. Check if the tl-var should be fix.

500 \tl_new:N \l__tag_parent_child_check_tl
501 \sys_if_engine_luatex:TF
502 {
503 \cs_new_protected:Npn __tag_role_get_parent_child_rule:nnN #1 #2 #3
504 % #1 parent (string, standard tag after rolemapping!)
505 % #2 child (string, standard tag after rolemapping!)
506 % #3 tl for state
507 {

201

508 \tl_set:Ne#3
509 {
510 \lua_now:e{tex.print(\int_use:N\c_document_cctab,ltx.__tag.func.role_get_parent_child_rule('#1','#2'))}
511 }

Debugging messages, this can perhaps go into debug mode.

512 \int_compare:nNnT {\l__tag_loglevel_int} > { 0 }
513 {
514 \prop_get:NoNF\c__tag_role_rules_num_prop {#3} \l__tag_tmpa_tl
515 {
516 \tl_set:Nn \l__tag_tmpa_tl {unknown}
517 }
518 \tl_set:Nn \l__tag_tmpb_tl {#1}
519 \msg_note:nneee
520 { tag }
521 { role-parent-child-result }
522 { #1 }
523 { #2 }
524 {
525 #3~(='\l__tag_tmpa_tl')
526 }
527 }
528 \int_compare:nNnT {#3} = { 0 }
529 {
530 \msg_warning:nneee
531 { tag }
532 {role-parent-child-result}
533 { #1 }
534 { #2 }
535 { unknown! }
536 }
537

538 }
539 }
540 {
541 \cs_new_protected:Npn __tag_role_get_parent_child_rule:nnN #1 #2 #3
542 % #1 parent (string, standard tag after rolemapping)
543 % #2 child (string, standard tag after rolemapping)
544 % #3 tl for state
545 {

546 \prop_get:NnN \g__tag_role_index_prop{#1}\l__tag_tmpa_tl
547 \prop_get:NnN \g__tag_role_index_prop{#2}\l__tag_tmpb_tl
548 \bool_lazy_and:nnTF
549 { ! \quark_if_no_value_p:N \l__tag_tmpa_tl }
550 { ! \quark_if_no_value_p:N \l__tag_tmpb_tl }
551 {

Get the rule from the intarray

552 \tl_set:Ne#3
553 {
554 \intarray_item:Nn

202

555 \g__tag_role_parent_child_intarray
556 {\l__tag_tmpa_tl\l__tag_tmpb_tl}
557 }
558 }
559 {
560 \tl_set:Nn#3 {0}
561 }

Debugging messages, this can perhaps go into debug mode.

562 \int_compare:nNnT {\l__tag_loglevel_int} > { 0 }
563 {
564 \prop_get:NoNF\c__tag_role_rules_num_prop {#3} \l__tag_tmpa_tl
565 {
566 \tl_set:Nn \l__tag_tmpa_tl {unknown}
567 }
568 \tl_set:Nn \l__tag_tmpb_tl {#1}
569 \msg_note:nneee
570 { tag }
571 { role-parent-child-result }
572 { #1 }
573 { #2 }
574 {
575 #3~(='\l__tag_tmpa_tl')
576 }
577 }
578 \int_compare:nNnT {#3} = { 0 }
579 {
580 \msg_warning:nneee
581 { tag }
582 {role-parent-child-result}
583 { #1 }
584 { #2 }
585 { unknown! }
586 }
587 }
588 }
589 \cs_generate_variant:Nn__tag_role_get_parent_child_rule:nnN {ooN}

(End of definition for __tag_role_get_parent_child_rule:nnN.)

__tag_role_check_parent_child:nnnnN This command rolemaps its arguments and then calls __tag_role_get_parent_­
child_rule:nnN to retrieve the parent-child rule between both. It does not try to resolve
inheritation rules of Part, Div and NonStruct but instead gives back the state 7. It is
then the task of the caller command to find the real parent and run the check again. In
pdf 2.0 the name spaces of the tags are relevant, so we have arguments for them, but in
pdf <2.0 they are ignored and can be left empty.

590 \pdf_version_compare:NnTF < {2.0}
591 {
592 \cs_new_protected:Npn __tag_role_check_parent_child:nnnnN #1 #2 #3 #4 #5
593 % #1 parent tag,% not necessarly rolemapped, but often the case
594 % #2 NS (empty in pdf 1.x)
595 % #3 child tag, % not necessarly rolemapped, but often the case

203

596 % #4 NS (empty in pdf 1.x)
597 % #5 tl var: to give the result back.
598 {

get the standard tags through rolemapping if needed at first the parent

599 \prop_get:NnNTF \g__tag_role_index_prop {#1}\l__tag_tmpa_tl
600 {
601 \tl_set:Nn \l__tag_tmpa_tl {#1}
602 }
603 {
604 \prop_get:NnNF \g__tag_role_rolemap_prop {#1}\l__tag_tmpa_tl
605 {
606 \tl_set:Nn \l__tag_tmpa_tl {\q_no_value}
607 }
608 }

now the child

609 \prop_get:NnNTF \g__tag_role_index_prop {#3}\l__tag_tmpb_tl
610 {
611 \tl_set:Nn \l__tag_tmpb_tl {#3}
612 }
613 {
614 \prop_get:NnNF \g__tag_role_rolemap_prop {#3}\l__tag_tmpb_tl
615 {
616 \tl_set:Nn \l__tag_tmpb_tl {\q_no_value}
617 }
618 }

if we got tags for parent and child we call the checking command

619 \bool_lazy_and:nnTF
620 { ! \quark_if_no_value_p:N \l__tag_tmpa_tl }
621 { ! \quark_if_no_value_p:N \l__tag_tmpb_tl }
622 {
623 __tag_role_get_parent_child_rule:ooN
624 { \l__tag_tmpa_tl}
625 { \l__tag_tmpb_tl}
626 #5
627 }
628 {
629 \tl_set:Nn #5 {0}
630 \msg_warning:nneee
631 { tag }
632 {role-parent-child-result}
633 { #1 }
634 { #3 }
635 { unknown! }
636 }
637 }
638 }

and now the pdf 2.0 version

204

639 {
640 \cs_new_protected:Npn __tag_role_check_parent_child:nnnnN #1 #2 #3 #4 #5 %tag,NS,tag,NS, tl var
641 {
642

If the namespace is empty, we assume a standard tag, otherwise we retrieve the rolemap­
ping from the namespace

643 \tl_if_empty:nTF {#2}
644 {
645 \tl_set:Nn \l__tag_tmpa_tl {#1}
646 }
647 {
648 \prop_if_exist:cTF { g__tag_role_NS_#2_prop }
649 {
650 \prop_get:cnNTF
651 { g__tag_role_NS_#2_prop }
652 {#1}
653 \l__tag_tmpa_tl
654 {
655 \tl_set:Ne \l__tag_tmpa_tl {\tl_head:N\l__tag_tmpa_tl}
656 \tl_if_empty:NT\l__tag_tmpa_tl
657 {
658 \tl_set:Nn \l__tag_tmpa_tl {#1}
659 }
660 }
661 {
662 \tl_set:Nn \l__tag_tmpa_tl {\q_no_value}
663 }
664 }
665 {
666 \msg_warning:nnn { tag } {role-unknown-NS} { #2}
667 \tl_set:Nn \l__tag_tmpa_tl {\q_no_value}
668 }
669 }

and the same for the child If the namespace is empty, we assume a standard tag, otherwise
we retrieve the rolemapping from the namespace

670 \tl_if_empty:nTF {#4}
671 {
672 \tl_set:Nn \l__tag_tmpb_tl {#3}
673 }
674 {
675 \prop_if_exist:cTF { g__tag_role_NS_#4_prop }
676 {
677 \prop_get:cnNTF
678 { g__tag_role_NS_#4_prop }
679 {#3}
680 \l__tag_tmpb_tl
681 {
682 \tl_set:Ne \l__tag_tmpb_tl { \tl_head:N\l__tag_tmpb_tl }
683 \tl_if_empty:NT\l__tag_tmpb_tl
684 {

205

685 \tl_set:Nn \l__tag_tmpb_tl {#3}
686 }
687 }
688 {
689 \tl_set:Nn \l__tag_tmpb_tl {\q_no_value}
690 }
691 }
692 {
693 \msg_warning:nnn { tag } {role-unknown-NS} { #4}
694 \tl_set:Nn \l__tag_tmpb_tl {\q_no_value}
695 }
696 }

and now get the relation

697 \bool_lazy_and:nnTF
698 { ! \quark_if_no_value_p:N \l__tag_tmpa_tl }
699 { ! \quark_if_no_value_p:N \l__tag_tmpb_tl }
700 {
701 __tag_role_get_parent_child_rule:ooN
702 { \l__tag_tmpa_tl }
703 { \l__tag_tmpb_tl }
704 #5
705 }
706 {
707 \tl_set:Nn #5 {0}
708 \msg_warning:nneee
709 { tag }
710 {role-parent-child-result}
711 { #2 : #1 }
712 { #4 : #3 }
713 { unknown! }
714 }
715 }
716 }
717 \cs_generate_variant:Nn__tag_role_check_parent_child:nnnnN {oonnN,ooooN}
718 ⟨/package⟩

(End of definition for __tag_role_check_parent_child:nnnnN.)

\tag_check_child:nnTF

719 ⟨base⟩\prg_new_protected_conditional:Npnn \tag_check_child:nn #1 #2 {T,F,TF}{\prg_return_true:}
720 ⟨∗package⟩
721 \prg_set_protected_conditional:Npnn \tag_check_child:nn #1 #2 {T,F,TF} %#1 tag, #2 NS
722 {
723 \seq_get:NN\g__tag_struct_stack_seq\l__tag_tmpa_tl
724 __tag_struct_get_role:enNN
725 {\l__tag_tmpa_tl}
726 {rolemap}
727 \l__tag_get_parent_tmpa_tl
728 \l__tag_get_parent_tmpb_tl
729 __tag_role_check_parent_child:oonnN
730 { \l__tag_get_parent_tmpa_tl }

206

731 { \l__tag_get_parent_tmpb_tl }
732 {#1}{#2}
733 \l__tag_parent_child_check_tl
734 \int_compare:nNnT {\l__tag_parent_child_check_tl} = { \c__tag_role_rule_checkparent_tl }
735 {
736 \seq_get:NN\g__tag_struct_stack_seq\l__tag_tmpa_tl
737 __tag_struct_get_role:enNN
738 {\l__tag_tmpa_tl}
739 {parentrole}
740 \l__tag_get_parent_tmpa_tl
741 \l__tag_get_parent_tmpb_tl
742 __tag_role_check_parent_child:oonnN
743 { \l__tag_get_parent_tmpa_tl }
744 { \l__tag_get_parent_tmpb_tl }
745 {#1}{#2}
746 \l__tag_parent_child_check_tl
747 }
748 \int_compare:nNnTF { \l__tag_parent_child_check_tl } < {0}
749 {\prg_return_false:}
750 {\prg_return_true:}
751 }

(End of definition for \tag_check_child:nnTF. This function is documented on page 186.)

1.7 Key-val user interface
The user interface uses the key add-new-tag, which takes either a keyval list as argument,
or a tag/role.

tag (rolemap-key)
tag-namespace (rolemap-key)

role (rolemap-key)
role-namespace (rolemap-key)

role/new-tag (setup-key)
add-new-tag (deprecated)

752 \keys_define:nn { __tag / tag-role }
753 {
754 ,tag .tl_set:N = \l__tag_role_tag_tmpa_tl
755 ,tag-namespace .tl_set:N = \l__tag_role_tag_namespace_tmpa_tl
756 ,role .tl_set:N = \l__tag_role_role_tmpa_tl
757 ,role-namespace .tl_set:N = \l__tag_role_role_namespace_tmpa_tl
758 }
759

760 \keys_define:nn { __tag / setup }
761 {
762 role/mathml-tags .bool_gset:N = \g__tag_role_add_mathml_bool
763 ,role/new-tag .code:n =
764 {
765 \keys_set_known:nnnN
766 {__tag/tag-role}
767 {
768 tag-namespace=user,
769 role-namespace=, %so that we can test for it.
770 #1
771 }{__tag/tag-role}\l__tag_tmpa_tl
772 \tl_if_empty:NF \l__tag_tmpa_tl
773 {
774 \exp_args:NNno \seq_set_split:Nnn \l__tag_tmpa_seq { / } {\l__tag_tmpa_tl/}

207

775 \tl_set:Ne \l__tag_role_tag_tmpa_tl { \seq_item:Nn \l__tag_tmpa_seq {1} }
776 \tl_set:Ne \l__tag_role_role_tmpa_tl { \seq_item:Nn \l__tag_tmpa_seq {2} }
777 }
778 \tl_if_empty:NT \l__tag_role_role_namespace_tmpa_tl
779 {
780 \prop_get:NoNTF
781 \g__tag_role_tags_NS_prop
782 { \l__tag_role_role_tmpa_tl }
783 \l__tag_role_role_namespace_tmpa_tl
784 {
785 \prop_get:NoNF
786 \g__tag_role_NS_prop
787 { \l__tag_role_role_namespace_tmpa_tl }
788 \l__tag_tmp_unused_tl
789 {
790 \tl_set:Nn \l__tag_role_role_namespace_tmpa_tl {user}
791 }
792 }
793 {
794 \tl_set:Nn \l__tag_role_role_namespace_tmpa_tl {user}
795 }
796 }
797 \pdf_version_compare:NnTF < {2.0}
798 {
799 %TODO add check for emptyness?
800 __tag_role_add_tag:oo
801 { \l__tag_role_tag_tmpa_tl }
802 { \l__tag_role_role_tmpa_tl }
803 }
804 {
805 __tag_role_add_tag:oooo
806 { \l__tag_role_tag_tmpa_tl }
807 { \l__tag_role_tag_namespace_tmpa_tl }
808 { \l__tag_role_role_tmpa_tl }
809 { \l__tag_role_role_namespace_tmpa_tl }
810 }
811 }
812 ,role/map-tags .choice:
813 ,role/map-tags/false .code:n = { \socket_assign_plug:nn { tag/struct/tag } {latex-

tags} }
814 ,role/map-tags/pdf .code:n = { \socket_assign_plug:nn { tag/struct/tag } {pdf-

tags} }

815 ,role/user-NS .code:n =
816 {
817 \pdf_version_compare:NnF < {2.0}
818 {
819 \pdf_string_from_unicode:nnN{utf8/string}{https://www.latex-project.org/ns/local/#1}\l__tag_tmpa_str
820 \tl_if_empty:NF \l__tag_tmpa_str
821 {
822 \pdfdict_gput:nne
823 {g__tag_role/Namespace_user_dict}
824 {NS}
825 {\l__tag_tmpa_str}

208

826 }
827 }
828 }

deprecated names

829 , mathml-tags .bool_gset:N = \g__tag_role_add_mathml_bool
830 , add-new-tag .meta:n = {role/new-tag={#1}}
831 }
832 ⟨/package⟩

(End of definition for tag (rolemap-key) and others. These functions are documented on page 186.)

The tagpdf-space module
Code related to real space chars
Part of the tagpdf package

Ulrike Fischer
Version 0.99x, released 2026-01-12

209

Part XI

activate/space (setup-key)
interwordspace (deprecated)

This key allows to activate/deactivate the real space chars if the engine supports it. The
allowed values are true, on, false, off. The old name of the key interwordspace is
still supported but deprecated.

This key is deprecated. Use debug/show=spaces instead. This key works only with
luatex and shows with small red bars where spaces have been inserted. This is only for
debugging and is not completely reliable (and change affect other literals and tagging),
so it should be used with care.

show-spaces (deprecated)

1 ⟨@@=tag⟩
2 ⟨∗header⟩
3 \ProvidesExplPackage {tagpdf-space-code} {2026-01-12} {0.99x}
4 {part of tagpdf - code related to real space chars}
5 ⟨/header⟩

1 Code for interword spaces
The code is engine/backend dependent. Basically only pdftex and luatex support real
space chars. Most of the code for luatex which uses attributes is in the lua code, here
are only the keys.

activate/spaces (setup-key)
interwordspace (deprecated)

show-spaces (deprecated) 6 ⟨∗package⟩
7 \bool_new:N\l__tag_showspaces_bool
8 \keys_define:nn { __tag / setup }
9 {

10 activate/spaces .choice:,
11 activate/spaces/true .code:n =
12 { \msg_warning:nne {tag}{sys-no-interwordspace}{\c_sys_engine_str} },
13 activate/spaces/false .code:n=
14 { \msg_warning:nne {tag}{sys-no-interwordspace}{\c_sys_engine_str} },
15 activate/spaces .default:n = true,
16 debug/show/spaces .code:n = {\bool_set_true:N \l__tag_showspaces_bool},
17 debug/show/spacesOff .code:n = {\bool_set_false:N \l__tag_showspaces_bool},

deprecated versions:

18 interwordspace .choices:nn = {true,on}{\keys_set:nn{__tag/setup}{activate/spaces={true}}},
19 interwordspace .choices:nn = {false,off}{\keys_set:nn{__tag/setup}{activate/spaces={false}}},
20 interwordspace .default:n = {true},
21 show-spaces .choice:,
22 show-spaces/true .meta:n = {debug/show=spaces},
23 show-spaces/false .meta:n = {debug/show=spacesOff},
24 show-spaces .default:n = true

210

25 }
26 \sys_if_engine_pdftex:T
27 {
28 \sys_if_output_pdf:TF
29 {
30 \pdfglyphtounicode{space}{0020}
31 \AddToHook{shipout/firstpage}[tagpdf/space]{}
32 \keys_define:nn { __tag / setup }
33 {
34 activate/spaces/true .code:n = { \AddToHook{shipout/firstpage}[tagpdf/space]{\pdfinterwordspaceon} },
35 activate/spaces/false .code:n = { \RemoveFromHook{shipout/firstpage}[tagpdf/space] },
36 activate/spaces .default:n = true,
37 }
38 }
39 {
40 \keys_define:nn { __tag / setup }
41 {
42 activate/spaces .choices:nn = { true, false }
43 { \msg_warning:nnn {tag}{sys-no-interwordspace}{dvi} },
44 activate/spaces .default:n = true,
45 }
46 }
47 }
48

49

50 \sys_if_engine_luatex:T
51 {
52 \keys_define:nn { __tag / setup }
53 {
54 activate/spaces .choice:,
55 activate/spaces/true .code:n =
56 {
57 \bool_gset_true:N \g__tag_active_space_bool
58 \lua_now:e{ltx.__tag.func.markspaceon()}
59 },
60 activate/spaces/false .code:n =
61 {
62 \bool_gset_false:N \g__tag_active_space_bool
63 \lua_now:e{ltx.__tag.func.markspaceoff()}
64 },
65 activate/spaces .default:n = true,
66 debug/show/spaces .code:n =
67 {\lua_now:e{ltx.__tag.trace.showspaces=true}},
68 debug/show/spacesOff .code:n =
69 {\lua_now:e{ltx.__tag.trace.showspaces=nil}},
70 }
71 }

(End of definition for activate/spaces (setup-key) , interwordspace (deprecated) , and show-spaces
(deprecated). These functions are documented on page ??.)

__tag_fakespace: For luatex we need a command for the fake space as equivalent of the pdftex primitive.

72 \sys_if_engine_luatex:T
73 {

211

74 \cs_new_protected:Nn __tag_fakespace:
75 {
76 \group_begin:
77 \lua_now:e{ltx.__tag.func.fakespace()}
78 \skip_horizontal:n{\c_zero_skip}
79 \group_end:
80 }
81 }

We need also a command to interrupt the insertion of real space chars in places
where we want to insert manually special spaces. In pdftex this can be done with
\pdfinterwordspaceoff and \pdfinterwordspaceon. These commands insert what­
sits and this mean they act globally. In luatex a attribute is used to this effect, for
consistency this is also set globally.

\tag_spacechar_on:
\tag_spacechar_off:

The off command sets the attributes in luatex.

82 \cs_new_protected:Npn \tag_spacechar_off: {}
83 \cs_new_protected:Npn \tag_spacechar_on: {}
84

85 \sys_if_engine_luatex:T
86 {
87 \cs_set_protected:Npn \tag_spacechar_off:
88 {
89 \lua_now:e
90 {
91 tex.setattribute
92 (
93 "global",
94 luatexbase.attributes.g__tag_interwordspaceOff_attr,
95 1
96)
97 }
98 }
99 \cs_set_protected:Npn \tag_spacechar_on:

100 {
101 \lua_now:e
102 {
103 tex.setattribute
104 (
105 "global",
106 luatexbase.attributes.g__tag_interwordspaceOff_attr,
107 -2147483647
108)
109 }
110 }
111 }
112 \sys_if_engine_pdftex:T
113 {
114 \sys_if_output_pdf:T
115 {
116 \cs_set_protected:Npn \tag_spacechar_off:
117 {
118 \pdfinterwordspaceoff

212

119 }
120 \cs_set_protected:Npn \tag_spacechar_on:
121 {
122 \pdfinterwordspaceon
123 }
124 }
125 }

126 ⟨/package⟩

(End of definition for __tag_fakespace: , \tag_spacechar_on: , and \tag_spacechar_off:. These
functions are documented on page ??.)

213

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
\\ . 10, 23,

27, 28, 44, 49, 50, 51, 56, 58, 60, 67,
70, 72, 78, 80, 93, 96, 97, 106, 107,
113, 114, 166, 222, 223, 557, 620, 628

\␣ . 437, 448

A
activate␣(setup-key) 41, 285
activate-all (deprecated) (key) 1
activate-mc (deprecated) (key) 1
activate-struct (deprecated) (key) . . . 1
activate-tree (deprecated) (key) 1
activate/all (key) 1, 219
activate/mc (key) 1, 219
activate/socket␣(setup-key) 285
activate/softhyphen (key) 1, 253
activate/space␣(setup-key) 210
activate/spaces (key) 1
activate/spaces␣(setup-key) 6
activate/struct (key) 1, 219
activate/struct-dest (key) 1, 219
activate/tagunmarked (key) 1, 250
activate/tree (key) 1, 219
actualtext (key) 1, 722
actualtext␣(mc-key) 84, 238, 384
add-new-tag␣(deprecated) 752
add-new-tag␣(setup-key) 186
\AddToHook 13,

16, 31, 34, 44, 57, 58, 238, 303,
395, 528, 529, 530, 534, 538, 545, 585

\AddToHookNext 750
AF (key) . 1, 920
AFinline (key) 1, 920
AFinline-o (key) 1, 920
AFref (key) 1, 920
alt (key) . 1, 722
alt␣(mc-key) 84, 238, 384
artifact␣(mc-key) 84, 238, 384
artifact-bool internal commands:

__artifact-bool 182
artifact-type internal commands:

__artifact-type 182
\AssignTaggingSocketPlug

526, 527, 602, 609, 715, 716, 778, 787
\AtBeginDocument 695
attr-unknown 21, 84
attribute (key) 1, 1532

attribute-class (key) 1, 1498

B
benchmark commands:

\benchmark_tic: 637, 639
\benchmark_toc: 640

bool commands:
\bool_gset_eq:NN

. 619, 634, 646, 664, 723, 737
\bool_gset_false:N

. 62, 221, 372, 620, 647, 724
\bool_gset_true:N

. 36, 57, 88, 175, 313, 999
\bool_if:NTF 9, 13, 18, 31,

40, 40, 68, 75, 80, 85, 91, 96, 111,
135, 146, 196, 203, 208, 228, 248,
264, 265, 273, 282, 314, 317, 323,
339, 351, 389, 434, 445, 459, 461,
466, 478, 486, 511, 518, 614, 629,
641, 659, 718, 732, 1169, 1201, 1232

\bool_if:nTF 507
\bool_lazy_all:nTF 258
\bool_lazy_and:nnTF

. 292, 302, 305, 309,
355, 373, 548, 619, 697, 735, 790, 1002

\bool_new:N 7, 16, 20,
21, 35, 73, 83, 84, 85, 85, 86, 87, 89,
91, 93, 94, 95, 255, 323, 324, 610, 998

\bool_set_false:N
. 17, 164, 165, 166, 176, 188, 189,
190, 222, 344, 406, 574, 613, 640, 717

\bool_set_true:N 16, 90, 92, 174, 175,
176, 199, 200, 201, 256, 346, 405, 573

box commands:
\box_dp:N 180, 184
\box_ht:N 170
\box_new:N 78, 79
\box_set_dp:Nn 178, 180
\box_set_eq:NN 193
\box_set_ht:Nn 177, 179
\box_use_drop:N 182, 186

\boxmaxdepth 97, 181

C
c@g internal commands:

\c@g__tag_MCID_abs_int
. 11, 15, 28, 37, 50, 57, 60, 68, 74,
133, 138, 178, 242, 245, 288, 295, 346

214

\c@g__tag_parenttree_obj_int 155, 500
\c@g__tag_struct_abs_int . . 6, 18,

40, 58, 91, 114, 115, 118, 124, 127,
149, 166, 259, 393, 550, 727, 740,
785, 797, 811, 827, 842, 850, 904,
915, 934, 937, 942, 978, 980, 985,
997, 999, 1004, 1095, 1106, 1107,
1108, 1109, 1110, 1112, 1114, 1120,
1125, 1132, 1135, 1145, 1153, 1157,
1172, 1185, 1195, 1208, 1211, 1226,
1227, 1229, 1240, 1525, 1528, 1576

catalog-supplemental-file (key) . . . 1075
cctab commands:

\c_document_cctab 49, 54, 75, 155, 510
\chapter 197, 357, 375
check commands:

check_parent_child_rules 979
check_update_stashed 979

clist commands:
\clist_const:Nn 80, 81
\clist_if_empty:NTF 1537
\clist_map_inline:nn . . . 106, 419, 901
\clist_new:N 76
\clist_set:Nn 1502, 1536

color commands:
\color_select:n 437, 448

cs commands:
\cs:w 756, 1408, 1412
\cs_end: 756, 1408, 1412
\cs_generate_variant:Nn

. . . . 44, 79, 98, 99, 100, 101, 101,
102, 103, 104, 105, 106, 107, 107,
107, 115, 116, 117, 126, 134, 150,
151, 152, 153, 153, 154, 155, 156,
163, 164, 168, 181, 194, 214, 226,
247, 253, 263, 265, 276, 279, 304,
314, 335, 589, 633, 681, 717, 921,
949, 970, 1384, 1396, 1436, 1465, 1486

\cs_gset_eq:NN 432
\cs_if_exist:NTF 249, 587, 637, 752, 759
\cs_if_exist_p:N . . 357, 360, 375, 378
\cs_if_exist_use:NTF 400, 1390
\cs_if_free:NTF 48
\cs_new:Nn

. 83, 109, 131, 136, 293, 409, 410, 411
\cs_new:Npn 9, 15, 23, 27, 105,

118, 149, 156, 215, 229, 235, 237,
391, 528, 536, 542, 548, 754, 1380, 1466

\cs_new_eq:NN 37
\cs_new_protected:Nn

. 74, 127, 167, 296, 412, 416
\cs_new_protected:Npn 13,

17, 20, 22, 23, 30, 31, 36, 42, 43, 45,
60, 61, 63, 65, 67, 78, 79, 80, 81, 82,

83, 84, 85, 86, 93, 94, 95, 107, 108,
108, 117, 120, 122, 126, 137, 142,
147, 153, 161, 163, 167, 169, 171,
172, 175, 189, 195, 210, 211, 212,
213, 214, 215, 227, 233, 246, 248,
255, 259, 260, 263, 264, 266, 277,
280, 281, 285, 286, 292, 295, 305,
310, 315, 318, 320, 322, 327, 336,
337, 340, 349, 349, 350, 353, 357,
361, 365, 369, 384, 388, 393, 395,
396, 403, 415, 417, 428, 429, 431,
434, 442, 453, 462, 503, 503, 527,
534, 541, 541, 548, 554, 568, 576,
578, 581, 582, 583, 583, 584, 591,
592, 598, 611, 625, 633, 634, 634,
635, 638, 640, 654, 713, 729, 855,
863, 876, 889, 922, 950, 1095, 1096,
1097, 1293, 1334, 1386, 1399, 1419,
1423, 1427, 1431, 1437, 1456, 1480

\cs_set:Nn 679, 680, 744, 745
\cs_set:Npn 47, 52, 89, 109
\cs_set_eq:NN 14, 20,

66, 80, 81, 82, 139, 140, 141, 142,
143, 144, 145, 146, 147, 148, 181,
182, 193, 207, 216, 217, 225, 230,
235, 236, 237, 238, 386, 387, 388,
389, 639, 640, 672, 673, 674, 675,
681, 682, 686, 687, 688, 689, 746, 747

\cs_set_protected:Nn
. . 169, 216, 242, 359, 365, 1250, 1251

\cs_set_protected:Npn 9,
15, 16, 22, 29, 35, 38, 40, 48, 49, 52,
58, 63, 65, 71, 73, 78, 83, 83, 87, 94,
95, 99, 102, 116, 120, 143, 160, 169,
183, 194, 220, 228, 228, 240, 249,
265, 283, 299, 305, 367, 371, 375,
379, 1099, 1100, 1287, 1295, 1336, 1388

\cs_to_str:N
. . 12, 18, 25, 32, 38, 43, 61, 62, 68, 69

\cs_undefine:N 57

D
debug/log (key) 1, 237
debug/show (key) 236
debug/structures␣(show-key) . . . 42, 254
debug/uncompress (key) 237
\DebugSocketsOn 44
\DeclareOption 37, 38
dim commands:

\c_max_dim 169, 194
\c_zero_dim 177, 178, 179

\documentclass 16
\DocumentMetadata 15

215

E
E (key) . 1, 722, 897
\endinput . 22
\ERRORusetaggingsocket 106, 121
exclude-header-footer␣(deprecated) 667
exp commands:

\exp_args:Ne 122, 530
\exp_args:NNe 86, 89, 195, 215
\exp_args:Nne . . 79, 337, 341, 427, 461
\exp_args:NNno 774
\exp_args:No 291, 326
\exp_last_unbraced:Ne . . . 99, 102, 109
\exp_last_unbraced:No . . 135, 138,

152, 154, 157, 159, 206, 207, 238,
239, 594, 597, 605, 606, 608, 610, 1276

\exp_not:n 186, 205

F
file commands:

\file_if_exist:nTF 322
\file_input:n 269

firstkid (key) 1, 722
flag commands:

\flag_clear:n 239
\flag_height:n 137, 251
\flag_new:n 135
\flag_raise:n 252

\fontencoding . 6
\fontfamily . 6
\fontseries . 6
\fontshape . 6
\fontsize . 6

G
group commands:

\group_begin: 67, 76, 173,
311, 927, 1019, 1027, 1062, 1079, 1105

\group_end: 74, 79, 213,
350, 945, 1023, 1033, 1072, 1090, 1246

H
\halign . 44
hbox commands:

\hbox_set:Nn 171, 172
hook commands:

\hook_gput_code:nnn . 7, 11, 33, 57,
66, 80, 156, 239, 288, 289, 353, 371,
387, 391, 802, 809, 816, 823, 830,
837, 843, 850, 856, 863, 871, 884,
895, 908, 919, 932, 943, 956, 966, 979

\hook_new:n 348
\hook_use:n 353

I
\IfFormatAtLeastTF 336

\IfPDFManagementActiveF 6
\ignorespaces . 41
int commands:

\int_abs:n 154
\int_case:nnTF 99, 114, 329
\int_compare:nNnTF

22, 58, 70, 98, 116, 124, 125, 132,
142, 148, 157, 170, 173, 173, 279,
329, 359, 378, 405, 408, 436, 442,
444, 450, 512, 528, 529, 536, 543,
550, 551, 560, 562, 570, 578, 578,
583, 585, 593, 600, 619, 734, 748, 1136

\int_compare:nTF
180, 476, 1518, 1520, 1522, 1546, 1572

\int_compare_p:nNn 740
\int_decr:N 171, 196
\int_eval:n 118, 138, 166,

197, 396, 621, 629, 737, 742, 745,
942, 985, 1004, 1107, 1108, 1109,
1110, 1226, 1227, 1229, 1240, 1528

\int_gincr:N . . . 178, 242, 288, 295,
351, 355, 359, 363, 369, 373, 377,
381, 500, 928, 1064, 1081, 1095, 1106

\int_gset:Nn 7, 82, 158
\int_if_zero:nTF

. 171, 172, 196, 197, 617, 625
\int_incr:N 93, 163, 187, 442
\int_new:N 6, 77, 78,

82, 96, 155, 159, 326, 327, 328, 329, 920
\int_rand:n . . 61, 62, 64, 66, 68, 70, 71
\int_set:Nn 238, 241, 244, 245, 246
\int_step_inline:nn 473, 479
\int_step_inline:nnn 25, 91, 259
\int_step_inline:nnnn

. 149, 174, 177, 200, 461, 467
\int_to_arabic:n 154, 156
\int_to_Hex:n 61, 62, 64, 66, 68, 70, 71
\int_use:N 11, 15, 18, 28, 37,

40, 49, 50, 54, 57, 58, 60, 68, 74, 75,
100, 115, 124, 131, 133, 155, 162,
179, 186, 205, 234, 241, 245, 277,
279, 346, 393, 437, 448, 510, 515,
550, 556, 557, 565, 566, 727, 785,
797, 811, 827, 842, 850, 904, 915,
931, 934, 937, 978, 980, 997, 999,
1068, 1071, 1085, 1089, 1114, 1120,
1125, 1132, 1135, 1157, 1172, 1185,
1195, 1208, 1211, 1466, 1525, 1576

\int_zero:N 90, 105, 430
intarray commands:

\intarray_gset:Nnn
. 397, 406, 421, 425, 439

\intarray_item:Nn 441, 444, 554
\intarray_new:Nn 390, 431

216

interwordspace␣(deprecated) 210, 6
ior commands:

\ior_close:N 330, 467
\ior_map_inline:Nn 326, 438
\ior_open:Nn 324, 433, 436
\g_tmpa_ior

. . . . 324, 326, 330, 433, 436, 438, 467
iow commands:

\iow_newline: 205, 303
\iow_term:n 198, 211, 214, 220, 224,

242, 355, 359, 363, 367, 371, 375, 379

K
kernel internal commands:

__kernel_pdfdict_name:n 45
\g__kernel_pdfmanagement_end_­

run_code_tl 1000
keys commands:

\keys_define:nn
. . 8, 32, 34, 40, 52, 131, 143, 182,
195, 203, 220, 238, 246, 255, 291,
385, 402, 411, 418, 424, 577, 667,
722, 740, 752, 760, 897, 971, 1011,
1036, 1058, 1075, 1487, 1498, 1532

\keys_set:nn 10,
18, 18, 19, 128, 187, 190, 296, 318,
321, 338, 342, 428, 1006, 1069, 1130

\keys_set_known:nnnN 765

L
label (key) 1, 722
\label . 12
label␣(mc-key) 84, 238, 384
lang (key) . 1, 722
lang␣(mc-key= 238
legacy commands:

\legacy_if:nTF 480, 483, 484
\llap . 437
log (deprecated) (key) 237
ltx. internal commands:

ltx.__tag.func.alloctag 312
ltx.__tag.func.check_parent_­

child_rules 979
ltx.__tag.func.fakespace 491
ltx.__tag.func.fill_parent_tree_­

line . 871
ltx.__tag.func.get_num_from 321
ltx.__tag.func.get_tag_from 340
ltx.__tag.func.mark_page_­

elements 697
ltx.__tag.func.mark_shipout 854
ltx.__tag.func.markspaceoff 562
ltx.__tag.func.markspaceon 562
ltx.__tag.func.mc_insert_kids . . 634

ltx.__tag.func.mc_num_of_kids . . 370
ltx.__tag.func.output_num_from . 321
ltx.__tag.func.output_parenttree 871
ltx.__tag.func.output_tag_from . 340
ltx.__tag.func.role_get_parent_­

child_rule 972
ltx.__tag.func.space_chars_­

shipout 594
ltx.__tag.func.store_mc_data . . . 355
ltx.__tag.func.store_mc_in_page 678
ltx.__tag.func.store_mc_kid 364
ltx.__tag.func.store_mc_label . . 360
ltx.__tag.func.store_struct_­

mcabs . 666
ltx.__tag.func.update_mc_­

attributes 686
ltx.__tag.tables.role_tag_­

attribute 310
ltx.__tag.trace.log 224
ltx.__tag.trace.show_all_mc_data 281
ltx.__tag.trace.show_mc_data . . . 266
ltx.__tag.trace.show_prop 241
ltx.__tag.trace.show_seq 232
ltx.__tag.trace.show_struct_data 287

lua commands:
\lua_escape:n 32
\lua_now:n 8,

12, 15, 18, 25, 25, 26, 32, 35, 38,
42, 43, 49, 50, 54, 58, 59, 61, 62,
63, 67, 68, 69, 69, 73, 77, 86, 87,
87, 89, 96, 101, 109, 111, 120, 133,
137, 138, 152, 158, 161, 173, 181,
189, 230, 237, 244, 252, 268, 282,
303, 317, 327, 399, 408, 497, 510, 795

M
\MakeLinkTarget 152
mathml (key) 1, 920
\maxdimen . 192
mc-current 20, 16
mc-current␣(show-key) 42, 143
mc-data␣(show-key) 42, 131
mc-label-unknown 20, 9
mc-marks␣(show-key) 42, 203
mc-nested . 20, 6
mc-not-open 20, 13
mc-popped . 20, 14
mc-pushed . 20, 14
mc-tag-missing 20, 8
mc-used-twice 20, 12
\MessageBreak 10, 14, 15
mode commands:

\mode_leave_vertical: 772

217

msg commands:
\msg_error:nn 317, 338, 473, 1142
\msg_error:nnn

. . 354, 365, 373, 384, 459, 1512, 1552
\msg_error:nnnn 242
\msg_error:nnnnn 553, 562
\msg_info:nnn

. . . . 134, 172, 325, 331, 333, 407, 411
\msg_info:nnnn 361, 380, 420
\msg_line_context: . . 93, 97, 107,

114, 524, 525, 557, 561, 565, 621, 629
\g_msg_module_name_prop 24, 28
\g_msg_module_type_prop 27
\msg_new:nnn 7, 8, 9, 12, 13,

14, 15, 16, 22, 24, 25, 32, 35, 36, 38,
40, 42, 47, 54, 65, 74, 85, 86, 87, 88,
89, 90, 92, 94, 104, 111, 164, 213,
215, 216, 217, 218, 219, 220, 226,
228, 524, 525, 555, 559, 563, 615, 623

\msg_new:nnnn 231
\msg_note:nn 29, 199
\msg_note:nnn

. 162, 179, 545, 552, 587, 595
\msg_note:nnnn

128, 185, 204, 531, 538, 572, 580, 587
\msg_note:nnnnn 519, 569
\msg_redirect_name:nnn 549
\msg_show_item_unbraced:n 276
\msg_show_item_unbraced:nn 267
\msg_term:nnnnnn 261, 270
\msg_warning:nn 24, 222
\msg_warning:nnn

. 12, 14, 43, 45, 54, 242, 248,
321, 324, 347, 392, 400, 425, 449,
666, 693, 873, 886, 1329, 1348, 1374

\msg_warning:nnnn 440, 608, 744
\msg_warning:nnnnn

. 126, 175, 530, 580, 630, 708
\msg_warning:nnnnnn 146

N
\n . 1006
namespace␣(rolemap-key) 186
new-tag . 21, 215
newattribute␣(deprecated) 117, 1480
\newcommand 570, 571
\newcounter . 8
\NewDocumentCommand 6,

23, 29, 34, 40, 46, 51, 56, 126, 316, 575
\newmarks . 13
\NewTaggingSocket 454, 455, 767, 768
\NewTaggingSocketPlug 457,

476, 509, 595, 603, 699, 705, 770, 780
no-struct-dest (deprecated) (key) 1

\nointerlineskip 185

P
\PackageError . 8
\PackageWarning 22
page/exclude-header-footer␣(setup-

key) 43, 667
page/tabsorder (key) 1, 255
para-flattened␣(deprecated) 402
para-hook-count-wrong 21, 231
para/flattened␣(tool-key) 402
para/maintag␣(setup-key) 402
para/maintag␣(tool-key) 402
para/tag␣(setup-key) 402
para/tag␣(tool-key) 402
para/tagging␣(setup-key) 43, 402
para/tagging␣(tool-key) 402
\PARALABEL . 504
paratag␣(deprecated) 402
paratagging␣(deprecated) 43, 402
paratagging-show␣(deprecated) . . 43, 402
parent (key) 1, 722
pdf commands:

\pdf_activate_indexed_structure_­
destination: 311

\pdf_bdc:nn 237
\pdf_bdc_shipout:nn 238
\pdf_bmc:n 235
\l_pdf_current_structure_­

destination_tl 309
\pdf_emc: 236
\pdf_name_from_unicode_e:n

. 105, 114, 119, 167,
180, 190, 278, 1031, 1483, 1506, 1542

\pdf_object_if_exist:n 97
\pdf_object_if_exist:nTF . . 975, 1040
\pdf_object_new:n

. 116, 34, 36, 154, 262, 310, 321
\pdf_object_new_indexed:nn 31, 1111
\pdf_object_ref:n 116, 56, 98, 131,

135, 141, 192, 318, 335, 978, 1042, 1089
\pdf_object_ref_indexed:nn

. 57, 74, 96, 127,
211, 255, 271, 414, 435, 496, 524, 1382

\pdf_object_ref_last: 116,
104, 118, 124, 294, 1447, 1453, 1561

\pdf_object_unnamed_write:nn . . .
. . 100, 111, 120, 244, 286, 1439, 1556

\pdf_object_write:nnn
. 257, 281, 311, 330, 337, 342

\pdf_object_write_indexed:nnnn .
. 139, 449

\pdf_pageobject_ref:n . . 221, 486, 514
\pdf_string_from_unicode:nnN 42, 819

218

\pdf_uncompress: 247, 249
\pdf_version: 237, 240, 242
\pdf_version_compare:NnTF

. 20, 81, 136, 154, 159, 227,
257, 324, 351, 431, 471, 590, 797, 817

\pdf_version_gset:n 243
pdfannot commands:

\pdfannot_dict_put:nnn
. 99, 877, 901, 925, 949, 972

\pdfannot_link_ref_last:
. 891, 915, 939, 963, 986

pdfdict commands:
\pdfdict_gput:nnn

. 38, 45, 53, 187, 276, 334, 822
\pdfdict_if_empty:nTF 328
\pdfdict_new:n 18, 35, 37
\pdfdict_put:nnn 1020,

1021, 1028, 1029, 1030, 1063, 1080
\pdfdict_use:n 283, 332, 339

\pdffakespace 42, 314
pdffile commands:

\pdffile_embed_file:nnn
. 107, 1065, 1082

\pdffile_embed_stream:nnN . 921, 929
\pdffile_embed_stream:nnn 100

\pdfglyphtounicode 30
\pdfinterwordspaceoff 212, 118
\pdfinterwordspaceon 212, 34, 122
pdfmanagement commands:

\pdfmanagement_add:nnn
. . 52, 70, 71, 257, 259, 261, 393, 1086

\pdfmanagement_remove:nn 263
phoneme (key) 722
prg commands:

\prg_do_nothing:
. 37, 82, 102, 117, 386,
387, 388, 389, 432, 686, 687, 688, 689

\prg_generate_conditional_­
variant:Nnn 97

\prg_new_conditional:Nnn . . . 68, 226
\prg_new_conditional:Npnn

. . . . 251, 275, 290, 300, 499, 505, 516
\prg_new_eq_conditional:NNn . 82, 233
\prg_new_protected_conditional:Npnn

. 719
\prg_replicate:nn 153
\prg_return_false: 78, 230, 252, 270,

281, 284, 297, 307, 502, 514, 520, 749
\prg_return_true: . . 79, 229, 267,

280, 294, 304, 503, 513, 519, 719, 750
\prg_set_conditional:Npnn 256
\prg_set_protected_conditional:Npnn

. 721

process commands:
process_softhyphen_pre␣␣␣␣process_­

softhyphen_post 924
\ProcessOptions 39
prop commands:

\prop_clear:N 176
\prop_count:N 203
\prop_gclear:N 1017
\prop_get:NnN 127, 144, 145,

177, 198, 214, 268, 299, 456, 468,
470, 483, 484, 485, 546, 547, 585, 586

\prop_get:NnNTF 44, 96, 130,
137, 144, 158, 181, 183, 201, 205,
236, 295, 312, 322, 342, 357, 376,
395, 419, 423, 432, 514, 564, 599,
604, 609, 614, 650, 677, 685, 701,
752, 780, 785, 865, 878, 1179, 1277,
1343, 1402, 1440, 1510, 1550, 1554

\prop_gput:Nnn
. 24, 26, 27, 28, 31, 56, 88, 90, 91,
97, 98, 99, 99, 100, 101, 101, 103,
110, 112, 113, 119, 121, 122, 142,
145, 269, 272, 286, 291, 383, 434,
436, 437, 448, 469, 475, 481, 488,
490, 491, 726, 1018, 1020, 1228,
1239, 1314, 1359, 1482, 1514, 1561

\prop_gremove:Nn 137, 147, 1021
\prop_gset_eq:NN 146, 1225
\prop_gset_from_keyval:Nn 991
\prop_if_exist:NTF 174,

209, 234, 320, 430, 648, 675, 1299, 1340
\prop_if_exist_p:N 737
\prop_item:Nn 41, 99, 102, 103, 109,

115, 146, 244, 533, 1236, 1559, 1566
\prop_map_function:NN 265
\prop_map_inline:Nn 267, 272,

293, 326, 363, 381, 398, 486, 495, 1004
\prop_map_tokens:Nn 344
\prop_new:N 8, 9, 10, 11, 11, 25,

33, 73, 139, 144, 990, 1108, 1475, 1478
\prop_new_linked:N

. 7, 17, 84, 89, 91, 140, 1476
\prop_put:Nnn 102, 188
\prop_show:N

. . 67, 95, 148, 1222, 1243, 1528, 1555
property commands:

\property_new:nnnn
. 122, 125, 129, 132, 136

\property_record:nn 59, 111
\property_ref:nn 115, 116
\property_ref:nnn

. 42, 115, 120, 181, 190,
221, 222, 343, 478, 487, 489, 1300, 1304

\providecommand 62, 63, 64, 65, 66, 69, 70, 321

219

\ProvidesExplFile 3
\ProvidesExplPackage 3, 3,

3, 3, 3, 3, 3, 3, 3, 3, 7, 7, 20, 31, 1471

Q
\quad . 233, 234
quark commands:

\q_no_value 606, 616, 662, 667, 689, 694
\quark_if_no_value:NTF

132, 178, 199, 215, 269, 300, 591, 602
\quark_if_no_value_p:N

. 549, 550, 620, 621, 698, 699
\q_stop 259, 292, 328

R
raw␣(mc-key) 84, 238, 384
ref (key) 1, 722, 897
\RemoveFromHook 35, 532, 533
\renewcommand 573, 574
\RenewDocumentCommand 8
\RequirePackage . . . 40, 275, 278, 284, 287
\rlap . 448
role␣(rolemap-key) 186, 752
role commands:

role_get_parent_child_rule 972
role-MC-child-forbidden 104
role-missing 21, 86
role-namespace␣(rolemap-key) . 186, 752
role-parent-child-check 90
role-parent-child-forbidden 111
role-parent-child-result 21, 92
role-parent-child-unresolved 164
role-remapping 21, 213
role-struct-parent-child-forbidden . 94
role-tag . 21, 215
role-unknown 21, 86
role-unknown-NS 21, 86
role-unknown-tag 21, 86
role/new-attribute␣(setup-key) 117, 1480
role/new-tag␣(setup-key) 752
root-AF (key) 1, 1036
root-supplemental-file (key) 1058

S
\selectfont . 6
seq commands:

\seq_clear:N 319, 466
\seq_const_from_clist:Nn 39, 52
\seq_count:N 22, 25, 58,

331, 444, 1518, 1520, 1522, 1546, 1572
\seq_get:NN 723, 736
\seq_get:NNTF 469, 602, 1138, 1265, 1273
\seq_gpop:NN 1258
\seq_gpop:NNTF 106, 1259

\seq_gpop_left:NN 307
\seq_gpush:Nn 13, 15, 89, 96, 1145, 1151
\seq_gput_left:Nn . . 42, 144, 273, 311
\seq_gput_right:Nn

. 37, 143, 146, 152, 236, 257, 296, 486
\seq_gset_eq:NN 159, 221, 326
\seq_if_empty:NTF 200, 438
\seq_item:Nn

. 59, 116, 118, 125, 129, 136, 140,
145, 348, 355, 368, 509, 511, 518,
694, 695, 710, 711, 761, 762, 775, 776

\seq_log:N 175, 199, 249, 412, 573, 588
\seq_map_function:NN 274
\seq_map_indexed_inline:Nn 446, 459
\seq_map_inline:Nn 289, 320, 1508, 1548
\seq_new:N

. . . . 12, 14, 14, 15, 16, 17, 18, 19,
21, 22, 24, 74, 75, 141, 145, 1110, 1479

\seq_pop_left:NN 455, 457, 458
\seq_put_right:Nn 321
\seq_remove_all:Nn 324
\seq_set_eq:NN 207, 208
\seq_set_from_clist:NN . . . 1503, 1539
\seq_set_from_clist:Nn

. 87, 90, 196, 216, 443, 454
\seq_set_map_e:NNn 1504, 1540
\seq_set_split:Nnn 51,

104, 687, 691, 703, 707, 754, 758, 774
\seq_show:N

. 60, 147, 216, 217, 250, 322,
323, 325, 496, 1155, 1223, 1244, 1254

\seq_use:Nn
50, 110, 111, 205, 233, 234, 383, 1519

Setup keys:
activate-all (deprecated) 1
activate-mc (deprecated) 1
activate-struct (deprecated) 1
activate-tree (deprecated) 1
activate/all 1, 219
activate/mc 1, 219
activate/softhyphen 1, 253
activate/spaces 1
activate/struct 1, 219
activate/struct-dest 1, 219
activate/tagunmarked 1, 250
activate/tree 1, 219
catalog-supplemental-file 1075
debug/log 1, 237
debug/show 236
debug/uncompress 237
log (deprecated) 237
no-struct-dest (deprecated) 1
page/tabsorder 1, 255
root-AF 1, 1036

220

root-supplemental-file 1058
tabsorder (deprecated) 1, 255
tagunmarked (deprecated) 1, 250
uncompress (deprecated) 237

shipout commands:
\g_shipout_readonly_int

. 132, 131, 241, 396, 515
show-kids . 21, 64
show-spaces␣(deprecated) 210, 6
show-struct 21, 64
\ShowTagging 18, 42, 125
skip commands:

\skip_horizontal:n 78
\c_zero_skip 78

socket commands:
\socket_assign_plug:nn 200,

204, 205, 209, 210, 542, 721, 813, 814
\socket_if_exist:nTF . . . 452, 697, 765
\socket_new:nn 183, 184, 682
\socket_new_plug:nnn . . . 185, 683, 699
\socket_use:n 28, 76, 536, 540
\socket_use:nn

. . 81, 205, 341, 775, 1204, 1321, 1366
\socket_use:nnn 86
\socket_use:nw 97
\socket_use_expandable:n 92
\socket_use_expandable:nw . . 66, 112

stash (key) 1, 722
stash␣(mc-key) 85, 182
str commands:

\str_case:nnTF 46, 643, 1162
\str_const:Nn 59
\str_if_eq:nnTF 117, 127, 518, 604, 655
\str_if_eq_p:nn 310, 509, 511
\str_new:N 72
\str_set_convert:Nnnn 105, 261, 296,

398, 415, 779, 791, 805, 821, 836, 909
\str_use:N 67, 272, 309
\c_tilde_str 57, 59

\string . 15, 16
struct-faulty-nesting 20, 32
struct-label-unknown 20, 38
struct-missing-tag 20, 35
struct-no-objnum 20, 24
struct-orphan 20, 25
struct-Ref-unknown 42
struct-show-closing 20, 40
struct-stack␣(show-key) 42, 246
struct-unknown 20, 22
struct-used-twice 20, 36
Structure keys:

actualtext 1, 722
AF . 1, 920
AFinline 1, 920

AFinline-o 1, 920
AFref . 1, 920
alt . 1, 722
attribute 1, 1532
attribute-class 1, 1498
E . 1, 722, 897
firstkid 1, 722
label . 1, 722
lang . 1, 722
mathml . 1, 920
parent . 1, 722
phoneme . 722
ref . 1, 722, 897
stash . 1, 722
tag . 1, 722
texsource 1, 920
title . 1, 722
title-o 1, 722

\SuspendTagging 44
sys commands:

\c_sys_backend_str 46
\c_sys_engine_str 12, 14
\sys_if_engine_luatex:TF

. 21, 36, 50, 72,
83, 85, 105, 187, 267, 343, 391, 493, 501

\sys_if_engine_luatex_p: 791
\sys_if_engine_pdftex:TF . . . 26, 112
\sys_if_output_pdf:TF 11, 28, 114

sys-no-interwordspace 21, 228

T
tabsorder (deprecated) (key) 1, 255
tag (key) . 1, 722
tag␣(mc-key) 84, 238, 384
tag␣(rolemap-key) 186, 752
tag commands:

\tag_check_benchmark_on: 635
\tag_check_child:nn 719, 721
\tag_check_child:nnTF 186, 719
\tag_get:n 18, 85, 114,

115, 132, 133, 89, 92, 235, 235, 557, 726
\tag_if_active: 251, 256
\tag_if_active:TF 18, 18, 248, 249, 547
\tag_if_active_p: 18, 248, 1002
\tag_if_box_tagged:N 275
\tag_if_box_tagged:NTF 18, 274
\tag_if_box_tagged_p:N 18, 274
\tag_mc_add_missing_to_stream:Nn

. 84, 66, 189, 225
\tag_mc_artifact_group_begin:n .

. 83, 60, 60, 63
\tag_mc_artifact_group_end:

. 83, 60, 61, 71

221

\tag_mc_begin:n . . . 10, 83, 25, 66,
114, 169, 169, 295, 295, 299, 305,
436, 447, 473, 505, 622, 650, 702, 775

\tag_mc_begin_pop:n 83,
76, 80, 81, 102, 631, 661, 734, 785

\tag_mc_end: 83,
31, 75, 93, 216, 216, 295, 296, 359,
365, 438, 449, 515, 628, 657, 707, 783

\tag_mc_end_push:
. 83, 65, 80, 80, 83, 616, 643, 720, 773

\tag_mc_if_in: 82, 233
\tag_mc_if_in:TF 83, 42, 68, 226
\tag_mc_if_in_p: 83, 68, 226
\tag_mc_new_stream:n 84, 17, 17, 67, 67
\tag_mc_reset_box:N 83, 79, 79, 228, 228
\tag_mc_use:n 83, 36, 36, 36, 38
\l_tag_para_attr_class_tl . 397, 399
\tag_resume:n

. . . 7, 73, 158, 194, 207, 217, 627, 656
\tag_socket_use:n

. 44, 45, 62, 72, 73, 528, 529
\tag_socket_use:nn . 44, 45, 63, 72, 78
\tag_socket_use:nnn . 44, 45, 64, 72, 83
\tag_socket_use_expandable:n . . .

. 44, 45, 65, 72, 89
\tag_spacechar_off: . . . 82, 82, 87, 116
\tag_spacechar_on: . . . 82, 83, 99, 120
\tag_start: 7, 158, 169, 182, 211
\tag_start:n 7, 158, 207, 215, 217
\tag_stop: . . . 7, 54, 158, 160, 181, 210
\tag_stop:n 7, 158, 193, 214, 216
\tag_struct_begin:n

. 114, 48, 464, 471, 489, 499, 649,
701, 726, 774, 1095, 1095, 1099, 1100

\tag_struct_end:
. . 114, 26, 53, 517, 521, 658, 708,
731, 784, 1095, 1096, 1250, 1251, 1290

\tag_struct_end:n . . . 114, 1097, 1287
\tag_struct_gput:nnn

. . . . 114, 903, 1386, 1386, 1388, 1396
\tag_struct_gput_ref:nnn 115
\tag_struct_insert_annot:nn

. 114, 154, 890,
914, 938, 962, 985, 1456, 1456, 1465

\tag_struct_object_ref:n
. 114, 869, 882, 893, 1379, 1380, 1384

\tag_struct_parent_int:
. . . . 114, 154, 880, 891, 904, 915,
928, 939, 952, 963, 975, 986, 1456, 1466

\tag_struct_use:n
. 114, 115, 58, 1293, 1293, 1295

\tag_struct_use_num:n
. 114, 1334, 1334, 1336

\tag_suspend:n
. . . 7, 68, 158, 183, 193, 216, 623, 651

\tag_tool:n 41, 13, 13, 14, 16, 20
tag internal commands:

__tag_activate_mark_space 562
\g__tag_active_mc_bool

. 40, 83, 222, 229, 261, 292
\l__tag_active_mc_bool

. 89, 165, 175, 189, 200, 264, 292
\l__tag_active_socket_bool

. 75, 80, 85,
89, 91, 96, 111, 166, 176, 190, 201, 293

\g__tag_active_space_bool
. 13, 57, 62, 83

\g__tag_active_struct_bool
. 83, 224, 231, 260, 302, 307, 466

\l__tag_active_struct_bool
. 89, 164, 174, 188, 199, 263, 302

\g__tag_active_struct_dest_bool
. 83, 228, 235, 306

\g__tag_active_tree_bool
. . . . 9, 68, 83, 223, 230, 262, 351, 389

__tag_add_missing_mcs:Nn
. 98, 99, 167, 167, 219

__tag_add_missing_mcs_to_­
stream:Nn . 65, 65, 66, 189, 189, 225

\g__tag_attr_class_used_prop . . .
. 291, 293, 1474, 1514

\g__tag_attr_class_used_seq 289, 1479
\g__tag_attr_entries_prop

295, 1474, 1482, 1510, 1550, 1555, 1559
__tag_attr_new_entry:nn

. . . 637, 1480, 1480, 1486, 1491, 1495
\g__tag_attr_objref_prop

. 1474, 1554, 1561, 1566
\l__tag_attr_value_tl 1474,

1544, 1563, 1568, 1570, 1574, 1578
__tag_backend_create_bdc_node . . 436
__tag_backend_create_bmc_node . . 407
__tag_backend_create_emc_node . . 378
__tag_check_add_tag_role:nn . . .

. 129, 350, 350
__tag_check_add_tag_role:nnn . .

. 169, 369
__tag_check_benchmark_tic: . 356,

360, 364, 368, 372, 376, 380, 633, 639
__tag_check_benchmark_toc: . 358,

362, 366, 370, 374, 378, 382, 634, 640
__tag_check_forbidden_parent_­

child:nnnn 120, 120, 134, 171
__tag_check_if_active_mc: 290
__tag_check_if_active_mc:TF . . .

. 85, 104,
171, 191, 218, 289, 301, 307, 361, 367

222

__tag_check_if_active_struct: . 300
__tag_check_if_active_struct:TF

. 40, 289, 1102, 1103,
1255, 1256, 1289, 1297, 1338, 1459

__tag_check_if_mc_in_galley: . . 499
__tag_check_if_mc_in_galley:TF

. 209, 230
__tag_check_if_mc_tmb_missing: 505
__tag_check_if_mc_tmb_missing:TF

. 112, 218, 235, 505
__tag_check_if_mc_tmb_missing_­

p: . 505
__tag_check_if_mc_tme_missing: 516
__tag_check_if_mc_tme_missing:TF

. 155, 222, 239, 516
__tag_check_if_mc_tme_missing_­

p: . 516
__tag_check_info_closing_­

struct:n 327, 327, 335, 1261
__tag_check_init_mc_used:

. 429, 429, 432, 438
__tag_check_mc_if_nested:

. 174, 312, 388, 388
__tag_check_mc_if_open:

. 220, 371, 388, 396
__tag_check_mc_in_galley:TF . . . 499
__tag_check_mc_in_galley_p: . . . 499
__tag_check_mc_pushed_popped:nn

. 90, 97, 110, 113, 118, 403, 403
__tag_check_mc_tag:N

. 193, 330, 415, 415
__tag_check_mc_used:n

. 145, 268, 434, 434
\g__tag_check_mc_used_intarray .

. 429, 439, 441, 444
__tag_check_no_open_struct: . . .

. 336, 336, 1263, 1271
__tag_check_para_begin_show:nn

. 431, 472, 504
__tag_check_para_end_show:nn . .

. 442, 516
\c__tag_check_pdfversion_tl

. 237, 240, 242, 243
__tag_check_show_MCID_by_page:

. 453, 453
__tag_check_struct_forbidden_­

parent_child:nnn . . . 137, 163, 628
__tag_check_struct_used:n

. 340, 340, 1302
__tag_check_structure_has_tag:n

. 310, 310, 1135
__tag_check_structure_tag:N . . .

. 320, 320, 696, 719, 770

__tag_check_typeout_v:n
. . . . 110, 111, 114, 149, 157, 164,
202, 211, 230, 230, 242, 482, 498, 514

__tag_check_unresolved_parent_­
child:nnnn 169, 169

\g__tag_css_bool . 998, 999, 1002, 1013
\g__tag_css_prop

990, 991, 1004, 1017, 1018, 1020, 1021
__tag_debug_mc_begin_ignore:n .

. 354, 534
__tag_debug_mc_begin_insert:n .

. 309, 527
__tag_debug_mc_end_ignore: 379, 548
__tag_debug_mc_end_insert: 369, 541
__tag_debug_struct_begin_­

ignore:n 576, 1248
__tag_debug_struct_begin_­

insert:n 568, 1245
__tag_debug_struct_end_check:n

. 598, 1289
__tag_debug_struct_end_ignore:

. 591, 1284
__tag_debug_struct_end_insert:

. 583, 1282
__tag_exclude_headfoot_begin: .

. 611, 672, 673
__tag_exclude_headfoot_end: . . .

. 625, 674, 675
__tag_exclude_struct_headfoot_­

begin:n 638, 679, 680
__tag_exclude_struct_headfoot_­

end: 654, 681, 682
__tag_fakespace 491
__tag_fakespace: 72, 74, 318
__tag_finish_structure:

. 13, 16, 348, 349
\l__tag_get_child_tmpa_tl

. 60, 569, 574, 641, 643, 653,
656, 667, 1303, 1307, 1309, 1315, 1325

\l__tag_get_child_tmpb_tl
. 60, 570, 575, 642, 654

\l__tag_get_child_tmpc_tl
. 60, 145, 157, 159

__tag_get_data_mc_counter: 9, 9
__tag_get_data_mc_tag:

. 237, 237, 293, 293
__tag_get_data_struct_counter:

. 547, 548
__tag_get_data_struct_id: 536, 536
__tag_get_data_struct_num: 541, 542
__tag_get_data_struct_tag: 528, 528
__tag_get_mathsubtype 302
__tag_get_mc_abs_cnt:

. 14, 15, 19, 20, 102,

223

137, 166, 177, 183, 210, 246, 254,
272, 286, 307, 321, 331, 392, 400, 420

__tag_get_mc_cnt_type_tag 296
__tag_get_num_from 321
\l__tag_get_parent_tmpa_tl

. 60, 127, 132, 136, 139, 149, 152,
162, 165, 175, 564, 572, 585, 591,
595, 598, 665, 667, 727, 730, 740, 743

\l__tag_get_parent_tmpb_tl
. 60, 150,
153, 163, 166, 175, 565, 573, 586,
602, 606, 609, 666, 728, 731, 741, 744

\l__tag_get_parent_tmpc_tl
. 60, 144, 152, 154

__tag_get_tag_from 340
\l__tag_get_tmpc_tl 60,

181, 186, 204, 206, 207, 236, 238,
239, 1182, 1188, 1405, 1407, 1411, 1417

__tag_gincr_para_begin_int: . . .
. 349, 353, 371, 387, 470, 497

__tag_gincr_para_end_int:
. 349, 361, 379, 389, 513

__tag_gincr_para_main_begin_­
int: . . 349, 349, 367, 386, 463, 488

__tag_gincr_para_main_end_int:
. 349, 357, 375, 388, 520

__tag_headfoot_tagged_begin:n .
. 713, 744, 745

__tag_headfoot_tagged_end:
. 729, 746, 747

__tag_hook_kernel_after_foot: .
. . . . 584, 592, 607, 675, 682, 689, 747

__tag_hook_kernel_after_head: .
. . . . 582, 590, 599, 674, 681, 688, 746

__tag_hook_kernel_before_foot:
. . . . 583, 591, 605, 673, 680, 687, 745

__tag_hook_kernel_before_head:
. . . . 581, 589, 597, 672, 679, 686, 744

\g__tag_in_mc_bool 16,
18, 175, 221, 228, 313, 372, 619,
620, 634, 646, 647, 664, 723, 724, 737

__tag_insert_bdc_node 436
__tag_insert_bmc_node 407
__tag_insert_emc_node 378
__tag_log 224
\l__tag_loglevel_int

. 82, 125, 132, 170, 173, 238,
241, 244, 245, 246, 329, 359, 378,
406, 409, 436, 512, 529, 536, 543,
550, 562, 570, 578, 583, 585, 593, 600

__tag_mark_spaces 496
__tag_mc_artifact_begin_marks:n

. 23, 45, 81, 327

\l__tag_mc_artifact_bool
. 20, 176, 185, 196, 222, 323

\l__tag_mc_artifact_type_tl
. 19, 189, 193, 197,
201, 205, 209, 213, 217, 325, 327, 344

__tag_mc_bdc:nn 234, 237, 283
__tag_mc_bdc_mcid:n . . . 123, 239, 255
__tag_mc_bdc_mcid:nn

. 239, 240, 257, 262
__tag_mc_bdc_shipout:nn . . 238, 248
__tag_mc_begin_marks:nn

. 23, 23, 44, 80, 334
__tag_mc_bmc:n 234, 235, 279
__tag_mc_bmc_artifact: 277, 277, 290
__tag_mc_bmc_artifact:n 277, 281, 291
\l__tag_mc_botmarks_seq

. 98, 21, 90, 111,
161, 208, 216, 217, 221, 234, 501, 518

__tag_mc_check_parent_child:n .
. 122, 122, 181, 207, 343

__tag_mc_disable_marks: 78, 78
__tag_mc_emc: 158, 234, 236, 374
__tag_mc_end_marks: . . 23, 63, 82, 375
\l__tag_mc_firstmarks_seq

. 98, 21, 87, 110, 196, 199,
200, 207, 208, 216, 233, 501, 509, 511

\g__tag_mc_footnote_marks_seq . . . 14
__tag_mc_get_marks: . 84, 84, 208, 229
__tag_mc_handle_artifact:N

. 119, 277, 285, 325
__tag_mc_handle_mc_label:n

. 27, 27, 200, 337
__tag_mc_handle_mcid:nn

. 239, 260, 265, 331
__tag_mc_handle_stash:n 50, 140,

142, 143, 168, 210, 266, 266, 276, 346
__tag_mc_if_in: 68, 82, 226, 233
__tag_mc_if_in:TF 68, 87, 226, 390, 398
__tag_mc_if_in_p: 68, 226
__tag_mc_insert_extra_tmb:n . . .

. 108, 108, 171
__tag_mc_insert_extra_tme:n . . .

. 108, 153, 172
__tag_mc_insert_mcid_kids:n . . .

. 131, 131, 150, 309
__tag_mc_insert_mcid_single_­

kids:n 131, 136, 310
\l__tag_mc_key_label_tl

. 23, 198, 200, 316, 334, 335, 337, 424
\l__tag_mc_key_properties_tl . . .

. 23, 177, 251, 266, 267, 281, 301,
302, 333, 394, 403, 404, 409, 420, 421

\l__tag_mc_key_stash_bool
. 20, 31, 40, 184, 203, 339

224

\g__tag_mc_key_tag_tl 19, 23,
180, 225, 237, 243, 293, 315, 373, 390

\l__tag_mc_key_tag_tl 23, 179, 193,
195, 224, 242, 314, 330, 332, 334, 389

\l__tag_mc_lang_tl
. 22, 185, 190, 316, 321

__tag_mc_lua_set_mc_type_attr:n
. 83, 83, 107, 195

__tag_mc_lua_unset_mc_type_­
attr: 83, 109, 223

\g__tag_mc_main_marks_seq 14
\g__tag_mc_marks 13,

25, 34, 47, 54, 65, 71, 88, 91, 197, 217
\g__tag_mc_multicol_marks_seq . . . 14
\g__tag_mc_parenttree_prop

. 17, 18, 103, 184, 272
\l__tag_mc_ref_abspage_tl 11
__tag_mc_set_label_used:n 31, 31, 51
\g__tag_mc_stack_seq

. 18, 89, 96, 106, 412
__tag_mc_store:nnn . . 93, 93, 107, 134
\l__tag_mc_tmpa_tl 12
g__tag_MCID_abs_int 7
\g__tag_mode_lua_bool

. . 35, 36, 135, 146, 248, 273, 282,
314, 317, 614, 629, 641, 659, 718, 732

\l__tag_name_link_tl . . . 759, 761, 762
__tag_pairs_prop 241
\l__tag_para_attr_class_tl

. 322, 399, 502
\g__tag_para_begin_int

. 322, 355, 373, 437, 560, 565
\l__tag_para_bool

. 322, 404, 413, 420, 426,
459, 478, 511, 573, 574, 613, 640, 717

\g__tag_para_end_int
. 322, 363, 381, 448, 560, 566

\l__tag_para_flattened_bool
. . . . 322, 409, 416, 429, 461, 486, 518

\l__tag_para_main_attr_class_tl
. 322, 492

\g__tag_para_main_begin_int
. 322, 351, 369, 551, 556

\g__tag_para_main_end_int
. 322, 359, 377, 551, 557

__tag_para_main_store_struct: .
. 391, 391, 468, 494

\g__tag_para_main_struct_tl 322, 393
\l__tag_para_main_tag_tl

. 322, 408, 415, 428, 466, 491
\l__tag_para_show_bool

. 322, 405, 406, 421, 434, 445
\l__tag_para_tag_default_tl 322

\l__tag_para_tag_tl
. . . . 322, 407, 414, 422, 427, 471, 501

\l__tag_parent_child_check_tl . .
. 156, 157, 169, 172, 500,
618, 619, 626, 629, 733, 734, 746, 748

__tag_parenttree_add_objr:nn . .
. 163, 163, 491, 519

\l__tag_parenttree_content_tl . .
. . . . 170, 195, 207, 227, 235, 256, 259

\g__tag_parenttree_objr_tl
. 162, 165, 256

__tag_pdf_name_e:n 105, 105
__tag_pdf_object_ref 466
__tag_prop_gput:Nnn

. 9, 29, 89, 97, 98, 111,
120, 121, 128, 132, 139, 142, 146,
149, 150, 201, 205, 217, 220, 282,
285, 314, 315, 384, 1308, 1444, 1451

__tag_prop_item:Nn . . . 9, 52, 139, 146
__tag_prop_new:N 9, 9,

11, 19, 24, 32, 108, 139, 139, 153, 1107
__tag_prop_new_linked:N

. 15, 17, 139, 140
__tag_prop_show:N 9, 65, 139, 148, 156
\c__tag_property_mc_clist . . 80, 247
__tag_property_record:nn

. 29, 108, 108, 117, 243, 477, 728
__tag_property_ref_lastpage:nn

. 83, 118, 118, 160, 174, 177, 457, 471
\c__tag_property_struct_clist 80, 730
\l__tag_Ref_tmpa_tl 64
g__tag_role/RoleMap_dict 18
\g__tag_role_add_mathml_bool . . .

. 73, 265, 762, 829
__tag_role_add_tag:nn

. 127, 127, 153, 280, 365, 800
__tag_role_add_tag:nnnn

. 167, 167, 226, 312, 805
__tag_role_alloctag:nnn 81,

85, 95, 107, 117, 126, 141, 184, 277, 308
__tag_role_check_parent_­

child:nnnnN 151,
164, 571, 590, 592, 640, 717, 729, 742

\l__tag_role_debug_prop 11
__tag_role_get:nnNN 154,

156, 164, 227, 229, 253, 712, 763, 1146
__tag_role_get_parent_child_­

rule:nnN
. . . . 203, 500, 503, 541, 589, 623, 701

\g__tag_role_index_prop
. 187, 10, 448, 456, 468,
469, 470, 475, 481, 483, 484, 485,
488, 490, 491, 495, 546, 547, 599, 609

\g__tag_role_NS_<ns>_class_prop 187

225

\g__tag_role_NS_<ns>_prop 187
\g__tag_role_NS_mathml_prop 267, 486
__tag_role_NS_new:nnn

. 189, 20, 22, 30, 74, 75, 76, 77, 78, 80
\g__tag_role_NS_prop

. . . . 187, 9, 26, 56, 181, 326, 344, 786
\g__tag_role_parent_child_­

intarray 390, 397, 406, 421, 425, 555
__tag_role_read_namespace:n 337,

337, 341, 342, 343, 345, 347, 349, 350
__tag_role_read_namespace:nn . .

. 318, 318, 339, 348
__tag_role_read_namespace_­

line:nw 255, 259, 292, 328
\l__tag_role_role_namespace_­

tmpa_tl 12,
757, 778, 783, 787, 790, 794, 809

\l__tag_role_role_tmpa_tl
. 12, 756, 776, 782, 802, 808

\g__tag_role_rolemap_prop
. 187, 18, 144, 146, 149, 158,
214, 217, 220, 269, 272, 385, 604, 614

\c__tag_role_rule_checkparent_tl
. 157, 173, 619, 734

\c__tag_role_rules_num_prop
. 391, 514, 564

\c__tag_role_rules_prop 391, 395, 419
\l__tag_role_tag_namespace_tmpa_­

tl 12, 755, 807
\l__tag_role_tag_namespace_tmpb_­

tl . 14
\l__tag_role_tag_namespace_tmpb_­

tl␣␣␣␣␣␣% 12
\l__tag_role_tag_tmpa_tl

. 12, 754, 775, 801, 806
\g__tag_role_tags_class_prop . . .

. . . . 187, 8, 90, 99, 112, 121, 137, 268
\g__tag_role_tags_NS_prop

187, 7, 88, 97, 110, 119, 130, 322,
357, 383, 423, 685, 701, 752, 781, 1277

\l__tag_role_tmpa_seq 12
\l__tag_role_update_bool

. 208, 255, 256, 264, 344, 346
\c__tag_role_userNS_id_str

. 188, 59, 80
\g__tag_root_default_tl 285
\g__tag_saved_in_mc_bool

. . . . 610, 619, 634, 646, 664, 723, 737
__tag_seq_gput_left:Nn

. 9, 40, 144, 152, 268
__tag_seq_gput_right:Nn 9,

35, 139, 143, 151, 231, 241, 252, 291
__tag_seq_item:Nn . . . 9, 47, 139, 145

__tag_seq_new:N
. . . . 9, 9, 22, 109, 139, 141, 154, 1109

__tag_seq_show:N 9, 58, 139, 147, 155
__tag_show_spacemark 477
\l__tag_showspaces_bool . . . 7, 16, 17
\g__tag_softhyphen_bool 95, 253
__tag_space_chars_shipout 594
__tag_start_para_ints:

. 177, 202, 365, 365
__tag_stop_para_ints:

. 167, 191, 365, 384
__tag_store_parent_child_­

rule:nnn 391, 393, 417, 462
g__tag_struct_1_prop 107
__tag_struct_add_AF:nn

. 933, 950, 970, 977, 997, 1042
__tag_struct_add_inline_AF:nn .

. . . . 922, 949, 1011, 1015, 1022, 1032
\l__tag_struct_addkid_tl 86, 772, 1219
\g__tag_struct_AFobj_int 920, 928, 931
__tag_struct_check_parent_­

child:nn 578, 578, 633, 669, 678, 1206
__tag_struct_check_parent_­

child_aux:nnnnN . 553, 554, 613, 621
\g__tag_struct_cont_mc_prop

. 11, 95, 96, 98, 101, 244
\g__tag_struct_dest_num_prop 88, 878
\l__tag_struct_elem_stash_bool .

. 85, 732, 1169, 1202, 1232
__tag_struct_exchange_kid_­

command:N 305, 305, 314, 345
__tag_struct_fill_kid_key:n . . .

. 136, 315, 315, 447
__tag_struct_format_P:nnN 409
__tag_struct_format_parentnum:nnN

. 412, 412
__tag_struct_format_parentrole:nnN

. 409, 410
__tag_struct_format_Ref 140
__tag_struct_format_Ref:nnN 416, 416
__tag_struct_format_rolemap:nnN

. 409, 409
__tag_struct_format_tag:nnN 409, 411
__tag_struct_get_dict_content:nN

. 138, 395, 395, 448
__tag_struct_get_id:n

. 96, 101, 114, 115, 148, 149, 454, 538
__tag_struct_get_role:nnNN

. 146, 159, 195, 195,
214, 561, 566, 638, 650, 662, 724, 737

__tag_struct_gput_data_attribute:nn
. 1437, 1437

__tag_struct_gput_data_ref:nn .
. 1419, 1436

226

__tag_struct_gput_data_ref_­
aux:nnn
. . 1398, 1399, 1421, 1425, 1429, 1433

__tag_struct_gput_data_ref_­
dest:nn 1427

__tag_struct_gput_data_ref_­
label:nn 1423

__tag_struct_gput_data_ref_­
num:nn 1431

__tag_struct_insert_annot:nn . .
. 462, 462, 1461

__tag_struct_insert_annot_­
shipout:nnn 503, 503

__tag_struct_kid_mc_gput_­
right:nn . . . 215, 227, 228, 247, 269

__tag_struct_kid_OBJR_gput_­
right:nnn 280, 280, 283, 304, 478, 506

__tag_struct_kid_struct_gput_­
left:nn 264, 264, 265, 279

__tag_struct_kid_struct_gput_­
right:nn
. 248, 248, 249, 263, 1305, 1350

g__tag_struct_kids_1_seq 107
\g__tag_struct_label_num_prop . .

. 84, 726, 865
\l__tag_struct_lang_tl

. 579, 1093, 1117, 1122
__tag_struct_mcid_dict:n

. 98, 101, 215, 234
\c__tag_struct_null_tl 10, 349
\g__tag_struct_objR_seq 8
\l__tag_struct_parenttag_NS_tl .

. 76, 762, 765, 769, 1175
\l__tag_struct_parenttag_tl

. 76, 761, 764, 768, 770, 1175
__tag_struct_prop_gput:nnn . . 93,

94, 95, 101, 111, 116, 121, 126,
131, 138, 164, 168, 177, 183, 188,
351, 364, 378, 784, 796, 810, 826,
841, 849, 914, 936, 979, 998, 1043,
1113, 1119, 1124, 1156, 1171, 1184,
1194, 1210, 1353, 1414, 1524, 1575

\g__tag_struct_ref_by_dest_prop . 91
__tag_struct_Ref_dest:nN . 855, 876
__tag_struct_Ref_label:nN 855, 863
__tag_struct_Ref_num:nN . . 855, 889
__tag_struct_Ref_obj:nN . . 855, 855
\g__tag_struct_roletag_NS_tl 76
\l__tag_struct_roletag_NS_tl . . .

. 79, 1150, 1160, 1198
\l__tag_struct_roletag_tl

. . . . 76, 1149, 1152, 1160, 1162, 1198
__tag_struct_set_attribute: . . .

. 23, 37, 1154, 1268

__tag_struct_set_tag_info:nnn .
. 159, 161, 175, 194, 1131

\g__tag_struct_stack_current_tl
. . 16, 29, 31, 38, 69, 75, 104, 148,
154, 162, 208, 270, 274, 310, 344,
533, 538, 544, 1153, 1217, 1221,
1222, 1243, 1261, 1267, 1306, 1312,
1318, 1324, 1351, 1357, 1363, 1369

\l__tag_struct_stack_parent_­
tmpa_tl . . 16, 471, 480, 497, 742,
1129, 1136, 1140, 1180, 1207, 1214,
1218, 1220, 1223, 1235, 1236, 1244

\g__tag_struct_stack_seq
. 12, 22, 25, 470, 723,
736, 1139, 1145, 1155, 1254, 1259, 1265

\c__tag_struct_StructElem_­
entries_seq 39

\c__tag_struct_StructTreeRoot_­
entries_seq 39

\g__tag_struct_tag_NS_tl 76, 695,
711, 714, 718, 1134, 1148, 1242, 1279

\g__tag_struct_tag_stack_seq . . .
. 14, 50, 249,
250, 573, 588, 602, 1151, 1258, 1273

\g__tag_struct_tag_tl 76,
179, 180, 183, 314, 315, 419, 420,
694, 696, 710, 713, 717, 719, 1133,
1147, 1152, 1275, 1277, 1319, 1364

__tag_struct_use_check_parent_­
child:nn . 634, 634, 681, 1323, 1368

__tag_struct_write_obj 140
__tag_struct_write_obj:n

. 151, 428, 428
\l__tag_tag_stop_int 158, 162, 163,

171, 172, 179, 186, 187, 196, 197, 205
\g__tag_tagunmarked_bool 94, 250, 252
\l__tag_tmp_unused_tl 63, 130, 315,

322, 395, 398, 402, 419, 422, 423,
685, 688, 701, 704, 752, 755, 788, 1550

\l__tag_tmp_unused_tl␣␣␣␣\l__­
tag_Ref_tmpa_tl 60

\l__tag_tmpa_box
. 60, 171, 177, 178, 182, 193, 194

\l__tag_tmpa_clist
. . . . 60, 1502, 1503, 1536, 1537, 1539

\l__tag_tmpa_int 60,
90, 93, 98, 101, 105, 114, 430, 442, 444

\l__tag_tmpa_prop 60, 176, 189, 203, 205
\l__tag_tmpa_seq 51, 58, 59, 60, 319,

321, 323, 324, 325, 326, 443, 446,
454, 455, 457, 458, 459, 466, 486,
496, 687, 691, 694, 695, 703, 707,
710, 711, 754, 758, 761, 762, 774,

227

775, 776, 1504, 1508, 1518, 1519,
1520, 1522, 1540, 1546, 1548, 1572

\l__tag_tmpa_str
. . . . 42, 43, 48, 60, 262, 267, 272,
297, 302, 309, 399, 404, 416, 421,
780, 787, 792, 799, 806, 813, 819,
820, 822, 825, 829, 837, 844, 910, 917

\l__tag_tmpa_tl 42,
43, 47, 49, 50, 51, 56, 60, 86, 88, 93,
94, 96, 98, 102, 106, 106, 108, 109,
113, 114, 116, 118, 119, 137, 138,
139, 141, 143, 144, 146, 177, 178,
180, 183, 184, 186, 191, 198, 199,
205, 205, 206, 209, 211, 214, 215,
220, 268, 269, 271, 275, 277, 288,
297, 299, 300, 302, 306, 307, 308,
308, 308, 311, 314, 345, 347, 349,
357, 376, 448, 453, 455, 455, 456,
457, 458, 463, 468, 469, 470, 475,
481, 483, 488, 514, 516, 525, 546,
549, 556, 564, 566, 575, 599, 601,
602, 604, 606, 606, 610, 620, 624,
645, 653, 655, 656, 658, 662, 667,
698, 702, 715, 717, 723, 725, 736,
738, 766, 768, 771, 772, 774, 932,
935, 1258, 1259, 1265, 1267, 1273,
1276, 1277, 1279, 1346, 1440, 1442,
1443, 1447, 1510, 1516, 1527, 1554

\l__tag_tmpb_box
. 60, 172, 179, 180, 184, 186

\l__tag_tmpb_seq
. 60, 1503, 1504, 1539, 1540

\l__tag_tmpb_tl 200, 60, 89, 104, 118,
120, 295, 301, 432, 456, 462, 484,
490, 518, 547, 550, 556, 568, 609,
611, 614, 616, 621, 625, 672, 680,
682, 683, 685, 689, 694, 699, 703,
716, 718, 767, 769, 865, 869, 878, 882

\l__tag_tmpc_tl 60, 485, 491
__tag_tree_fill_parenttree: . . .

. 171, 172, 253
__tag_tree_final_checks: 20, 20, 354
\g__tag_tree_id_pad_int . . 78, 82, 154
__tag_tree_lua_fill_parenttree:

. 233, 233, 250
\g__tag_tree_openaction_struct_­

tl 32, 38, 57
__tag_tree_parenttree_rerun_­

msg: 171, 220, 255
__tag_tree_update_openaction: .

. 42, 75
__tag_tree_write_classmap:

. 286, 286, 369
__tag_tree_write_idtree: . . 86, 361

__tag_tree_write_namespaces: . .
. 322, 322, 373

__tag_tree_write_parenttree: . .
. 246, 246, 357

__tag_tree_write_rolemap:
. 263, 263, 365

__tag_tree_write_structelements:
. 147, 147, 377

__tag_tree_write_structtreeroot:
. 126, 126, 381

\g__tag_unique_cnt_int
96, 1064, 1068, 1071, 1081, 1085, 1089

__tag_whatsits:
. 36, 43, 48, 49, 52, 295, 296

tag-namespace␣(rolemap-key) 752
tag/check/parent-child 183
tag/check/parent-child-end 183
tag/struct/1 internal commands:

__tag/struct/1 31
tag/tree/namespaces internal commands:

__tag/tree/namespaces 321
tag/tree/parenttree internal commands:

__tag/tree/parenttree 154
tag/tree/rolemap internal commands:

__tag/tree/rolemap 262
tagabspage 8, 122
tagmcabs . 8, 122
\tagmcbegin 41, 186, 22
\tagmcend . 41, 22
tagmcid . 8, 122
\tagmcifinTF 41, 39
\tagmcuse . 41, 22
\tagpdfparaOff 43, 570
\tagpdfparaOn 43, 570
\tagpdfsetup 41, 69, 116, 117, 186, 6
\tagpdfsuppressmarks 43, 575
\tagstart 7, 182, 213
\tagstop 7, 181, 212
tagstruct . 8, 122
\tagstructbegin 41, 152, 186, 45, 288
\tagstructend 41, 45, 289
tagstructobj 8, 122
\tagstructuse 41, 45
tagtag@LastPage internal commands:

\r__tagtag@LastPage 57
\tagtool . 41, 13
tagunmarked (deprecated) (key) . . . 1, 250
test/lang␣(setup-key) 577
TEX and LATEX 2ε commands:

\@M . 168
\@bsphack 110
\@esphack 112
\@gobble 31, 55
\@ifpackageloaded 22

228

\@kernel@after@foot 592
\@kernel@after@head 590
\@kernel@before@foot 591
\@kernel@before@head 587, 589
\@maxdepth 181
\@secondoftwo 31, 55
\c@chapter 360, 378
\on@line 483, 498, 514

tex commands:
\tex_botmarks:D 91
\tex_firstmarks:D 88
\tex_kern:D 184
\tex_marks:D 25, 34, 47, 54, 65, 71
\tex_special:D 52
\tex_splitbotmarks:D 217
\tex_splitfirstmarks:D 197

texsource (key) 1, 920
\tiny . 437, 448
title (key) 1, 722
title-o (key) 1, 722
tl commands:

\c_empty_tl 365, 385
\c_space_tl 55, 56, 58, 60,

100, 104, 116, 167, 191, 197, 198,
216, 218, 220, 222, 259, 299, 388,
405, 425, 453, 859, 869, 882, 893,
960, 1235, 1318, 1363, 1447, 1519, 1565

\tl_clear:N
. . 88, 89, 106, 177, 210, 211, 288, 397

\tl_const:Nn 10, 237
\tl_count:n 79, 83, 154
\tl_gput_left:Nn 1000
\tl_gput_right:Nn 165, 958
\tl_gset:Nn 18,

33, 38, 104, 225, 243, 286, 298, 331,
373, 390, 393, 694, 695, 710, 711,
717, 718, 965, 1153, 1267, 1275, 1279

\tl_gset_eq:NN 180, 315
\tl_head:N 655, 682
\tl_if_empty:NTF 43,

43, 109, 185, 198, 289, 307, 316,
335, 417, 656, 683, 772, 778, 820, 1117

\tl_if_empty:nTF
. 51, 69, 77, 89, 142, 196,
210, 259, 262, 266, 279, 294, 295,
297, 352, 371, 413, 440, 621, 629,
643, 670, 803, 819, 834, 925, 995, 1016

\tl_if_empty_p:n 310, 793
\tl_if_eq:NNTF 349, 501, 667
\tl_if_eq:NnTF 108
\tl_if_eq:nnTF 212, 240, 274, 278
\tl_if_exist:NTF . . 277, 346, 397, 953
\tl_if_head_eq_charcode:nNTF 49
\tl_if_in:nnTF 185

\tl_new:N 11, 12, 12, 13,
14, 15, 16, 17, 19, 20, 22, 23, 24, 25,
26, 32, 33, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 76, 77, 78, 79, 80,
82, 86, 162, 170, 285, 330, 332, 333,
335, 347, 348, 500, 761, 963, 1093, 1477

\tl_put_left:Nn 590, 592
\tl_put_right:Nn

. 94, 104, 118, 195, 207,
226, 251, 256, 266, 267, 281, 297,
301, 302, 394, 403, 404, 405, 409,
414, 418, 420, 421, 423, 589, 591,
857, 867, 880, 891, 1407, 1563, 1570

\tl_remove_once:Nn 1442, 1443
\tl_replace_once:Nnn 308
\tl_set:Nn

. 42, 81, 83, 86, 87, 118, 139, 160,
162, 180, 183, 189, 193, 197, 201,
205, 206, 207, 209, 213, 217, 224,
235, 238, 239, 242, 243, 244, 249,
250, 271, 275, 302, 306, 309, 316,
334, 338, 339, 342, 343, 347, 389,
399, 419, 455, 508, 516, 518, 552,
560, 566, 568, 601, 606, 611, 616,
629, 645, 655, 658, 662, 667, 672,
682, 685, 689, 694, 707, 742, 761,
762, 762, 768, 769, 772, 775, 776,
790, 794, 1129, 1303, 1411, 1516, 1544

\tl_set_eq:NN 179, 314
\tl_show:N 1217, 1218, 1568, 1574
\tl_tail:n 531
\tl_to_str:n

. 33, 48, 149, 202, 217, 524, 557
\tl_trim_spaces:n 49
\tl_use:N . . . 279, 941, 984, 1003, 1048

tree-mcid-index-wrong 21, 226
tree-statistic 20, 54
tree-struct-still-open 20, 47

U
uncompress (deprecated) (key) 237
unittag␣(deprecated) 402
\unskip . 41
use commands:

\use:N 67, 235, 576, 1219
\use:n 41, 348
\use_i:nn

. 99, 102, 109, 138, 154, 159, 206,
238, 365, 385, 597, 606, 608, 610, 1276

\use_ii:nn 104, 119,
135, 152, 157, 207, 239, 344, 594, 605

\use_none:n 81, 103, 118, 230
\use_none:nn 80, 1392

\UseExpandableTaggingSocket . 44, 70, 72

229

\UseSocket . 44
\UseStructureName . 338, 339, 752, 754, 774
\UseTaggingSocket 44,

45, 69, 72, 806, 813, 820, 827, 834,
841, 847, 854, 860, 867, 875, 888,
899, 912, 923, 936, 947, 960, 970, 983

V
\vbadness 168, 192

vbox commands:
\vbox_set_split_to_ht:NNn 194
\vbox_set_to_ht:Nnn 170
\vbox_unpack_drop:N 183

\vfuzz . 169
viewer/startstructure␣(setup-key) . . 34

W
wrong-pdfversion 220

230

	Contents
	I
	1 Initialization and test if pdfmanagement is active.
	2 base package
	3 Package options
	4 Packages
	4.1 a LastPage label

	5 Variables
	6 Variants of l3 commands
	7 Label and Reference commands
	8 Setup label attributes
	9 Commands to fill seq and prop
	10 General tagging commands
	11 Keys for tagpdfsetup
	12 loading of engine/more dependent code

	II
	1 Commands
	2 Description of log messages
	2.1 \ShowTagging command
	2.2 Messages in checks and commands
	2.3 Messages from the ptagging code
	2.4 Warning messages from the lua-code
	2.5 Info messages from the lua-code
	2.6 Debug mode messages and code
	2.7 Messages

	3 Messages
	3.1 Messages related to mc-chunks
	3.2 Messages related to structures
	3.3 Attributes
	3.4 Roles
	3.5 Miscellaneous

	4 Retrieving data
	5 PDF version check
	6 User conditionals
	7 Internal checks
	7.1 checks for active tagging
	7.2 Checks related to structures
	7.3 Checks related to roles
	7.4 Check related to mc-chunks
	7.5 Checks related to the state of MC on a page or in a split stream
	7.6 Benchmarks

	III
	1 Setup commands
	2 Commands related to mc-chunks
	3 Commands related to structures
	4 Debugging
	5 Extension commands
	5.1 Fake space
	5.2 Tagging of paragraphs
	5.3 Header and footer
	5.4 Link tagging

	6 Socket support
	7 User commands and extensions of document commands
	8 Setup and preamble commands
	9 Commands for the mc-chunks
	10 Commands for the structure
	11 Socket support
	12 Debugging
	13 Commands to extend document commands
	13.1 Document structure
	13.2 Structure destinations
	13.3 Fake space
	13.4 Paratagging
	13.5 Language support
	13.6 Header and footer
	13.7 Links
	13.8 Attaching css-files for derivation

	IV
	1 Trees, pdfmanagement and finalization code
	1.1 Check structure
	1.2 Catalog: MarkInfo and StructTreeRoot and OpenAction
	1.3 Writing the IDtree
	1.4 Writing structure elements
	1.5 ParentTree
	1.6 Rolemap dictionary
	1.7 Classmap dictionary
	1.8 Namespaces
	1.9 Finishing the structure
	1.10 StructParents entry for Page

	V
	1 Public Commands
	2 Public keys
	3 Marked content code – shared
	3.1 Variables and counters
	3.2 Functions
	3.3 Keys

	VI
	1 Marked content code – generic mode
	1.1 Variables
	1.2 Functions
	1.3 Looking at MC marks in boxes
	1.4 Keys

	VII
	1 Marked content code – luamode code
	1.1 Commands
	1.2 Key definitions

	VIII
	1 Public Commands
	2 Public keys
	2.1 Keys for the structure commands
	2.2 Setup keys

	3 Variables
	3.1 Variables used by the keys
	3.2 Variables used by tagging code of basic elements

	4 Commands
	4.1 Initialization of the StructTreeRoot
	4.2 Adding the /ID key
	4.3 Filling in the tag info
	4.4 Handlings kids
	4.5 Output of the object
	4.6 Commands for the parent-child checks

	5 Keys
	6 User commands
	7 Attributes and attribute classes
	7.1 Variables
	7.2 Commands and keys

	IX
	1 Loading the lua
	2 User commands to access data
	3 Logging functions
	4 Helper functions
	4.1 Retrieve data functions
	4.2 Functions to insert the pdf literals

	5 Function for the real space chars
	6 Function for the tagging
	7 Parenttree
	8 parent-child rules
	9 Link annotations

	X
	1 Code related to roles and structure names
	1.1 Variables
	1.2 Namespaces
	1.3 Adding a new tag
	1.3.1 pdf 1.7 and earlier
	1.3.2 The pdf 2.0 version

	1.4 Helper command to read the data from files
	1.5 Reading the default data
	1.6 Parent-child rules
	1.6.1 Reading in the csv-files
	1.6.2 Retrieving the parent-child rule

	1.7 Key-val user interface

	XI
	1 Code for interword spaces

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W

