
Configuration

With a basic knowledge of Qt, you could change the configuration of the default Kvantum theme. That
configuration can be easily copied by using Kvantum Manager (click Save button on its third page)
or, manually and if the source of Kvantum is available, by following these steps:

(1) Create the folder “~/.config/Kvantum/” (~ is your home);

(2) Create the file “kvantum.kvconfig” in the above folder with this line in it:

theme=DefaultCopy

Here, DefaultCopy could be any name you choose for the new configuration;

(3) Create the folder “~/.config/Kvantum/DefaultCopy/” and the file “DefaultCopy.kvconfig” in it;

(4) Copy/paste the contents of “style/themeconfig/default.kvconfig” (from the source) to the file
“DefaultCopy .kvconfig”.

Now, you can change the values of variables (keys). Please note that deleting a variable often means
that its value will be taken from the default configuration, so that you could keep only those sections or
variables you want to change. See below for a more accurate explanation.

There are many sections (groups) and variables (keys) in the config file. That is intentional: unlike
most theme engines, Kvantum is supposed to be able to control virtually all aspects of widgets. Here
are the meanings of various sections:

Sections Table

Section (Group) Meaning

[%General] General info on the theme and some general variables. (“%”
is required because Qt uses [General] for another purpose.)

[GeneralColors] The most important colors used by the theme.

[Hacks] Hacks for specific apps or widgets.

[PanelButtonCommand] Panel for a button used to initiate an action, for example, a
push button.

[PanelButtonTool] Panel for a tool button.

[Dock] A dock widget.

[DockTitle] The title of a dock widget.

[IndicatorSpinBox] Indicators of a spin widget.

[RadioButton] A radio button.

[CheckBox] A check box.

[Focus] Generic focus frame/rectangle.

[GenericFrame] Generic frame.

[LineEdit] A line edit (one-line text editor).

[DropDownButton] Indicator for a drop down button, for example, a tool button
that displays a menu.

[ToolboxTab] Just text colors for tab labels of a toolbox.

[Tab] The tab shape within a tab bar. Also the tear indicator of a tab
bar and the close button of a tab.

[TabFrame] The frame for tab widgets.

[TabBarFrame] The frame that is drawn for a tab bar, ususally for a tab bar
that isn't part of a tab widget.

[TreeExpander] Indicators used to represent the branch of a tree in a tree view.

[HeaderSection] A header section. Also its label and arrow.

[SizeGrip] Window resize handle if it exists.

[Toolbar] A toolbar. Also its handle and separator.

[ToolbarButton] Panel for a tool button on a stylable toolbar. This section is
optional and can be omitted. If present, it will take all of its
variables from PanelButtonTool, except for its text colors, text
shadow, and (indicator, frame and interior) elements.

[ToolbarComboBox] Exactly like ToolbarButton but for combo boxes on stylable
toolbars.

[ToolbarLineEdit] Panel for a line-edit on a stylable toolbar. This section is
optional and can be omitted. If present, it will take all of its
variables from LineEdit, except for its frame and interior
elements.

Also, note that the text color of such a line-edit is always the
text color of the stylable toolbar behind it. Therefore, its
interior (if any) should have a good contrast with that color.

[Scrollbar] Scrollbar increase/decrease indicators (arrows).

[ScrollbarGroove] The groove of a scrollbar.

[ScrollbarSlider] A scrollbar slider.

[ScrollbarTransientSlider] An optional section for transient scrollbars (see
transient_scrollbar below). It takes all of its values from
ScrollbarSlider, except for its frame and interior elements. It
is useful when the ordinary scrollbar slider elements are not
good enough with transient scrollbars.

[Slider] A slider (a classic widget for controlling a bounded value).

[SliderCursor] The handle of a slider.

[Progressbar] The groove and label of a progressbar.

[ProgressbarContents] The progress indicator.

[ItemView] An item in an item view.

[Splitter] A splitter handle.

[Menu] The panel and frame of a menu. Also its frame shadow.

[MenuItem] A menu item in a menu. Also the tear-off section of a menu.

[MenuBar] The empty area of a menu bar.

[MenuBarItem] A menu bar item, like the buttons in a menubar.

[TitleBar] A title bar, like those used in QMdiSubWindow.

[ComboBox] A combo box and its label.

[GroupBox] A group box and the frame around it.

[ToolTip] The panel for a tooltip label.

[Window] A window or dialog.

[WindowTranslucent] This is used when a distinction is needed to be made between
(backgrounds of) opaque and translucent windows. If it is
omitted, the above section will be used for all windows.

[Dialog] This is used when a distinction is needed to be made between
(backgrounds of) dialogs and windows. If it is omitted, the
section Window will be used for both windows and dialogs.

Here, “dialog” means any window without menubar and
toolbar but not necessarily a QDialog.

[DialogTranslucent] Like WindowTranslucent but for dialogs.

The following table shows the variables (keys) you could change to configure the current theme –
without necessarily making a new one – with the default values of some of them. These are the rules
for the value inheritance:

(1) If a section (group) is not present in your configuration, its variables and their values will be
taken from the default config file.

(2) If a variable is not present in a section of your configuration:
 (2a) First the “inherits” section will be searched for it and then, if nothing is found,
 (2b) its value will be taken from the same section of the default config file.

There are three exceptions to these rules:

Exception No.1: The “inherits” variable will not be taken from the default config file if it is not
present in a section.

Exception No.2: If colors are omitted or not valid or if a section they could belong to is not
present, they will be taken from the currently used color scheme. Also font boldness/italicity will
be ignored if omitted.

Exception No.3: Any variable related to compositing or hacking and also frame.expandedElement
will be ignored if omitted.

Variables Table

Variable (Key) Value Meaning

The %General Section

author string Obvious.

comment string Obvious.

respect_DE true/false Should some settings of the current DE be
respected? True by default.

KDE, Unity, Gnome and Pantheon are supported.
Under KDE, the keys small_icon_size,
large_icon_size and double_click are overridden
by KDE settings. Under Unity, Gnome and
Pantheon, iconless_pushbutton and iconless_menu
are set to true, composite is set to false, and
x11drag is set to menubar_and_primary_toolbar.

x11drag true/false
or
string

Drag windows from anywhere possible? True by
default.

Its values are none (or false), menubar,
menubar_and_primary_toolbar, and all (or true).

x11drag is disabled on wayland.

alt_mnemonic true/false Show underlines when Alt is pressed? True by
default.

double_click true/false Activate view items on double clicking? They are
activated on single clicking by default but the
KDE setting has priority over the default.

inline_spin_indicators true/false Draw spin indicators inside the spin line-edit? By
default, they are drawn as buttons.

vertical_spin_indicators true/false Draw spin indicators vertically and inside the spin
line-edit? By default, they are drawn on adjacent
buttons.

spin_button_width integer The width of horizontal spin buttons. It is 16px by
default and is always between 16 and 32px.

combo_as_lineedit true/false Draw an editable combo box as a line-edit with an
arrow (and an icon if any)? By default, editable
combo boxes consist of combo, line-edit and drop
down elements.

combo_menu true/false Should the popup of combo boxes be styled as per
popup menus (i.e. like Gtk)? By default, they are
shown below the combo box.

combo_focus_rect true/false Should combo boxes have focus rectangles? The
default is false because combo boxes are drawn by
the “pressed” SVG elements when they have the
keyboard focus but, if set to true, this key draws
them with the “normal” SVG elements and adds a
focus rectangle to them in that state. (The focus
rectangle is defined under the Focus section.)

square_combo_button true/false Should the combo arrow buttons be square as far
as possible? The default is false but if this key has
a true value, editable combo boxes will be drawn
as line-edits attached to square arrow buttons.

Note that this key will have no effect if
combo_as_lineedit is true because, in that case, the
whole editable combo box will be drawn as a line-
edit.

left_tabs true/false Align tabs to the left edge? Tabs are centered by
default.

center_doc_tabs true/false Always center tabs if the tab widget is in the
document mode and even when left_tabs is true?

False by default, which means that tabs are aligned
in the document mode as in the usual mode.

attach_active_tab true/false Attach the active tab to the tab widget or the tab-
bar base? It is detached by default.

embedded_tabs true/false If attach_active_tab is false, should tabs be half
embedded in their widgets (provided that it is not
in the document mode)? This is false by default.

joined_inactive_tabs true/false Join inactive tabs together? They are joined by
default.

Also, see Theme-Making.pdf for tab separators.

mirror_doc_tabs true/false By default, bottom and right tab shapes are mirror
images of top and left ones, respectively. Setting
this key to false will change that behavior if the tab
widget is in the document mode or if the active tab
is detached (i.e. the value of the key
attach_active_tab is false), so that the top/left and
bottom/ right tab shapes will be identical. The
default value is true.

no_active_tab_separator true/false Do not draw tab separator for the active tab? False
by default, which means that, if tab separators
exist in the SVG image, they will be drawn for all
tabs.

See Theme-Making.pdf for an explanation of tab
separators.

active_tab_overlap Integer
or
DECIMALfont

Number of pixels inactive tabs overlap the active
one. It is zero by default.

The active tab is drawn in front of its adjacent
inactive tabs when the value of this key is positive.

It is safe to set a great value here.

The string “font” can be appended to the value
(without quotes and space), in which case, the
value will be multiplied by the height of the
application font (in px) and could also be a
decimal (as in active_tab_overlap=2.5font).

no_inactive_tab_expansion true/false If tabs have frame expansion, setting this key to
true will disable frame expansion for inactive tabs.

tab_button_extra_margin integer The extra margin between the tab frame and tab
buttons (the close button, for example). It is zero
by default and its maximum is the font height
(because some apps may not respect a greater
value). Note that there is a default minimum
margin without this key.

The string “font” can be appended to the value
(without quotes and space), in which case, the
value will be multiplied by the height of the
application font (in px) and could also be a
decimal (as in min_height=0.25font).

bold_active_tab true/false Should the active tab text be bold? By default, the
active tab text is like the inactive one.

group_toolbar_buttons true/false Raise and group neighbor toolbar buttons? By
default, they are not raised.

toolbar_item_spacing integer The space between toolbar buttons. Zero by
default. It is also zero if the key
group_toolbar_buttons is set to true.

toolbar_interior_spacing integer The space around the interior of toolbars. Zero by
default.

center_toolbar_handle true/false If true, the SVG element for the toolbar handle
will be centered and its size will be that of the
toolbar indicator. Otherwise, it will be scaled
vertically with an 8-px width. False by default.

slim_toolbars true/false When true, the size of toolbar icons will be 16px if
it is not set in the app. If false, the size will be
determined by the DE or the app. False by default.
You could use toolbar_icon_size instead of it.

toolbutton_style integer Sets the toolbutton style when it is not set by the
app. 0: follow, 1: icon only, 2: text only, 3: text
beside icon, and 4: text under icon. The toolbutton
style is 0 by default.

spread_progressbar true/false Spread the progressbar's indicator across its whole
groove and not just its interior? By default, the
indicator is drawn inside progressbar's frame.

progressbar_thickness Integer
or
DECIMALfont

If positive, it sets the (maximum) progressbar
thickness as far as possible. It is zero by default,
which means there is no limit to progressbar
thickness.

Note 1: If it is positive but less than the height of
the progressbar text, the text will be put above the
bar or, when there is not enough space above the
bar, in front of it.

Note 2: The string “font” can be appended to the
value (without quotes and space), in which case,
the value will be multiplied by the height of the
application font (in px) and could also be a
decimal (as in progressbar_thickness=2.5font).

spread_header true/false Spread the header's interior so that it meets the
frame of its view as far as possible (good for
drawing simple headers). Its value is false by
default but if you set it to true, do not remove top,
right or left header frames because they may be
needed when the header is RTL vertical or not
stretched.

menubar_mouse_tracking true/false Enable mouse tracking in menubars? It is enabled
by default.

merge_menubar_with_toolbar true/false Draw adjacent menu and tool bars as a whole? If
true, the toolbar SVG interior and frame will be
used for drawing them.

composite true/false Use compositing to have translucent menus or
tooltips? It is automatically set to false if no
compositing is available. Its absence also means
false.

scrollable_menu true/false Should (big) menus be scrollable and have scroll
arrows on their top and/or bottom? False by
default, which means all menu-items are shown.

menu_separator_height integer The height of menu separators. 10 by default and
always between 1 and 16 px.

submenu_overlap integer The horizontal overlap between a submenu and its
parent menu. The default is 0. It cannot be greater
than 16px.

menu_shadow_depth integer The depth of the shadow menus cast. A value of
zero, its absence or a false value for composite
means no shadow.

Also, see Theme-Making.pdf → Translucency and
Shadow for Menus and Tooltips.

tooltip_shadow_depth integer The depth of the shadow tooltips cast. A value of
zero, its absence or a false value for composite
means no shadow.

translucent_windows true/false Translucent windows and dialogs? This requires a
translucent SVG element for windows or a positive
value for reduce_window_opacity. A false value,
its absence or a false value for composite means no
translucency.

Window translucency is also disabled
automatically when there is neither a Window nor a
WindowTranslucent section or the value of interior
is false for them and, at the same time,
reduce_window_opacity is zero.

reduce_window_opacity integer If translucent_windows is set to true, this key will
reduce the window opacity by the percentage of its
value regardless of whether a translucent element
for window background exists in the SVG image
or not. The default value is 0 and the maximum is
90.

reduce_menu_opacity integer As above but for menus.

opaque String list A comma-separated list of executables, whose
apps should not have window translucency. It has
meaning only if translucent_windows is set to true.

blurring true/false Blur the screen area behind translucent windows in
KDE? This needs KDE blur effect and also a
graphic card that supports it. It has no effect when
composite or translucent_windows is false.

popup_blurring true/false Blur the regions behind translucent menus and
tooltips? This needs KDE blur effect and a graphic
card that supports it. It will automatically be set to
true if blurring is true.

animate_states true/false Animate the state change in some widgets,
especially when they are under the mouse cursor?

Widgets like buttons may have normal, focused
(hover), pressed and toggled states. If this key is
set to true, there will be a 200-ms fading animation
on state change for some widgets.

The default value is false. These widgets are
supported: all kinds of buttons, combo boxes, line-
edits and scroll views. For buttons, the animation
happens only under the mouse cursor.

no_inactiveness true/false Ignore the inactive state? The purpose of this key
is more flexibility with themes that distinguish
between active and inactive states.

no_window_pattern true/false Do not draw window/dialog tiling patterns?
The purpose of this key is more flexibility with
themes that include tiling patterns for windows
and/or dialogs.

splitter_width integer The width of splitter handles. It cannot be greater
than 32px and is 7px by default.

scroll_width integer The thickness of scrollbars. It cannot be greater
than 32px. The default value is 12px.

scroll_min_extent integer The minimum height of a vertical scrollbar slider
and the minimum width of a horizontal one. It
cannot be greater that 100px or less than 16px. The
default value is 36px.

scroll_arrows true/false Draw scrollbar add-line and sub-line arrows? True
by default. If set to false, it will remove scroll
arrows as far as possible but some apps might still
force scroll arrows.

scrollbar_in_view true/false Should scrollbars be inside the view frame? It is
false (outside) by default.

transient_scrollbar true/false Should scrollbars appear only when needed and
disappear when not needed? False by default.

If this key is true, scroll_arrows and
scrollbar_in_view are considered false, the SVG
groove is not drawn, scrollbars fade out when not
needed, and they usually take no extra space.

transient_groove true/false Should transient scrollbars have translucent
backgrounds when needed? False by default but if

true, the base color will be used for painting the
background with 25% translucency.

tree_branch_line true/false Draw tree branch lines? False by default.

groupbox_top_label true/false Draw the group-box label above the top frame? It
is false by default, which means that the label is
drawn on the top frame.

If the value of this key is false, group boxes will
not have interior or frame expansion.

button_contents_shift true/false Shift the contents of push-buttons when they are
down? It is true by default.

slider_width integer The width of sliders. It cannot be greater than 48px
and is 8px by default.

slider_handle_width
slider_handle_length

integer The width and the height of slider handles. They
cannot be greater than 48px. The default values are
16px.

tickless_slider_handle_size integer The size (width and height) of the special slider
handle used for sliders without tick marks, if the
interior element of such a handle exists in the SVG
file (with “-tickless” appended to its element
name; See Theme-Making.pdf → Indicators). Its
value is never greater than slider_handle_width,
which is also its default value.

check_size integer The width and height of checkboxes and radio
buttons. The default value is 13px.

tooltip_delay integer The delay, in milliseconds, before a tooltip is
shown. If set to zero, tooltips will be shown
instantly. If missing or set to any negative integer,
the default behavior of Qt is used for showing
tooltips. (This key has no effect with Qt4!)

submenu_delay integer The delay, in milliseconds, before opening a
submenu. 250 by default. -1 means opening
submens only by clicking, while 0 means showing
them immediately.

layout_spacing integer Obvious. Its value is between 2 and 16 (px), and
will have no effect if set in the code of an app. It is
2 by default.

layout_margin integer Obvious. Its value is between 2 and 16 (px), and
will have no effect if set in the code of an app. It is

4 by default.

small_icon_size
large_icon_size
button_icon_size
toolbar_icon_size

integer These affect menu-items/headers, icon-views,
buttons/tabbars/listviews, and toolbars
respectively. KDE setting will have priority over
these values if it exists.

fill_rubberband true/false Always fill the rubber-band rectangle with the
highlight color? By default, drop rectangles for
movable toolbars and dock widgets are hollow.

dark_titlebar true/false Should a dark titlebar be requested under Gtk
desktops like Gnome? Although the default is
false, it is good to set this key to true for dark
themes.

The GeneralColors Section

window.color String
(#RRGGBBAA)

A general background color as #RRGGBB or
#RRGGBBAA or with a valid name like white,
black, red, etc.

inactive.window.color String
(#RRGGBBAA)

Background color of inactive windows. If missing,
it falls backs to window.color.

base.color String
(#RRGGBBAA)

Used mostly as the background color for text entry
widgets.

inactive.base.color String
(#RRGGBBAA)

Background color of inactive text entry widgets. If
missing, it falls backs to window.color.

alt.base.color String
(#RRGGBBAA)

Used as the alternate background color in views
with alternating row colors.

inactive.alt.base.color String
(#RRGGBBAA)

Like above but for inactive widgets.

button.color String
(#RRGGBBAA)

The general button background color.

light.color String
(#RRGGBBAA)

Lighter than button.color (used mostly for 3D
bevels).

mid.light.color String
(#RRGGBBAA)

Between button.color and light.color (used mostly
for 3D bevels).

dark.color String
(#RRGGBBAA)

Darker than button.color (used mostly for 3D
bevels).

mid.color String
(#RRGGBBAA)

Between button.color and dark.color (used mostly
for 3D bevels).

shadow.color String
(#RRGGBBAA)

A very dark color. By default, it is black. (used
mostly for 3D bevels).

highlight.color String
(#RRGGBBAA)

A color for text selection.

inactive.highlight.color String
(#RRGGBBAA)

Like highlight.color but when the text widget does
not have focus.

tooltip.base.color String
(#RRGGBBAA)

Tooltip background color (used in "WhatsThis"
tooltips).

text.color String
(#RRGGBBAA)

The foreground color used with base.color.

inactive.text.color String
(#RRGGBBAA)

The inactive foreground color used with
base.color. It falls back to text.color if missing.

window.text.color String
(#RRGGBBAA)

A general foreground color.

inactive.window.text.color String
(#RRGGBBAA)

A general foreground color for inactive windows.
It falls back to window.text.color if missing.

button.text.color String
(#RRGGBBAA)

Obvious.

disabled.text.color String
(#RRGGBBAA)

Obvious.

tooltip.text.color String
(#RRGGBBAA)

Obvious.

highlight.text.color String
(#RRGGBBAA)

The color of selected text.

inactive.highlight.text.color String
(#RRGGBBAA)

The color of inactive selected text. If missing, it
falls back to highlight.text.color.

link.color String
(#RRGGBBAA)

Obvious.

link.visited.color String
(#RRGGBBAA)

Obvious.

progress.indicator.text.color String
(#RRGGBBAA)

The color of that part of the progress text, which is
inside the progress indicator. Useful when the
progress text does not have enough contrast with
the progress indicator.

progress.inactive.indicator.text.
color

String
(#RRGGBBAA)

Like progress.indicator.text.color but for inactive
progress bars.

The Hacks Section

transparent_dolphin_view true/false No background or frame for Dolphin's view
(Dolphin is the file manager of KDE)?

transparent_pcmanfm_sidepane true/false No background or frame for PCManFM-Qt's side-
pane (PCManFM-Qt is the file manager of LXQt)?

transparent_pcmanfm_view true/false No background or frame for PCManFM-Qt's
folder-view?

blur_konsole true/false Blur the region behind Konsole's transparent
background if possible?

transparent_ktitle_label true/false No background for the label of KtitleWidget (a
KDE widget with a heading label)?

transparent_menutitle true/false No background for (KDE) menu titles?

kcapacitybar_as_progressbar true/false Draw KCapacityBar as progressbar?
KCapacityBar has its hard-coded style by default.

respect_darkness true/false Some apps don't respect dark themes. Fix that as
far as possible?

force_size_grip true/false Show the size grips of dialogs and statusbars as far
as possible?

tint_on_mouseover integer Tint the label icons with the highlight color on
mouseover by this percentage? This will not work
if the containing widget is not styled by Kvantum.

no_selection_tint true/false Do not tint selected label icons with the highlight
color! False by default.

disabled_icon_opacity integer Set the opacity of disabled icons by this
percentage? It is useful with monochrome icons
and when the opacity of disabled icons is not
reduced by other means.

normal_default_pushbutton true/false No bold font for default push buttons?

iconless_pushbutton true/false No icon for push buttons that have text?

transparent_arrow_button true/false Should tool buttons be transparent (without a
panel) when they contain only an arrow?

iconless_menu true/false No icon for menus?

single_top_toolbar true/false Style only the top toolbar? If true, only the top
horizontal toolbar, which is immediately below the
menubar or at the top of the main window, will be
styled. By default, all toolbars are styled, of
course.

middle_click_scroll true/false Should the scroll slider jump to a position when
the scrollbar is middle clicked? The default is false
and the jump is done by a left click.

opaque_colors true/false Should all (text) colors be opaque? By default,
(text) colors are defined by the theme and can be
translucent.

Other Sections

inherits string The name of a section (in the same config file and
without brackets) whose configuration is also used
for this one.

frame true/false Draw a frame around the widget?

frame.top
frame.bottom
frame.left
frame.right

integer The height or width of the corresponding frame
part.

These values are mostly respected but there are
two exceptions: (1) Where there is not enough
space (because of a bad GUI design); and (2) A
few widgets may not accept the exact values – for
example, toolbars use the maximum value in all
directions.

frame.expanded.top
frame.expanded.bottom
frame.expanded.left
frame.expanded.right

integer The same as above but for expanded frames.

If they are set to zero, missing or greater than their
corresponding ordinary frame sizes, the ordinary
frame sizes will be used for expanded frames.

frame.expansion Integer
or
DECIMALfont

A positive value (in px) will expand the frames
until the corner frames meet each other either
vertically or horizontally, provided that at least the
height or the width of the widget is not greater
than it. With appropriate SVG images, this key can
be used for making corners completely rounded.
Its value is zero by default. Read the file Theme-
Making.pdf for more explanation.

The string “font” can be appended to the value
(without quotes and space), in which case, the
value will be multiplied by the height of the
application font (in px) and could also be a
decimal (as in frame.expansion=2.8font).

frame.patternsize integer The frame pattern size. Used for tiling the frame of
a widget with a pattern. A value of zero means no
pattern (default). Mostly useful for making dotted
frames.

focusFrame true/false Draw a focus frame when the widget has the
keyboard focus? This replaces the generic focus
frame/rectangle (see Focus section) for button like
widgets, tabs, group boxes and sliders. If it is true,
the element name that is used for drawing the
focus frame will be frame.element (see below) plus
the string “-focus”. All sizes will be those of the
usual frame.

This key will be ignored if there is no frame and is
false by default. Also, note that a focus frame can
be expanded like an ordinary frame when
frame.expansion is positive.

interior true/false Draw an interior for the widget?

interior.x.patternsize
interior.y.patternsize

integer The interior pattern sizes. Used for tiling the
interior of a widget with a pattern. A value of zero
means no tiling in the corresponding direction.
Their absence also means no pattern. Some widget
types may never accept patterns.

focusInterior true/false Draw a focus interior when the widget has the
keyboard focus? If it is true, the element name that
is used for drawing the focus interior will be
interior.element (see below) plus the string “-
focus”.

This key will be ignored if focusFrame is false or
there is no interior or frame and is false by default.

indicator.size integer Some widgets, like scrollbar arrows, have
indicators. This is their size.

text.margin true/false Put a margin around the text?

text.margin.top
text.margin.bottom
text.margin.left
text.margin.right

integer The sizes of the text margins if there is any.

These values are mostly respected but not if there
is a lack of space because of a bad GUI design.

text.normal.color String
(#RRGGBBAA)

The color of the normal text as #RRGGBB or
#RRGGBBAA or with a valid name like white,
black, red, etc. It may override the text colors
defined under the GeneralColors section.

Note 1: MenuBarItem always gets its normal text

color from the MenuBar section or, if menubar and
toolbar are merged (see the key
merge_menubar_with_toolbar), from the Toolbar
section.

Note 2: State-specific text colors do not have
meaning for Window, Dialog, Dock, LineEdit and
frame widgets (namely GenericFrame, TabFrame
and TabBarFrame).

text.focus.color String
(#RRGGBBAA)

The color of the focused (hover) text.

Note: For MenuBarItem, it serves as a fallback
color in case the press or toggle text colors are not
set.

text.press.color String
(#RRGGBBAA)

The color of the pressed text.

text.toggle.color String
(#RRGGBBAA)

The color of the toggled text.

text.normal.inactive.color
text.focus.inactive.color
text.press.inactive.color
text.toggle.inactive.color

string
(#RRGGBBAA)

These keys are for text colors of inactive widgets
and fall back to their corresponding ordinary keys
if missing.

text.bold true/false Bold font for text? The font is not bold by default.

text.boldness integer The weight of bold texts (if any). Its value is from
1 to 5, with 3 (normally bold) as default.

Note that some fonts may have only one degree of
boldness.

text.italic true/false Italic font for text? The font is not italic by default.

text.shadow true/false Draw a shadow for the text?

text.shadow.xshift
text.shadow.yshift

integer The vertical/horizontal shifts of the text shadow if
it exists.

text.shadow.color string
(#RRGGBBAA)

The color of the text shadow as #RRGGBB or
#RRGGBBAA or with a valid name like white,
black, red, etc.

text.inactive.shadow.color string
(#RRGGBBAA)

Like text.shadow.color and falling back to it if
missing but for inactive widgets.

text.shadow.alpha integer
(0-255)

The opacity of the text shadow. 255 means
completely opaque. If the alpha is set in

#RRGGBBAA as the shadow color name, this key
can be left to 255 (its default value).

text.shadow.depth integer The text shadow depth.

min_width
min_height

Integer
or
DECIMALfont

Minimum width or height (in px). They have
meaning only for menuitems, menubar items, push
and tool buttons, line-edits, combo boxes, spin
boxes (only for their height) and, sometimes, view
items (only for their height).

They can also be used under Window and Dialog
sections (and their translucent counterparts), in
which case, they mean the minimum width/height
of the drawn background (interior) SVG element,
so that if the widget's width/height is smaller, the
background will be cut from right/bottom. This can
be useful with gradients.

The string “font” can be appended to the value
(without quotes and space), in which case, the
value will be multiplied by the height of the
application font (in px) and could also be a
decimal (as in min_height=2.3font).

If “+” is prepended to the value (without quotes
and space), the value will be added to the
width/height of the widget, instead of being
considered as the minimum. For example,
min_width=+0.5font adds half the font height to
the widget width. Please do not mistake “+” for a
positive value here; the values are always
considered to be nonnegative.

If you want to make your own theme (see the file “Theme-Making”), you will also need to know the
meanings of these variables:

Elements Table

Variable (Key) Value Meaning

interior.element string The SVG element to be used for drawing the interior of a widget.

frame.element string The SVG element to be used for drawing the frame of a widget.

frame.expandedElement string The optional SVG element to be used only for drawing the
expanded frame. If not present, frame.element will be used for
expanded frames too. See frame.expansion!

indicator.element string The SVG element to be used for drawing the indicator of a widget.

Application Themes

Specific Themes can be assigned to applications, so that those applications use their corresponding
themes instead of the active theme. This can be done easily by using the last page of Kvantum
Manager (Application Themes) or manually, by adding app lists (executable names) to
'~/.config/Kvantum/kvantum.kvconfig' with the following format:

[General]
theme=ACTIVE_THEME

[Applications]
THEME1=app1, app2
THEME2=app3
…

Some Examples

If you don’t want menus and tooltips to be translucent or cast shadow and want the color scheme to be
used for all texts, you could use a blank configuration or a very basic one with just this in it:

[%General]

You could also be more explicit:

[%General]
composite=false

[PanelButtonCommand]
text.normal.color=none
text.focus.color=none
text.press.color=none
text.toggle.color=none

Here “none” is not a valid color, so text colors will be taken from the currently used color scheme.

If you want to have bigger buttons without increasing your font sizes, you could use this:

[%General]
composite=true
menu_shadow_depth=6
tooltip_shadow_depth=6

[PanelButtonCommand]
text.normal.color=white
text.focus.color=#80C0FF
text.press.color=white
text.toggle.color=white
text.margin.top=4
text.margin.bottom=4
text.margin.left=5
text.margin.right=5

[PanelButtonTool]
inherits=PanelButtonCommand

To have black text shadows with light green focused text, use this (black text shadows are already
defined but disabled in the default config file):

[%General]
composite=true
menu_shadow_depth=6
tooltip_shadow_depth=6

[PanelButtonCommand]
text.normal.color=white
text.focus.color=lightgreen
text.press.color=white
text.toggle.color=white
text.shadow=true

Note that, in the two examples above, the compositing values and normal/focused/pressed text colors
are also added because otherwise, they would be disabled (see the exceptions above). In the previous
example, customized text colors were disabled for all widgets other than push-buttons because there

were no sections for them. If you want them back, you could add sections like these:

[PanelButtonTool]
inherits=PanelButtonCommand
[Tab]
inherits=PanelButtonCommand
[MenuItem]
inherits=PanelButtonCommand

And so on.

	Sections Table
	Variables Table
	Elements Table
	Application Themes
	Some Examples

