
Highlighting Typographical Flaws with LuaLaTeX
Daniel Flipo

daniel.flipo@free.fr

1 What is it about?

The file lua-typo.sty
1, is meant for careful writers and proofreaders who do not feel

totally satisfied with LaTeX output, the most frequent issues being overfull or under­
full lines, widows and orphans, hyphenated words split across two pages, two many
consecutive lines ending with hyphens, paragraphs ending on too short or nearly full
lines, homeoarchy, etc.
This package, which works with LuaLaTeX only, does not try to correct anything but just
highlights potential issues (the offending lines or end of lines are printed in colour)
and provides at the end of the .log file a summary of pages to be checked andmanually
improved if possible. lua-typo also creates a <jobname>.typo file which summarises
the informations (type, page, line number) about the detected issues.
Important notice: a) the highlighted lines are only meant to draw the proofreader’s
attention on possible issues, it is up to him/her to decide whether an improvement
is desirable or not; they should not be regarded as blamable! some issues may be
acceptable in some conditions (multi-columns, technical papers) and unbearable
in others (literary works f.i.). Moreover, correcting a potential issue somewhere may
result in other much more serious flaws somewhere else …
b) Conversely, possible bugs in lua-typo might hide issues that should normally be
highlighted. Starting with version 0.85, the <jobname>.typo file lists, if any, the pages on
which no text line could be found. Thewarningmay be irrelevant (page only composed
of figures) or point out a possible bug.
c) Regarding boxed materials, i.e. lines of text included in minipages, parboxes or
marginotes, lua-typo only checks Overfull/Undefull boxes.
lua-typo is highly configurable in order to meet the variable expectations of authors
and correctors: see the options’ list and the lua-typo.cfg configuration file below.
When lua-typo shows possible flaws in the page layout, how can we fix them? The
simpliest way is to rephrase some bits of text… this is an option for an author, not for
a proofreader. When the text can not be altered, it is possible to slightly adjust the
inter-word spacing (via the TeX commands \spaceskip and \xspaceskip) and/or the
letter spacing (via microtype ’s \textls command): slightly enlarging either of them or
both may be sufficient to make a paragraph’s last line acceptable when it was originally
too short or add a line to a paragraph when its last line was nearly full, thus possibly
removing an orphan. Conversely, slightly reducing them may remove a paragraph’s
last line (when it was short) and get rid of a widow on top of next page.
I suggest to add a call \usepackage[All]{lua-typo} to the preamble of a document
which is “nearly finished’’ and to remove it once all possible corrections have been
made: if some flaws remain, getting them printed in colour in the final document
would be a shame!
Starting with version 0.50 a recent LaTeX kernel (dated 2021/06/01) is required. Users
running an older kernel will get a warning and an error message “Unable to register

1The file described in this section has version number v.0.88 and was last revised on 2026-01-07.

1

callback ’’; for them, a “rollback’’ version of lua-typo is provided, it can be loaded this
way: \usepackage[All]{lua-typo}[=v0.4] .
The current version (v.0.88) requires a LaTeX kernel dated 2022/06/01 or later. Another
“rollback’’ version [=v0.65] has been added for those who run an older kernel.
See files demo.tex and demo.pdf for a short example (in French).
I am very grateful to Jacques André and Thomas Savary, who kindly tested my beta
versions, providing much valuable feedback and suggesting many improvements for
the first released version. Special thanks to both of them and to Michel Bovani whose
contributions led to version 0.61!

2 Usage

The easiest way to trigger all checks perfomed by lua-typo is:
\usepackage[All]{lua-typo}

It is possible to enable or disable some checks through boolean options passed to
lua-typo ; you may want to perform all checks except a few, then lua-typo should be
loaded this way:
\usepackage[All, <OptX>=false, <OptY>=false]{lua-typo}

or to enable just a few checks, then do it this way:
\usepackage[<OptX>, <OptY>, <OptZ>]{lua-typo}

Here is the full list of possible checks (name and purpose):

Name Glitch to highlight
All Turns all options to true

BackParindent paragraph’s last line nearly full?
ShortLines paragraph’s last line too short?
ShortPages nearly empty page (just a few lines)?
OverfullLines overfull lines?
UnderfullLines underfull lines?
Widows widows (top of page)?
Orphans orphans (bottom of page)?
EOPHyphens hyphenated word split across two pages?
RepeatedHyphens too many consecutive hyphens?
ParLastHyphen paragraph’s last full line hyphenated?
EOLShortWords short words (1 or 2 chars) at end of line?
FirstWordMatch same (part of) word starting two consecutive lines?
LastWordMatch same (part of) word ending two consecutive lines?
FootnoteSplit footnotes spread over two pages or more?
ShortFinalWord Short word ending a sentence on the next page
MarginparPos Margin note ending too low on the page

For example, if you want lua-typo to only warn about overfull and underfull lines, you
can load lua-typo like this:
\usepackage[OverfullLines, UnderfullLines]{lua-typo}

If you want everything to be checked except paragraphs ending on a short line try:
\usepackage[All, ShortLines=false]{lua-typo}

please note that All has to be the first one, as options are taken into account as they
are read i.e. from left to right.

2

The list of all available options is printed to the .log file when option ShowOptions is
passed to lua-typo , this option provides an easy way to get their names without having
to look into the documentation.
With option None , lua-typo does absolutely nothing , all checks are disabled as the main
function is not added to any LuaTeX callback. It not quite equivalent to commenting
out the \usepackage{lua-typo} line though, as user defined commands related to lua-

typo are still defined and will not print any error message.
Please be aware of the following features:

FirstWordMatch: the first word of consecutive list items is not highlighted, as these
repetitions result of the author’s choice.

ShortPages: if a page is considered too short, its last line only is highlighted, not the
whole page.

RepeatedHyphens: ditto, when the number of consecutives hyphenated lines is too high,
only the hyphenated words in excess (the last ones) are hightlighted.

ShortFinalWord : the first word on a page is highlighted if it ends a sentence and is
short (up to \luatypoMinLen=4 letters).

3 Known issues

lua-typo is currently incompatiblewith the reledmac package. When the latter is loaded,
no check is performed by lua-typo , a warning is issued in the .log file.

4 Customisation

Some of the checks mentionned above require tuning, for instance, when is a last
paragraph’s length called too short? how many hyphens ending consecutive lines are
acceptable? lua-typo provides user customisable parameters to set what is regarded
as acceptable or not.
A default configuration file lua-typo.cfg is provided with all parameters set to their
defaults; it is located under the TEXMFDIST directory. It is up to the users to copy this
file into their working directory (or TEXMFHOME or TEXMFLOCAL) and tune the defaults
according to their own taste.
It is also possible to provide defaults directly in the document’s preamble (this over­
writes the corresponding settings done in the configuration file found on TeX’s search
path: current directory, then TEXMFHOME, TEXMFLOCAL and finally TEXMFDIST.
Here are the parameters names (all prefixed by luatypo in order to avoid conflicts with
other packages) and their default values:

BackParindent: paragraphs’ last line should either end at at sufficient distance of the
right margin (\luatypoBackPI , default 1em) or (approximately) touch the right
margin —the tolerance is \luatypoBackFuzz (default 2pt) 2.

2Some authors do not accept full lines at end of paragraphs, they can just set \luatypoBackFuzz=0pt to
make them pointed out as faulty.

3

ShortLines: \luatypoLLminWD=2\parindent
3 sets the minimum acceptable length for

paragraphs’ last lines.

ShortPages: \luatypoPageMin=5 sets the minimum acceptable number of lines on a
page (chapters’ last page for instance). Actually, the last line’s vertical position
on the page is taken into account so that f.i. title pages or pages ending on a
picture are not pointed out.

RepeatedHyphens: \luatypoHyphMax=2 sets the maximum acceptable number of consec­
utive hyphenated lines.

UnderfullLines: \luatypoStretchMax=200 sets the maximum acceptable percentage of
stretch acceptable before a line is tagged by lua-typo as underfull; it must be
an integer over 100, 100 means that the slightest stretch exceeding the font
tolerance (\fontdimen3) will be warned about (be prepared for a lot of “underfull
lines’’ with this setting), the default value 200 is just below what triggers TeX’s
“Underfull hbox’’ message (when \tolerance=200 and \hbadness=1000).

First/LastWordMatch: \luatypoMinFull=3 , \luatypoMinPart=4 set theminimumnumber
of characters required for a match to be pointed out. With this setting (3 and 4),
two occurrences of the word ‘out’ at the beginning or end of two consecutive
lines will be highlighted (three chars, ‘in’ wouldn’t match), whereas a line ending
with “full’’ or “overfull’’ followed by one ending with “underfull’’ will match (four
chars): the second occurence of “full’’ or “erfull’’ will be highlighted.

EOLShortWords: this check deals with lines ending with very short words (one or two
characters), not all of them but a user selected list depending on the current
language.
\luatypoOneChar{<language>}{'<list of words>'}

\luatypoTwoChars{<language>}{'<list of words>'}

Currently, defaults (commented out) are suggested for the French language only:
\luatypoOneChar{french}{'À Ô Y'}

\luatypoTwoChars{french}{'Je Tu Il On Au De'}

Feel free to customise these lists for French or to add your own shorts words
for other languages but remember that a) the first argument (language name)
must be knownby babel , so if you add \luatypoOneChar or \luatypoTwoChars com­
mands, please make sure that lua-typo is loaded after babel ; b) the second argu­
mentmust be a string (i.e. surrounded by single or double ASCII quotes) made
of your words separated by spaces.

MarginparPos: \luatypoMarginparTol} is a dimension which defaults to \baselineskip ;
marginal notes trigger a flaw if they end lower than \luatypoMarginparTol under
the page’s last line.

It is possible to define a specific colour for each typographic flaws that lua-typo deals
with. Currently, only six colours are used in lua-typo.cfg :

% \definecolor{LTgrey}{gray}{0.6}

% \definecolor{LTred}{rgb}{1,0.55,0}

% \definecolor{LTline}{rgb}{0.7,0,0.3}

3Or 20pt if \parindent=0pt .

4

% \luatypoSetColor1{red} % Paragraph last full line hyphenated

% \luatypoSetColor2{red} % Page last word hyphenated

% \luatypoSetColor3{red} % Hyphens on consecutive lines

% \luatypoSetColor4{red} % Short word at end of line

% \luatypoSetColor5{cyan} % Widow

% \luatypoSetColor6{cyan} % Orphan

% \luatypoSetColor7{cyan} % Paragraph ending on a short line

% \luatypoSetColor8{blue} % Overfull lines

% \luatypoSetColor9{blue} % Underfull lines

% \luatypoSetColor{10}{red} % Nearly empty page (a few lines)

% \luatypoSetColor{11}{LTred} % First word matches

% \luatypoSetColor{12}{LTred} % Last word matches

% \luatypoSetColor{13}{LTgrey}% Paragraph’s last line nearly full

% \luatypoSetColor{14}{cyan} % Footnotes spread over two pages

% \luatypoSetColor{15}{red} % Short final word on top of the page

% \luatypoSetColor{16}{LTline}% Line color for multiple flaws

% \luatypoSetColor{17}{red} % Margin note ending too low

lua-typo loads the luacolor package which loads the color package from the LaTeX
graphic bundle. \luatypoSetColor requires named colours, so you can either use the
\definecolor from color package to define yours (as done in the config file for ‘LTgrey’
and ‘LTred’) or load the xcolor package which provides a bunch of named colours.

5 TEXnical details

Starting with version 0.50, this package uses the rollback mechanism to provide easier
backward compatibility. Rollback version 0.40 is provided for users who would have a
LaTeX kernel older than 2021/06/01. Rollback version 0.65 is provided for users who
would have a LaTeX kernel older than 2022/06/01.

1 \DeclareRelease{v0.4}{2021-01-01}{lua-typo-2021-04-18.sty}
2 \DeclareRelease{v0.65}{2023-03-08}{lua-typo-2023-03-08.sty}
3 \DeclareCurrentRelease{}{2023-09-13}

This package only runs with LuaLaTeX and requires packages luatexbase , luacode ,
luacolor and atveryend .

4 \ifdefined\directlua
5 \RequirePackage{luatexbase,luacode,luacolor,atveryend}

6 \else
7 \PackageError{This package is meant for LuaTeX only! Aborting}

8 {No more information available, sorry!}

9 \fi

Let’s define the necessary internal counters, dimens, token registers and commands…

10 \newdimen\luatypoLLminWD
11 \newdimen\luatypoBackPI
12 \newdimen\luatypoBackFuzz
13 \newdimen\luatypoMarginparTol

5

14 \newcount\luatypoStretchMax
15 \newcount\luatypoHyphMax
16 \newcount\luatypoPageMin
17 \newcount\luatypoMinFull
18 \newcount\luatypoMinPart
19 \newcount\luatypoMinLen
20 \newcount\luatypo@LANGno
21 \newcount\luatypo@options
22 \newtoks\luatypo@single
23 \newtoks\luatypo@double

… and define a global table for this package.

24 \begin{luacode}
25 luatypo = { }

26 \end{luacode}

Set up ltkeys initializations. Option All resets all booleans relative to specific typo­
graphic checks to true .

27 \DeclareKeys[luatypo]
28 {

29 ShowOptions.if = LT@ShowOptions ,

30 None.if = LT@None ,

31 BackParindent.if = LT@BackParindent ,

32 ShortLines.if = LT@ShortLines ,

33 ShortPages.if = LT@ShortPages ,

34 OverfullLines.if = LT@OverfullLines ,

35 UnderfullLines.if = LT@UnderfullLines ,

36 Widows.if = LT@Widows ,

37 Orphans.if = LT@Orphans ,

38 EOPHyphens.if = LT@EOPHyphens ,

39 RepeatedHyphens.if = LT@RepeatedHyphens ,

40 ParLastHyphen.if = LT@ParLastHyphen ,

41 EOLShortWords.if = LT@EOLShortWords ,

42 FirstWordMatch.if = LT@FirstWordMatch ,

43 LastWordMatch.if = LT@LastWordMatch ,

44 FootnoteSplit.if = LT@FootnoteSplit ,

45 ShortFinalWord.if = LT@ShortFinalWord ,

46 MarginparPos.if = LT@MarginparPos ,

47 PageFirstLine.if = LT@PageFirstLine ,

48 All.if = LT@All ,

49 All.code = \LT@ShortLinestrue \LT@ShortPagestrue

50 \LT@OverfullLinestrue \LT@UnderfullLinestrue

51 \LT@Widowstrue \LT@Orphanstrue

52 \LT@EOPHyphenstrue \LT@RepeatedHyphenstrue

53 \LT@ParLastHyphentrue \LT@EOLShortWordstrue

54 \LT@FirstWordMatchtrue \LT@LastWordMatchtrue

55 \LT@BackParindenttrue \LT@FootnoteSplittrue

56 \LT@ShortFinalWordtrue \LT@MarginparPostrue

57 }

58 \ProcessKeyOptions[luatypo]

Forward theseoptions to the luatypo global table. Wait until the configfile lua-typo.cfg

6

has been read in order to give it a chance of overruling the boolean options. This
enables the user to permanently change the defaults.

59 \AtEndOfPackage{%
60 \ifLT@None

61 \directlua{ luatypo.None = true }%

62 \else

63 \directlua{ luatypo.None = false }%

64 \fi

65 \ifLT@BackParindent

66 \advance\luatypo@options by 1

67 \directlua{ luatypo.BackParindent = true }%

68 \else

69 \directlua{ luatypo.BackParindent = false }%

70 \fi

71 \ifLT@ShortLines

72 \advance\luatypo@options by 1

73 \directlua{ luatypo.ShortLines = true }%

74 \else

75 \directlua{ luatypo.ShortLines = false }%

76 \fi

77 \ifLT@ShortPages

78 \advance\luatypo@options by 1

79 \directlua{ luatypo.ShortPages = true }%

80 \else

81 \directlua{ luatypo.ShortPages = false }%

82 \fi

83 \ifLT@OverfullLines

84 \advance\luatypo@options by 1

85 \directlua{ luatypo.OverfullLines = true }%

86 \else

87 \directlua{ luatypo.OverfullLines = false }%

88 \fi

89 \ifLT@UnderfullLines

90 \advance\luatypo@options by 1

91 \directlua{ luatypo.UnderfullLines = true }%

92 \else

93 \directlua{ luatypo.UnderfullLines = false }%

94 \fi

95 \ifLT@Widows

96 \advance\luatypo@options by 1

97 \directlua{ luatypo.Widows = true }%

98 \else

99 \directlua{ luatypo.Widows = false }%

100 \fi

101 \ifLT@Orphans

102 \advance\luatypo@options by 1

103 \directlua{ luatypo.Orphans = true }%

104 \else

105 \directlua{ luatypo.Orphans = false }%

106 \fi

107 \ifLT@EOPHyphens

108 \advance\luatypo@options by 1

109 \directlua{ luatypo.EOPHyphens = true }%

7

110 \else

111 \directlua{ luatypo.EOPHyphens = false }%

112 \fi

113 \ifLT@RepeatedHyphens

114 \advance\luatypo@options by 1

115 \directlua{ luatypo.RepeatedHyphens = true }%

116 \else

117 \directlua{ luatypo.RepeatedHyphens = false }%

118 \fi

119 \ifLT@ParLastHyphen

120 \advance\luatypo@options by 1

121 \directlua{ luatypo.ParLastHyphen = true }%

122 \else

123 \directlua{ luatypo.ParLastHyphen = false }%

124 \fi

125 \ifLT@EOLShortWords

126 \advance\luatypo@options by 1

127 \directlua{ luatypo.EOLShortWords = true }%

128 \else

129 \directlua{ luatypo.EOLShortWords = false }%

130 \fi

131 \ifLT@FirstWordMatch

132 \advance\luatypo@options by 1

133 \directlua{ luatypo.FirstWordMatch = true }%

134 \else

135 \directlua{ luatypo.FirstWordMatch = false }%

136 \fi

137 \ifLT@LastWordMatch

138 \advance\luatypo@options by 1

139 \directlua{ luatypo.LastWordMatch = true }%

140 \else

141 \directlua{ luatypo.LastWordMatch = false }%

142 \fi

143 \ifLT@FootnoteSplit

144 \advance\luatypo@options by 1

145 \directlua{ luatypo.FootnoteSplit = true }%

146 \else

147 \directlua{ luatypo.FootnoteSplit = false }%

148 \fi

149 \ifLT@ShortFinalWord

150 \advance\luatypo@options by 1

151 \directlua{ luatypo.ShortFinalWord = true }%

152 \else

153 \directlua{ luatypo.ShortFinalWord = false }%

154 \fi

155 \ifLT@MarginparPos

156 \advance\luatypo@options by 1

157 \directlua{ luatypo.MarginparPos = true }%

158 \else

159 \directlua{ luatypo.MarginparPos = false }%

160 \fi

161 \ifLT@PageFirstLine

162 \advance\luatypo@options by 1

163 \directlua{ luatypo.PageFirstLine = true }%

8

164 \else

165 \directlua{ luatypo.PageFirstLine = false }%

166 \fi

167 }

ShowOptions is specific:

168 \ifLT@ShowOptions
169 \GenericWarning{* }{%

170 *** List of possible options for lua-typo ***\MessageBreak

171 [Default values between brackets]%

172 \MessageBreak

173 ShowOptions [false]\MessageBreak

174 None [false]\MessageBreak

175 All [false]\MessageBreak

176 BackParindent [false]\MessageBreak

177 ShortLines [false]\MessageBreak

178 ShortPages [false]\MessageBreak

179 OverfullLines [false]\MessageBreak

180 UnderfullLines [false]\MessageBreak

181 Widows [false]\MessageBreak

182 Orphans [false]\MessageBreak

183 EOPHyphens [false]\MessageBreak

184 RepeatedHyphens [false]\MessageBreak

185 ParLastHyphen [false]\MessageBreak

186 EOLShortWords [false]\MessageBreak

187 FirstWordMatch [false]\MessageBreak

188 LastWordMatch [false]\MessageBreak

189 FootnoteSplit [false]\MessageBreak

190 ShortFinalWord [false]\MessageBreak

191 MarginparPos [false]\MessageBreak

192 \MessageBreak

193 ***%

194 \MessageBreak Lua-typo [ShowOptions]

195 }%

196 \fi

Some defaut values which can be customised in the preamble are forwarded to Lua
AtBeginDocument.

197 \AtBeginDocument{%
198 \@ifpackageloaded{reledmac}%

199 {\PackageWarning{lua-typo}{%

200 'lua-typo' is incompatible with\MessageBreak

201 the 'reledmac' package.\MessageBreak

202 'lua-typo' checking disabled.\MessageBreak

203 Reported}%

204 \LT@Nonetrue

205 \directlua{ luatypo.None = true }%

206 }{}%

207 \directlua{

208 luatypo.HYPHmax = tex.count.luatypoHyphMax

209 luatypo.PAGEmin = tex.count.luatypoPageMin

210 luatypo.Stretch = tex.count.luatypoStretchMax

9

211 luatypo.MinFull = tex.count.luatypoMinFull

212 luatypo.MinPart = tex.count.luatypoMinPart

Ensure MinFull≤MinPart .

213 luatypo.MinFull = math.min(luatypo.MinPart,luatypo.MinFull)

214 luatypo.MinLen = tex.count.luatypoMinLen

215 luatypo.LLminWD = tex.dimen.luatypoLLminWD

216 luatypo.BackPI = tex.dimen.luatypoBackPI

217 luatypo.BackFuzz = tex.dimen.luatypoBackFuzz

218 luatypo.MParTol = tex.dimen.luatypoMarginparTol

Build a compact table holding all colours defined by lua-typo (no duplicates).

219 local tbl = luatypo.colortbl

220 local map = { }

221 for i,v in ipairs (luatypo.colortbl) do

222 if i == 1 or v > tbl[i-1] then

223 table.insert(map, v)

224 end

225 end

226 luatypo.map = map

227 }%

228 }

Print the summary of offending pages —if any— at the (very) end of document and
write the report file on disc, unless option None has been selected.
On every page, at least one line of text should be found. Otherwise, lua-typo pre­
sumes something went wrong and writes the page number to a failedlist list. In case
pagelist is empty and failedlist is not , a warning is issued instead of the No Typo

Flaws found. message (new to version 0.85).

229 \AtVeryEndDocument{%
230 \ifnum\luatypo@options = 0 \LT@Nonetrue \fi

231 \ifLT@None
232 \directlua{

233 texio.write_nl(' ')

234 texio.write_nl('************************************')

235 texio.write_nl('*** lua-typo running with NO option:')

236 texio.write_nl('*** NO CHECK PERFORMED! ***')

237 texio.write_nl('************************************')

238 texio.write_nl(' ')

239 }%

240 \else
241 \directlua{

242 texio.write_nl(' ')

243 texio.write_nl('*************************************')

244 if luatypo.pagelist == " " then

245 if luatypo.failedlist == " " then

246 texio.write_nl('*** lua-typo: No Typo Flaws found.')

247 else

248 texio.write_nl('*** WARNING: ')

249 texio.write('lua-typo failed to scan these pages:')

250 texio.write_nl('***' .. luatypo.failedlist)

10

251 texio.write_nl('*** Please report to the maintainer.')

252 end

253 else

254 texio.write_nl('*** lua-typo: WARNING *************')

255 texio.write_nl('The following pages need attention:')

256 texio.write(luatypo.pagelist)

257 end

258 texio.write_nl('*************************************')

259 texio.write_nl(' ')

260 if luatypo.failedlist == " " then

261 else

262 local prt = "WARNING: lua-typo failed to scan pages " ..

263 luatypo.failedlist .. "\string\n\string\n"

264 luatypo.buffer = prt .. luatypo.buffer

265 end

266 local fileout= tex.jobname .. ".typo"

267 local out=io.open(fileout,"w+")

268 out:write(luatypo.buffer)

269 io.close(out)

270 }%

271 \fi}

\luatypoOneChar

\luatypoTwoChars

These commands set which short words should be avoided at end of lines. The first
argument is a language name, say french , which is turned into a command \l@french

expanding to a number known by luatex, otherwise an error message occurs. The utf-8
string entered as second argument has to be converted into the font internal coding.
272 \newcommand*{\luatypoOneChar}[2]{%
273 \def\luatypo@LANG{#1}\luatypo@single={#2}%

274 \ifcsname l@\luatypo@LANG\endcsname

275 \luatypo@LANGno=\the\csname l@\luatypo@LANG\endcsname \relax

276 \directlua{

277 local langno = \the\luatypo@LANGno

278 local string = \the\luatypo@single

279 luatypo.single[langno] = " "

280 for p, c in utf8.codes(string) do

281 local s = utf8.char(c)

282 luatypo.single[langno] = luatypo.single[langno] .. s

283 end

284 ⟨dbg⟩ texio.write_nl('SINGLE=' .. luatypo.single[langno])

285 ⟨dbg⟩ texio.write_nl(' ')

286 }%

287 \else

288 \PackageWarning{luatypo}{Unknown language "\luatypo@LANG",

289 \MessageBreak \protect\luatypoOneChar\space command ignored}%

290 \fi}

291 \newcommand*{\luatypoTwoChars}[2]{%
292 \def\luatypo@LANG{#1}\luatypo@double={#2}%

293 \ifcsname l@\luatypo@LANG\endcsname

294 \luatypo@LANGno=\the\csname l@\luatypo@LANG\endcsname \relax

295 \directlua{

296 local langno = \the\luatypo@LANGno

297 local string = \the\luatypo@double

298 luatypo.double[langno] = " "

299 for p, c in utf8.codes(string) do

11

300 local s = utf8.char(c)

301 luatypo.double[langno] = luatypo.double[langno] .. s

302 end

303 ⟨dbg⟩ texio.write_nl('DOUBLE=' .. luatypo.double[langno])

304 ⟨dbg⟩ texio.write_nl(' ')

305 }%

306 \else

307 \PackageWarning{luatypo}{Unknown language "\luatypo@LANG",

308 \MessageBreak \protect\luatypoTwoChars\space command ignored}%

309 \fi}

\luatypoSetColor This is a user-level command to customise the colours highlighting the sixteen types
of possible typographic flaws. The first argument is a number (flaw type: 1-16), the
second the named colour associated to it. The colour support is based on the luacolor

package (colour attributes).

310 \newcommand*{\luatypoSetColor}[2]{%
311 \begingroup

312 \color{#2}%

313 \directlua{luatypo.colortbl[#1]=\the\LuaCol@Attribute}%

314 \endgroup

315 }
316 %\luatypoSetColor{0}{black}

The Lua code now, initialisations.

317 \begin{luacode}
318 luatypo.colortbl = { }

319 luatypo.map = { }

320 luatypo.single = { }

321 luatypo.double = { }

322 luatypo.pagelist = " "

323 luatypo.failedlist = " "

324 luatypo.buffer = "List of typographic flaws found for "

325 .. tex.jobname .. ".pdf:\string\n\string\n"

326
327 local char_to_discard = { }

328 char_to_discard[string.byte(",")] = true

329 char_to_discard[string.byte(".")] = true

330 char_to_discard[string.byte("!")] = true

331 char_to_discard[string.byte("?")] = true

332 char_to_discard[string.byte(":")] = true

333 char_to_discard[string.byte(";")] = true

334 char_to_discard[string.byte("-")] = true

335
336 local eow_char = { }

337 eow_char[string.byte(".")] = true

338 eow_char[string.byte("!")] = true

339 eow_char[string.byte("?")] = true

340 eow_char[utf8.codepoint("…")] = true

341
342 local DISC = node.id("disc")

12

343 local GLYPH = node.id("glyph")

344 local GLUE = node.id("glue")

345 local KERN = node.id("kern")

346 local RULE = node.id("rule")

347 local HLIST = node.id("hlist")

348 local VLIST = node.id("vlist")

349 local LPAR = node.id("local_par")

350 local MKERN = node.id("margin_kern")

351 local PENALTY = node.id("penalty")

352 local WHATSIT = node.id("whatsit")

Glue subtypes:

353 local USRSKIP = 0

354 local PARSKIP = 3

355 local LFTSKIP = 8

356 local RGTSKIP = 9

357 local TOPSKIP = 10

358 local PARFILL = 15

Hlist subtypes:

359 local LINE = 1

360 local BOX = 2

361 local INDENT = 3

362 local ALIGN = 4

363 local EQN = 6

Penalty subtypes:

364 local USER = 0

365 local HYPH = 0x2D

Glyph subtypes:

366 local LIGA = 0x102

Counter parline (current paragraph)must not be reset on every new page!

367 local parline = 0

Local definitions for the ‘node’ library:

368 local dimensions = node.dimensions

369 local rangedimensions = node.rangedimensions

370 local effective_glue = node.effective_glue

371 local set_attribute = node.set_attribute

372 local get_attribute = node.get_attribute

373 local slide = node.slide

374 local traverse = node.traverse

375 local traverse_id = node.traverse_id

376 local has_field = node.has_field

377 local uses_font = node.uses_font

378 local is_glyph = node.is_glyph

379 local utf8_len = utf8.len

13

Local definitions from the ‘unicode.utf8’ library: replacements are needed for func­
tions string.gsub() , string.sub() , string.find() and string.reverse() which are
meant for one-byte characters only.
utf8_find requires an utf-8 string and a ‘pattern’ (also utf-8), it returns nil if pattern is
not found, or the byte position of the first match otherwise [not an issue as we only
care for true/false].

380 local utf8_find = unicode.utf8.find

utf8_gsub mimics string.gsub for utf-8 strings.

381 local utf8_gsub = unicode.utf8.gsub

utf8_reverse returns the reversed string (utf-8 chars read from end to beginning)
[same as string.reverse but for utf-8 strings].

382 local utf8_reverse = function (s)

383 if utf8_len(s) > 1 then

384 local so = ""

385 for p, c in utf8.codes(s) do

386 so = utf8.char(c) .. so

387 end

388 s = so

389 end

390 return s

391 end

utf8_sub returns the substring of s that starts at i and continues until j (j-i-1 utf8 chars.).
Warning: it requires i ≥ 1 and j ≥ i.

392 local utf8_sub = function (s,i,j)

393 i=utf8.offset(s,i)

394 j=utf8.offset(s,j+1)-1

395 return string.sub(s,i,j)

396 end

The next function colours glyphs and discretionaries. It requires two arguments: a
node and a (named) colour.

397 local color_node = function (node, color)

398 local attr = oberdiek.luacolor.getattribute()

399 if node and node.id == DISC then

400 local pre = node.pre

401 local post = node.post

402 local repl = node.replace

403 if pre then

404 set_attribute(pre,attr,color)

405 end

406 if post then

407 set_attribute(post,attr,color)

408 end

409 if repl then

410 set_attribute(repl,attr,color)

411 end

14

412 elseif node then

413 set_attribute(node,attr,color)

414 end

415 end

The next function colours a whole line without overriding previously set colours by
f.i. homeoarchy, repeated hyphens etc. It requires two arguments: a line’s node and a
(named) colour.
Digging into nested hlists and vlists is needed f.i. to colour aligned equations.

416 local color_line = function (head, color)

417 local first = head.head

418 local map = luatypo.map

419 local color_node_if = function (node, color)

420 local c = oberdiek.luacolor.getattribute()

421 local att = get_attribute(node,c)

422 local uncolored = true

423 for i,v in ipairs (map) do

424 if att == v then

425 uncolored = false

426 break

427 end

428 end

429 if uncolored then

430 color_node (node, color)

431 end

432 end

433 for n in traverse(first) do

434 if n.id == HLIST or n.id == VLIST then

435 local ff = n.head

436 for nn in traverse(ff) do

437 if nn.id == HLIST or nn.id == VLIST then

438 local f3 = nn.head

439 for n3 in traverse(f3) do

440 if n3.id == HLIST or n3.id == VLIST then

441 local f4 = n3.head

442 for n4 in traverse(f4) do

443 if n4.id == HLIST or n4.id == VLIST then

444 local f5 = n4.head

445 for n5 in traverse(f5) do

446 if n5.id == HLIST or n5.id == VLIST then

447 local f6 = n5.head

448 for n6 in traverse(f6) do

449 color_node_if(n6, color)

450 end

451 else

452 color_node_if(n5, color)

453 end

454 end

455 else

456 color_node_if(n4, color)

457 end

458 end

459 else

15

460 color_node_if(n3, color)

461 end

462 end

463 else

464 color_node_if(nn, color)

465 end

466 end

467 else

468 color_node_if(n, color)

469 end

470 end

471 end

The next function takes four arguments: a string, two numbers (which can be NIL) and
a flag. It appends a line to a buffer which will be written to file ‘\jobname.typo ’.

472 log_flaw= function (msg, line, colno, footnote)

473 local pageno = tex.getcount("c@page")

474 local prt ="p. " .. pageno

475 if colno then

476 prt = prt .. ", col." .. colno

477 end

478 if line then

479 local l = string.format("%2d, ", line)

480 if footnote then

481 prt = prt .. ", (ftn.) line " .. l

482 else

483 prt = prt .. ", line " .. l

484 end

485 end

486 prt = prt .. msg

487 luatypo.buffer = luatypo.buffer .. prt .. "\string\n"

488 end

The next three functions deal with “homeoarchy’’, i.e. lines beginning or ending with
the same (part of) word. While comparing two words, the only significant nodes are
glyphs and ligatures, dicretionnaries other than ligatures, kerns (letterspacing) should
be discarded. For each word to be compared we build a “signature’’ made of glyphs,
split ligatures and underscores (representing glues).
The first function adds a (non-nil) node to a signature of type string, nil nodes are
ignored. It returns the augmented string and its length (underscores are omitted in
the length computation). The last argument is a boolean needed when building a
signature backwards (see check_line_last_word).

489 local signature = function (node, string, swap)

490 local n = node

491 local str = string

492 if n and n.id == GLYPH then

493 local b = n.char

Punctuation has to be discarded; other glyphs may be ligatures, then they have a
components field which holds the list of glyphs which compose the ligature.

16

494 if b and not char_to_discard[b] then

495 if n.components then

496 local c = ""

497 for nn in traverse_id(GLYPH, n.components) do

498 c = c .. utf8.char(nn.char)

499 end

500 if swap then

501 str = str .. utf8_reverse(c)

502 else

503 str = str .. c

504 end

505 else

506 str = str .. utf8.char(b)

507 end

508 end

509 elseif n and n.id == DISC then

Discretionaries are split into pre and post and both parts are stored. They might be
ligatures (ffl,ffi)…

510 local pre = n.pre

511 local post = n.post

512 local c1 = ""

513 local c2 = ""

514 if pre and pre.char then

515 if pre.components then

516 for nn in traverse_id(GLYPH, pre.components) do

517 c1 = c1 .. utf8.char(nn.char)

518 end

519 else

520 c1 = utf8.char(pre.char)

521 end

522 c1 = utf8_gsub(c1, "-", "")

523 end

524 if post and post.char then

525 if post.components then

526 for nn in traverse_id(GLYPH, post.components) do

527 c2 = c2 .. utf8.char(nn.char)

528 end

529 else

530 c2 = utf8.char(post.char)

531 end

532 end

533 if swap then

534 str = str .. utf8_reverse(c2) .. c1

535 else

536 str = str .. c1 .. c2

537 end

538 elseif n and n.id == GLUE then

539 str = str .. "_"

540 end

The returned length is the number of letters.

541 local s = utf8_gsub(str, "_", "")

17

542 local len = utf8_len(s)

543 return len, str

544 end

The next function looks for consecutive lines ending with the same letters.
It requires five arguments: a string (previous line’s signature), a node (the last one
on the current line), a line number, a column number (possibly nil) and a boolean
to cancel checking in some cases (end of paragraphs). It prints the matching part at
end of linewith with the supplied colour and returns the current line’s last word and a
boolean (match).

545 local check_line_last_word =

546 function (old, node, line, colno, flag, footnote)

547 local COLOR = luatypo.colortbl[12]

548 local match = false

549 local new = ""

550 local maxlen = 0

551 local MinFull = luatypo.MinFull

552 local MinPart = luatypo.MinPart

553 if node then

554 local swap = true

555 local box, go

Step back to the last glyph or discretionary or hbox.

556 local lastn = node

557 while lastn and lastn.id ~= GLYPH and lastn.id ~= DISC and

558 lastn.id ~= HLIST do

559 lastn = lastn.prev

560 end

A signature is built from the last two (or more) words on the current line.

561 local n = lastn

562 local words = 0

563 while n and (words <= 2 or maxlen < MinPart) do

Go down inside boxes, read their content from end to beginning, then step out.

564 if n and n.id == HLIST then

565 box = n

566 local first = n.head

567 local lastn = slide(first)

568 n = lastn

569 while n do

570 maxlen, new = signature (n, new, swap)

571 n = n.prev

572 end

573 n = box.prev

574 local w = utf8_gsub(new, "_", "")

575 words = words + utf8_len(new) - utf8_len(w) + 1

576 else

577 repeat

578 maxlen, new = signature (n, new, swap)

18

579 n = n.prev

580 until not n or n.id == GLUE or n.id == HLIST

581 if n and n.id == GLUE then

582 maxlen, new = signature (n, new, swap)

583 words = words + 1

584 n = n.prev

585 end

586 end

587 end

588 new = utf8_reverse(new)

589 new = utf8_gsub(new, "_+$", "") -- $

590 new = utf8_gsub(new, "^_+", "")

591 maxlen = math.min(utf8_len(old), utf8_len(new))

592 ⟨dbg⟩ texio.write_nl('EOLsigold=' .. old)

593 ⟨dbg⟩ texio.write(' EOLsig=' .. new)

Whencalledwithflag false , check_line_last_word doesn’t compare itwith theprevious
line’s, but just returns the last word’s signature.

594 if flag and old ~= "" then

oldlast and newlast hold the last (full) words to be compared later:

595 local oldlast = utf8_gsub (old, ".*_", "")

596 local newlast = utf8_gsub (new, ".*_", "")

Let’s look for a partial match: build oldsub and newsub , reading (backwards) the last
MinPart non-space characters of both lines.

597 local oldsub = ""

598 local newsub = ""

599 local dlo = utf8_reverse(old)

600 local wen = utf8_reverse(new)

601 for p, c in utf8.codes(dlo) do

602 local s = utf8_gsub(oldsub, "_", "")

603 if utf8_len(s) < MinPart then

604 oldsub = utf8.char(c) .. oldsub

605 end

606 end

607 for p, c in utf8.codes(wen) do

608 local s = utf8_gsub(newsub, "_", "")

609 if utf8_len(s) < MinPart then

610 newsub = utf8.char(c) .. newsub

611 end

612 end

613 if oldsub == newsub then

614 ⟨dbg⟩ texio.write_nl('EOLnewsub=' .. newsub)

615 match = true

616 end

617 if oldlast == newlast and utf8_len(newlast) >= MinFull then

618 ⟨dbg⟩ texio.write_nl('EOLnewlast=' .. newlast)

619 if utf8_len(newlast) > MinPart or not match then

620 oldsub = oldlast

621 newsub = newlast

622 end

19

623 match = true

624 end

625 if match then

Minimal full or partial match newsub of length k ; any more glyphs matching?

626 local k = utf8_len(newsub)

627 local osub = utf8_reverse(oldsub)

628 local nsub = utf8_reverse(newsub)

629 while osub == nsub and k < maxlen do

630 k = k + 1

631 osub = utf8_sub(dlo,1,k)

632 nsub = utf8_sub(wen,1,k)

633 if osub == nsub then

634 newsub = utf8_reverse(nsub)

635 end

636 end

637 newsub = utf8_gsub(newsub, "^_+", "")

638 ⟨dbg⟩ texio.write_nl("EOLfullmatch=" .. newsub)

639 local msg = "E.O.L. MATCH=" .. newsub

640 log_flaw(msg, line, colno, footnote)

Lest’s colour the matching string.

641 local ns = utf8_gsub(newsub, "_", "")

642 k = utf8_len(ns)

643 oldsub = utf8_reverse(newsub)

644 local newsub = ""

645 local n = lastn

646 local l = 0

647 local lo = 0

648 local li = 0

649 while n and newsub ~= oldsub and l < k do

650 if n and n.id == HLIST then

651 local first = n.head

652 for nn in traverse_id(GLYPH, first) do

653 color_node(nn, COLOR)

654 local c = nn.char

655 if not char_to_discard[c] then l = l + 1 end

656 end

657 ⟨dbg⟩ texio.write_nl('l (box)=' .. l)

658 elseif n then

659 color_node(n, COLOR)

660 li, newsub = signature(n, newsub, swap)

661 l = l + li - lo

662 lo = li

663 ⟨dbg⟩ texio.write_nl('l=' .. l)

664 end

665 n = n.prev

666 end

667 end

668 end

669 end

670 return new, match

671 end

20

Same thing for beginning of lines: check the first two words and compare their signa­
ture with the previous line’s.

672 local check_line_first_word =

673 function (old, node, line, colno, flag, footnote)

674 local COLOR = luatypo.colortbl[11]

675 local match = false

676 local swap = false

677 local new = ""

678 local maxlen = 0

679 local MinFull = luatypo.MinFull

680 local MinPart = luatypo.MinPart

681 local n = node

682 local box, go

683 while n and n.id ~= GLYPH and n.id ~= DISC and

684 (n.id ~= HLIST or n.subtype == INDENT) do

685 n = n.next

686 end

687 start = n

688 local words = 0

689 while n and (words <= 2 or maxlen < MinPart) do

690 if n and n.id == HLIST then

691 box = n

692 n = n.head

693 while n do

694 maxlen, new = signature (n, new, swap)

695 n = n.next

696 end

697 n = box.next

698 local w = utf8_gsub(new, "_", "")

699 words = words + utf8_len(new) - utf8_len(w) + 1

700 else

701 repeat

702 maxlen, new = signature (n, new, swap)

703 n = n.next

704 until not n or n.id == GLUE or n.id == HLIST

705 if n and n.id == GLUE then

706 maxlen, new = signature (n, new, swap)

707 words = words + 1

708 n = n.next

709 end

710 end

711 end

712 new = utf8_gsub(new, "_+$", "") -- $

713 new = utf8_gsub(new, "^_+", "")

714 maxlen = math.min(utf8_len(old), utf8_len(new))

715 ⟨dbg⟩ texio.write_nl('BOLsigold=' .. old)

716 ⟨dbg⟩ texio.write(' BOLsig=' .. new)

When called with flag false , check_line_first_word doesn’t compare it with the previ­
ous line’s, but returns the first word’s signature.

717 if flag and old ~= "" then

718 local oldfirst = utf8_gsub (old, "_.*", "")

719 local newfirst = utf8_gsub (new, "_.*", "")

21

720 local oldsub = ""

721 local newsub = ""

722 for p, c in utf8.codes(old) do

723 local s = utf8_gsub(oldsub, "_", "")

724 if utf8_len(s) < MinPart then

725 oldsub = oldsub .. utf8.char(c)

726 end

727 end

728 for p, c in utf8.codes(new) do

729 local s = utf8_gsub(newsub, "_", "")

730 if utf8_len(s) < MinPart then

731 newsub = newsub .. utf8.char(c)

732 end

733 end

734 if oldsub == newsub then

735 ⟨dbg⟩ texio.write_nl('BOLnewsub=' .. newsub)

736 match = true

737 end

738 if oldfirst == newfirst and utf8_len(newfirst) >= MinFull then

739 ⟨dbg⟩ texio.write_nl('BOLnewfirst=' .. newfirst)

740 if utf8_len(newfirst) > MinPart or not match then

741 oldsub = oldfirst

742 newsub = newfirst

743 end

744 match = true

745 end

746 if match then

Minimal full or partial match newsub of length k ; any more glyphs matching?

747 local k = utf8_len(newsub)

748 local osub = oldsub

749 local nsub = newsub

750 while osub == nsub and k < maxlen do

751 k = k + 1

752 osub = utf8_sub(old,1,k)

753 nsub = utf8_sub(new,1,k)

754 if osub == nsub then

755 newsub = nsub

756 end

757 end

758 newsub = utf8_gsub(newsub, "_+$", "") --$

759 ⟨dbg⟩ texio.write_nl('BOLfullmatch=' .. newsub)

760 local msg = "B.O.L. MATCH=" .. newsub

761 log_flaw(msg, line, colno, footnote)

Lest’s colour the matching string.

762 local ns = utf8_gsub(newsub, "_", "")

763 k = utf8_len(ns)

764 oldsub = newsub

765 local newsub = ""

766 local n = start

767 local l = 0

768 local lo = 0

22

769 local li = 0

770 while n and newsub ~= oldsub and l < k do

771 if n and n.id == HLIST then

772 local nn = n.head

773 for nnn in traverse(nn) do

774 color_node(nnn, COLOR)

775 local c = nn.char

776 if not char_to_discard[c] then l = l + 1 end

777 end

778 elseif n then

779 color_node(n, COLOR)

780 li, newsub = signature(n, newsub, swap)

781 l = l + li - lo

782 lo = li

783 end

784 n = n.next

785 end

786 end

787 end

788 return new, match

789 end

The next function is meant to be called on the first line of a new page. It checks the first
word: if it ends a sentence and is short (up to \luatypoMinLen characters), the function
returns true and colours the offending word. Otherwise it just returns false . The
function requires two arguments: the line’s first node and a column number (possibly
nil).

790 local check_page_first_word = function (node, colno, footnote)

791 local COLOR = luatypo.colortbl[15]

792 local match = false

793 local swap = false

794 local new = ""

795 local minlen = luatypo.MinLen

796 local len = 0

797 local n = node

798 local pn

799 while n and n.id ~= GLYPH and n.id ~= DISC and

800 (n.id ~= HLIST or n.subtype == INDENT) do

801 n = n.next

802 end

803 local start = n

804 if n and n.id == HLIST then

805 start = n.head

806 n = n.head

807 end

808 repeat

809 len, new = signature (n, new, swap)

810 n = n.next

811 until len > minlen or (n and n.id == GLYPH and eow_char[n.char]) or

812 (n and n.id == GLUE) or

813 (n and n.id == KERN and n.subtype == 1)

In French ‘?’ and ‘!’ are preceded by a glue (babel) or a kern (polyglossia).

23

814 if n and (n.id == GLUE or n.id == KERN) then

815 pn = n

816 n = n.next

817 end

818 if len <= minlen and n and n.id == GLYPH and eow_char[n.char] then

If the line does not ends here, set match to true (otherwise this line is just a short line):

819 repeat

820 n = n.next

821 until not n or n.id == GLYPH or

822 (n.id == GLUE and n.subtype == PARFILL)

823 if n and n.id == GLYPH then

824 match = true

825 end

826 end

827 ⟨dbg⟩ texio.write_nl('FinalWord=' .. new)

828 if match then

829 local msg = "ShortFinalWord=" .. new

830 log_flaw(msg, 1, colno, footnote)

Lest’s colour the final word and punctuation sign.

831 local n = start

832 repeat

833 color_node(n, COLOR)

834 n = n.next

835 until eow_char[n.char]

836 color_node(n, COLOR)

837 end

838 return match

839 end

The next function looks for a short word (one or two chars) at end of lines, compares
it to a given list and colours it if matches. The first argument must be a node of type
GLYPH , usually the last line’s node, the next two are the line and column number.

840 local check_regexpr = function (glyph, line, colno, footnote)

841 local COLOR = luatypo.colortbl[4]

842 local lang = glyph.lang

843 local match = false

844 local retflag = false

845 local lchar, id = is_glyph(glyph)

846 local previous = glyph.prev

First look for single chars unless the list of words is empty.

847 if lang and luatypo.single[lang] then

For single char words, the previous node is a glue.

848 if lchar and previous and previous.id == GLUE then

849 match = utf8_find(luatypo.single[lang], utf8.char(lchar))

850 if match then

851 retflag = true

24

852 local msg = "RGX MATCH=" .. utf8.char(lchar)

853 log_flaw(msg, line, colno, footnote)

854 color_node(glyph,COLOR)

855 end

856 end

857 end

Look for two chars words unless the list of words is empty.

858 if lang and luatypo.double[lang] then

859 if lchar and previous and previous.id == GLYPH then

860 local pchar, id = is_glyph(previous)

861 local pprev = previous.prev

For two chars words, the previous node is a glue…

862 if pchar and pprev and pprev.id == GLUE then

863 local pattern = utf8.char(pchar) .. utf8.char(lchar)

864 match = utf8_find(luatypo.double[lang], pattern)

865 if match then

866 retflag = true

867 local msg = "RGX MATCH=" .. pattern

868 log_flaw(msg, line, colno, footnote)

869 color_node(previous,COLOR)

870 color_node(glyph,COLOR)

871 end

872 end

…unless a kern is found between the two chars.

873 elseif lchar and previous and previous.id == KERN then

874 local pprev = previous.prev

875 if pprev and pprev.id == GLYPH then

876 local pchar, id = is_glyph(pprev)

877 local ppprev = pprev.prev

878 if pchar and ppprev and ppprev.id == GLUE then

879 local pattern = utf8.char(pchar) .. utf8.char(lchar)

880 match = utf8_find(luatypo.double[lang], pattern)

881 if match then

882 retflag = true

883 local msg = "REGEXP MATCH=" .. pattern

884 log_flaw(msg, line, colno, footnote)

885 color_node(pprev,COLOR)

886 color_node(glyph,COLOR)

887 end

888 end

889 end

890 end

891 end

892 return retflag

893 end

The next function prints the first part of an hyphenated word up to the discretionary,
with a supplied colour. It requires two arguments: a DISC node and a (named) colour.

25

894 local show_pre_disc = function (disc, color)

895 local n = disc

896 while n and n.id ~= GLUE do

897 color_node(n, color)

898 n = n.prev

899 end

900 return n

901 end

footnoterule-ahead The next function scans the current VLIST in search of a \footnoterule ; it returns true
if found, false otherwise. The RULE node above footnotes is normaly surrounded by
two (vertical) KERN nodes, the total height is either 0 (standard and koma classes) or
equals the rule’s height (memoir class).

902 local footnoterule_ahead = function (head)

903 local n = head

904 local flag = false

905 local totalht, ruleht, ht1, ht2, ht3

906 if n and n.id == KERN and n.subtype == 1 then

907 totalht = n.kern

908 n = n.next

909 ⟨dbg⟩ ht1 = string.format("%.2fpt", totalht/65536)

910 while n and n.id == GLUE do n = n.next end

911 if n and n.id == RULE and n.subtype == 0 then

912 ruleht = n.height

913 ⟨dbg⟩ ht2 = string.format("%.2fpt", ruleht/65536)

914 totalht = totalht + ruleht

915 n = n.next

916 if n and n.id == KERN and n.subtype == 1 then

917 ⟨dbg⟩ ht3 = string.format("%.2fpt", n.kern/65536)

918 totalht = totalht + n.kern

919 if totalht == 0 or totalht == ruleht then

920 flag = true

921 else

922 ⟨dbg⟩ texio.write_nl(' ')

923 ⟨dbg⟩ texio.write_nl('Not a footnoterule:')

924 ⟨dbg⟩ texio.write(' KERN height=' .. ht1)

925 ⟨dbg⟩ texio.write(' RULE height=' .. ht2)

926 ⟨dbg⟩ texio.write(' KERN height=' .. ht3)

927 end

928 end

929 end

930 end

931 return flag

932 end

check-EOP This function looks ahead of node in search of a page end or a footnote rule and returns
the flags page_bottom and body_bottom [used in text and display math lines].

933 local check_EOP = function (node)

934 local n = node

935 local page_bot = false

936 local body_bot = false

26

937 while n and (n.id == GLUE or n.id == PENALTY or

938 n.id == WHATSIT) do

939 n = n.next

940 end

941 if not n then

942 page_bot = true

943 body_bot = true

944 elseif footnoterule_ahead(n) then

945 body_bot = true

946 ⟨dbg⟩ texio.write_nl('=> FOOTNOTE RULE ahead')

947 ⟨dbg⟩ texio.write_nl('check_vtop: last line before footnotes')

948 ⟨dbg⟩ texio.write_nl(' ')

949 end

950 return page_bot, body_bot

951 end

check-marginnote This function checks margin notes for overfull/underfull lines; It also warns if a margin
note ends too low under the last line of text.

952 local check_marginnote = function (head, line, colno, vpos, bpmn)

953 local OverfullLines = luatypo.OverfullLines

954 local UnderfullLines = luatypo.UnderfullLines

955 local MarginparPos = luatypo.MarginparPos

956 local margintol = luatypo.MParTol

957 local marginpp = tex.getdimen("marginparpush")

958 local textht = tex.getdimen("textheight")

959 local mnflag = false

960 local ofirst = true

961 local ufirst = true

962 local n = head.head

963 local bottom = vpos

964 if vpos <= bpmn then

965 bottom = bpmn + marginpp

966 end

967 ⟨dbg⟩ texio.write_nl('*** Margin note? ***')

968 repeat

969 if n and (n.id == GLUE or n.id == PENALTY) then

970 ⟨dbg⟩ texio.write_nl(' Found GLUE or PENALTY')

971 n = n.next

972 elseif n and n.id == VLIST then

973 ⟨dbg⟩ texio.write_nl(' Found VLIST')

974 n = n.head

975 end

976 until not n or (n.id == HLIST and n.subtype == LINE)

977 local head = n

978 if head then

979 ⟨dbg⟩ texio.write_nl(' Found HLIST')

980 else

981 ⟨dbg⟩ texio.write_nl(' No text line found.')

982 end

983 ⟨dbg⟩ local l = 0

984 local last = head

985 while head do

986 local next = head.next

27

987 if head.id == HLIST and head.subtype == LINE then

988 ⟨dbg⟩ l = l + 1

989 ⟨dbg⟩ texio.write_nl(' Checking line ' .. l)

990 bottom = bottom + head.height + head.depth

991 local first = head.head

992 local linewd = head.width

993 local hmax = linewd + tex.hfuzz

994 local w,h,d = dimensions(1,2,0, first)

995 local Stretch = math.max(luatypo.Stretch/100,1)

996 if w > hmax and OverfullLines then

997 ⟨dbg⟩ texio.write(': Overfull!')

998 mnflag = true

999 local COLOR = luatypo.colortbl[8]

1000 color_line (head, COLOR)

1001 if ofirst then

1002 local msg = "OVERFULL line(s) in margin note"

1003 log_flaw(msg, line, colno, false)

1004 ofirst = false

1005 end

1006 elseif head.glue_set > Stretch and head.glue_sign == 1 and

1007 head.glue_order == 0 and UnderfullLines then

1008 ⟨dbg⟩ texio.write(': Underfull!')

1009 mnflag = true

1010 local COLOR = luatypo.colortbl[9]

1011 color_line (head, COLOR)

1012 if ufirst then

1013 local msg = "UNDERFULL line(s) in margin note"

1014 log_flaw(msg, line, colno, false)

1015 ufirst = false

1016 end

1017 end

1018 end

1019 last = head

1020 head = next

1021 end

1022 ⟨dbg⟩ local tht = string.format("%.1fpt", textht/65536)

1023 ⟨dbg⟩ local bott = string.format("%.1fpt", bottom/65536)

1024 ⟨dbg⟩ texio.write_nl(' Bottom=' .. bott)

1025 ⟨dbg⟩ texio.write(' TextBottom=' ..tht)

1026 if bottom > textht + margintol and MarginparPos then

1027 mnflag = true

1028 local COLOR = luatypo.colortbl[17]

1029 color_line (last, COLOR)

1030 local msg = "Margin note too low"

1031 log_flaw(msg, line, colno, false)

1032 end

1033 return bottom, mnflag

1034 end

check-vbox This function checks vboxes for overfull/underfull lines.

1035 local check_vbox = function (head, line, colno, vpos, lmax)

1036 local OverfullLines = luatypo.OverfullLines

1037 local UnderfullLines = luatypo.UnderfullLines

28

1038 local vbflag = false

1039 local l = 0

1040 local ll = line

1041 local n = head.head

1042 ⟨dbg⟩ texio.write_nl('*** vbox found ***')

1043 while n do

1044 if n.id == HLIST and n.subtype == LINE then

1045 l = l + 1

1046 if l > 1 then ll = ll + 1 end

1047 ⟨dbg⟩ texio.write_nl('l = ' .. l)

1048 local first = n.head

1049 local linewd = n.width

1050 local hmax = linewd + tex.hfuzz

1051 local w,h,d = dimensions(1,2,0, first)

1052 local Stretch = math.max(luatypo.Stretch/100,1)

1053 if w > hmax and OverfullLines then

1054 ⟨dbg⟩ texio.write(': Overfull!')

1055 vbflag = true

1056 local COLOR = luatypo.colortbl[8]

1057 color_line (n, COLOR)

1058 local wpt = string.format("%.2fpt", (w-n.width)/65536)

1059 local msg = "OVERFULL line in vbox, " .. wpt

1060 log_flaw(msg, ll, colno, false)

1061 elseif n.glue_set > Stretch and n.glue_sign == 1 and

1062 n.glue_order == 0 and UnderfullLines then

1063 ⟨dbg⟩ texio.write(': Underfull!')

1064 vbflag = true

1065 local COLOR = luatypo.colortbl[9]

1066 color_line (n, COLOR)

1067 local s = string.format("%.0f%s", 100*n.glue_set, "%")

1068 local msg = "UNDERFULL line in vbox, stretch=" .. s

1069 log_flaw(msg, ll, colno, false)

1070 end

1071 end

1072 n = n.next

1073 end

1074 lmax = math.max(l, lmax)

1075 ⟨dbg⟩ texio.write_nl('lmax = ' .. lmax)

1076 return lmax, vbflag

1077 end
1078 % \end{macro}

1079 %
1080 % \begin{macro}{get-pagebody}

1081 % The next function scans the \node{vlist}s on the current

1082 % page in search of the page body.

1083 % It returns the corresponding node or nil in case of failure.

1084 %
1085 % \changes{v0.50}{2021/05/02}{New function `get_pagebody’ required for

1086 % callback `pre_shipout_filter’.}

1087 %
1088 % \changes{v0.86}{2024/01/10}{Package `stfloats’ adds 1sp to the

1089 % external \cs{vbox}. Be less picky regarding height test.}

1090 %
1091 % \changes{v0.87}{2024/04/18}{\cs{get_pagebody} improved: it

29

1092 % failed for crop + hyperref.}

1093 %
1094 % \begin{macrocode}

1095 local get_pagebody = function (head)

1096 local textht = tex.getdimen("textheight")

1097 local fn = head.list

1098 local body

1099 repeat

1100 fn = fn.next

1101 until fn.id == VLIST and fn.height > 0

1102 ⟨dbg⟩ texio.write_nl(' ')

1103 ⟨dbg⟩ local ht = string.format("%.1fpt", fn.height/65536)

1104 ⟨dbg⟩ local dp = string.format("%.1fpt", fn.depth/65536)

1105 ⟨dbg⟩ texio.write_nl('get_pagebody: TOP VLIST')

1106 ⟨dbg⟩ texio.write(' ht=' .. ht .. ' dp=' .. dp)

Enter the first VLIST found, recursively scan its internal VLISTs high enough to include
the ’body’ the height of which is known (’textht’)…

1107 first = fn.list

1108 repeat

1109 for n in traverse_id(VLIST,first) do

Package ‘stfloats’ seems to add 1sp to the external \vbox for each float found on the
page. Add±8sp tolerance when comparing n.height to \textheight .

1110 if n.subtype == 0 and n.height >= textht-1 then

1111 if n.height <= textht+8 then

1112 ⟨dbg⟩ local ht = string.format("%.1fpt", n.height/65536)

1113 ⟨dbg⟩ texio.write_nl('BODY found: ht=' .. ht)

1114 ⟨dbg⟩ texio.write('=' .. n.height .. 'sp')

1115 ⟨dbg⟩ texio.write_nl(' ')

1116 body = n

1117 break

1118 else

1119 first = n.list

1120 end

1121 else

1122 ⟨dbg⟩ texio.write_nl('Skip short VLIST:')

1123 ⟨dbg⟩ local ht = string.format("%.1fpt", n.height/65536)

1124 ⟨dbg⟩ local dp = string.format("%.1fpt", n.depth/65536)

1125 ⟨dbg⟩ texio.write('ht=' .. ht .. '=' .. n.height .. 'sp')

1126 ⟨dbg⟩ texio.write('; dp=' .. dp)

1127 end

1128 end

1129 until body or not first

1130 if not body then

1131 texio.write_nl('***lua-typo ERROR: PAGE BODY *NOT* FOUND!***')

1132 end

1133 return body

1134 end

check-vtop The next function is called repeatedly by check_page (see below); it scans the boxes
found in the page body (f.i. columns) in search of typographical flaws and logs.

30

1135 check_vtop = function (top, colno, vpos)

1136 local head = top.list

1137 local PAGEmin = luatypo.PAGEmin

1138 local HYPHmax = luatypo.HYPHmax

1139 local LLminWD = luatypo.LLminWD

1140 local BackPI = luatypo.BackPI

1141 local BackFuzz = luatypo.BackFuzz

1142 local BackParindent = luatypo.BackParindent

1143 local ShortLines = luatypo.ShortLines

1144 local ShortPages = luatypo.ShortPages

1145 local OverfullLines = luatypo.OverfullLines

1146 local UnderfullLines = luatypo.UnderfullLines

1147 local Widows = luatypo.Widows

1148 local Orphans = luatypo.Orphans

1149 local EOPHyphens = luatypo.EOPHyphens

1150 local RepeatedHyphens = luatypo.RepeatedHyphens

1151 local FirstWordMatch = luatypo.FirstWordMatch

1152 local ParLastHyphen = luatypo.ParLastHyphen

1153 local EOLShortWords = luatypo.EOLShortWords

1154 local LastWordMatch = luatypo.LastWordMatch

1155 local FootnoteSplit = luatypo.FootnoteSplit

1156 local ShortFinalWord = luatypo.ShortFinalWord

1157 local PageFirstLine = luatypo.PageFirstLine

1158 local Stretch = math.max(luatypo.Stretch/100,1)

1159 local blskip = tex.getglue("baselineskip")

1160 local vpos_min = PAGEmin * blskip

1161 vpos_min = vpos_min * 1.5

1162 local linewd = tex.getdimen("textwidth")

1163 local first_bot = true

1164 local done = false

1165 local footnote = false

1166 local ftnsplit = false

1167 local orphanflag = false

1168 local widowflag = false

1169 local pageshort = false

1170 local overfull = false

1171 local underfull = false

1172 local shortline = false

1173 local backpar = false

1174 local pflflag = false

1175 local firstwd = ""

1176 local lastwd = ""

1177 local hyphcount = 0

1178 local pageline = 0

1179 local ftnline = 0

1180 local line = 0

1181 local bpmn = 0

1182 local body_bottom = false

1183 local page_bottom = false

1184 local pageflag = false

1185 local pageno = tex.getcount("c@page")

The main loop scans the content of the \vtop holding the page (or column) body,
footnotes included.

31

1186 while head do

1187 local nextnode = head.next

Let’s scan the top nodes of this vbox: expected are HLIST (text lines or vboxes), RULE,
KERN, GLUE…

1188 if head.id == HLIST and head.subtype == LINE and

1189 (head.height > 0 or head.depth > 0) then

This is a text line, store its width, increment counters pageline or ftnline and line (for
log_flaw). Let’s update vpos (vertical position in ‘sp’ units) and set flag done to true .

1190 vpos = vpos + head.height + head.depth

1191 done = true

1192 local linewd = head.width

1193 local first = head.head

1194 local ListItem = false

1195 if footnote then

1196 ftnline = ftnline + 1

1197 line = ftnline

1198 else

1199 pageline = pageline + 1

1200 line = pageline

1201 pflflag = false

1202 end

Is this line the last one on the page or before footnotes? This has to be known early in
order to set the flags orphanflag and ftnsplit .

1203 page_bottom, body_bottom = check_EOP(nextnode)

Is the current line overfull or underfull?

1204 local hmax = linewd + tex.hfuzz

1205 local w,h,d = dimensions(1,2,0, first)

1206 if w > hmax and OverfullLines then

1207 pageflag = true

1208 overfull = true

1209 local wpt = string.format("%.2fpt", (w-head.width)/65536)

1210 local msg = "OVERFULL line " .. wpt

1211 log_flaw(msg, line, colno, footnote)

1212 elseif head.glue_set > Stretch and head.glue_sign == 1 and

1213 head.glue_order == 0 and UnderfullLines then

1214 pageflag = true

1215 underfull = true

1216 local s = string.format("%.0f%s", 100*head.glue_set, "%")

1217 local msg = "UNDERFULL line stretch=" .. s

1218 log_flaw(msg, line, colno, footnote)

1219 end

In footnotes, set flag ftnsplit to true on page’s last line. This flag will be reset to false
if the current line ends a paragraph.

1220 if footnote and page_bottom then

1221 ftnsplit = true

1222 end

32

The current node being a line, first is its first node. Skip margin kern and/or leftskip
if any.

1223 while first.id == MKERN or

1224 (first.id == GLUE and first.subtype == LFTSKIP) do

1225 first = first.next

1226 end

Now let’s analyse the beginning of the current line.

1227 if first.id == LPAR then

It starts a paragraph… Reset parline except in footnotes (parline and pageline counts
are for “body’’ only , they are frozen in footnotes).

1228 hyphcount = 0

1229 firstwd = ""

1230 lastwd = ""

1231 if not footnote then

1232 parline = 1

1233 if pageline == 1 and PageFirstLine then

This paragraph starts on top of this page or column, is it indented?

1234 local nn = first.next

1235 if nn.id == HLIST and nn.subtype == INDENT and

1236 nn.width > 0 then

1237 pageflag = true

1238 pflflag = true

1239 end

1240 end

1241 if body_bottom then

We are at the page bottom (footnotes excluded), this ligne is an orphan (unless it is the
unique line of the paragraph, this will be checked later when scanning the end of line).

1242 orphanflag = true

1243 end

1244 end

List items begin with LPAR followed by an hbox.

1245 local nn = first.next

1246 if nn and nn.id == HLIST and nn.subtype == BOX then

1247 ListItem = true

1248 end

1249 elseif not footnote then

1250 parline = parline + 1

1251 end

Does the first word and the one on the previous line match (except lists)?

1252 if FirstWordMatch then

1253 local flag = not ListItem and (line > 1)

1254 firstwd, flag =

1255 check_line_first_word(firstwd, first, line, colno,

1256 flag, footnote)

1257 if flag then

33

1258 pageflag = true

1259 end

1260 end

Check the page’s first word (end of sentence?).

1261 if ShortFinalWord and pageline == 1 and parline > 1 and

1262 check_page_first_word(first, colno, footnote) then

1263 pageflag = true

1264 end

Check for possible vboxes (minipages, parboxes) inside this line.

1265 local cn = first

1266 local lmax = 1

1267 repeat

1268 if cn.id == VLIST and cn.subtype == 0 then

1269 lmax, vbflag = check_vbox (cn, line, colno, vpos, lmax)

1270 end

1271 cn = cn.next

1272 until not cn

1273 if not footnote then

1274 line = line + lmax - 1

1275 parline = parline + lmax - 1

1276 pageline = pageline + lmax - 1

1277 end

Let’s now check the end of line: ln (usually a rightskip) and pn are the last two nodes.

1278 local ln = slide(first)

Skip a possible RULE pointing an overfull line.

1279 if ln.id == RULE and ln.subtype == 0 then

1280 ln = ln.prev

1281 end

1282 local pn = ln.prev

1283 if pn and pn.id == GLUE and pn.subtype == PARFILL then

CASE 1: this line ends the paragraph, reset ftnsplit and orphan flags to false…

1284 ⟨dbg⟩ texio.write_nl('EOL CASE 1: end of paragraph')

1285 hyphcount = 0

1286 ftnsplit = false

1287 orphanflag = false

it is a widow if it is the page’s first line and it does’nt start a new paragraph. If so, we
flag this line as ‘widow’; colouring full lines will take place later.

1288 if pageline == 1 and parline > 1 then

1289 widowflag = true

1290 end

PFskip is the rubber length (in sp) added to complete the line.

1291 local PFskip = effective_glue(pn,head)

1292 if ShortLines then

1293 local llwd = linewd - PFskip

1294 ⟨dbg⟩ local PFskip_pt = string.format("%.1fpt", PFskip/65536)

34

1295 ⟨dbg⟩ local llwd_pt = string.format("%.1fpt", llwd/65536)

1296 ⟨dbg⟩ texio.write_nl('PFskip= ' .. PFskip_pt)

1297 ⟨dbg⟩ texio.write(' llwd= ' .. llwd_pt)

llwd is the line’s length. Is it too short?

1298 if llwd < LLminWD then

1299 pageflag = true

1300 shortline = true

1301 local msg = "SHORT LINE: length=" ..

1302 string.format("%.0fpt", llwd/65536)

1303 log_flaw(msg, line, colno, footnote)

1304 end

1305 end

Does this (end of paragraph) line ends too close to the right margin?

1306 if BackParindent and PFskip < BackPI and

1307 PFskip >= BackFuzz and parline > 1 then

1308 pageflag = true

1309 backpar = true

1310 local msg = "NEARLY FULL line: backskip=" ..

1311 string.format("%.1fpt", PFskip/65536)

1312 log_flaw(msg, line, colno, footnote)

1313 end

Does the last word and the one on the previous line match?

1314 if LastWordMatch then

1315 local flag = true

1316 if PFskip > BackPI or line == 1 then

1317 flag = false

1318 end

1319 local pnp = pn.prev

1320 lastwd, flag =

1321 check_line_last_word(lastwd, pnp, line, colno,

1322 flag, footnote)

1323 if flag then

1324 pageflag = true

1325 end

1326 end

1327 elseif pn and pn.id == DISC then

CASE 2: the current line ends with an hyphen.

1328 ⟨dbg⟩ texio.write_nl('EOL CASE 2: hyphen')

1329 hyphcount = hyphcount + 1

1330 if hyphcount > HYPHmax and RepeatedHyphens then

1331 local COLOR = luatypo.colortbl[3]

1332 local pg = show_pre_disc (pn,COLOR)

1333 pageflag = true

1334 local msg = "REPEATED HYPHENS: more than " .. HYPHmax

1335 log_flaw(msg, line, colno, footnote)

1336 end

1337 if (page_bottom or body_bottom) and EOPHyphens then

35

This hyphen occurs on the page’s last line (body or footnote), colour (differently) the
last word.

1338 pageflag = true

1339 local msg = "LAST WORD SPLIT"

1340 log_flaw(msg, line, colno, footnote)

1341 local COLOR = luatypo.colortbl[2]

1342 local pg = show_pre_disc (pn,COLOR)

1343 end

Track matching words at end of line.

1344 if LastWordMatch then

1345 local flag = true

1346 lastwd, flag =

1347 check_line_last_word(lastwd, pn, line, colno,

1348 flag, footnote)

1349 if flag then

1350 pageflag = true

1351 end

1352 end

1353 if nextnode and ParLastHyphen then

Does the next line end the current paragraph? If so, nextnode is a ‘linebreak penalty’,
the next one is a ‘baseline skip’ and the node after is a HLIST-1 with glue_order=2 .

1354 local nn = nextnode.next

1355 local nnn = nil

1356 if nn and nn.next then

1357 nnn = nn.next

1358 if nnn.id == HLIST and nnn.subtype == LINE and

1359 nnn.glue_order == 2 then

1360 pageflag = true

1361 local msg = "HYPHEN on next to last line"

1362 log_flaw(msg, line, colno, footnote)

1363 local COLOR = luatypo.colortbl[1]

1364 local pg = show_pre_disc (pn,COLOR)

1365 end

1366 end

1367 end

CASE 3: the current line ends with anything else (GLYPH, MKERN, HLIST, etc.), then
reset hyphcount and check for ‘LastWordMatch’ and ‘EOLShortWords’.

1368 else

1369 ⟨dbg⟩ texio.write_nl('EOL CASE 3')

1370 hyphcount = 0

Track matching words at end of line and short words.

1371 if LastWordMatch and pn then

1372 local flag = true

1373 lastwd, flag =

1374 check_line_last_word(lastwd, pn, line, colno,

1375 flag, footnote)

1376 if flag then

1377 pageflag = true

36

1378 end

1379 end

1380 if EOLShortWords then

1381 while pn and pn.id ~= GLYPH and pn.id ~= HLIST do

1382 pn = pn.prev

1383 end

1384 if pn and pn.id == GLYPH then

1385 if check_regexpr(pn, line, colno, footnote) then

1386 pageflag = true

1387 end

1388 end

1389 end

1390 end

End of scanning for the main type of node (text lines). Let’s colour the whole line if
necessary. If more than one kind of flaw affecting the whole line has been detected,
a special colour is used [homearchy, repeated hyphens, etc. will still be coloured
properly: color_line doesn’t override previously set colours].

1391 if pflflag then

1392 local COLOR = luatypo.colortbl[5]

1393 color_line (head, COLOR)

1394 local msg = "INDENTED first line (paragraph start)."

1395 log_flaw(msg, line, colno, false)

1396 end

1397 if widowflag and Widows then

1398 pageflag = true

1399 local msg = "WIDOW"

1400 log_flaw(msg, line, colno, footnote)

1401 local COLOR = luatypo.colortbl[5]

1402 if backpar or shortline or overfull or underfull then

1403 COLOR = luatypo.colortbl[16]

1404 if backpar then backpar = false end

1405 if shortline then shortline = false end

1406 if overfull then overfull = false end

1407 if underfull then underfull = false end

1408 end

1409 color_line (head, COLOR)

1410 widowflag = false

1411 elseif orphanflag and Orphans then

1412 pageflag = true

1413 local msg = "ORPHAN"

1414 log_flaw(msg, line, colno, footnote)

1415 local COLOR = luatypo.colortbl[6]

1416 if overfull or underfull then

1417 COLOR = luatypo.colortbl[16]

1418 end

1419 color_line (head, COLOR)

1420 elseif ftnsplit and FootnoteSplit then

1421 pageflag = true

1422 local msg = "FOOTNOTE SPLIT"

1423 log_flaw(msg, line, colno, footnote)

1424 local COLOR = luatypo.colortbl[14]

1425 if overfull or underfull then

1426 COLOR = luatypo.colortbl[16]

37

1427 end

1428 color_line (head, COLOR)

1429 elseif shortline then

1430 local COLOR = luatypo.colortbl[7]

1431 color_line (head, COLOR)

1432 shortline = false

1433 elseif overfull then

1434 local COLOR = luatypo.colortbl[8]

1435 color_line (head, COLOR)

1436 overfull = false

1437 elseif underfull then

1438 local COLOR = luatypo.colortbl[9]

1439 color_line (head, COLOR)

1440 underfull = false

1441 elseif backpar then

1442 local COLOR = luatypo.colortbl[13]

1443 color_line (head, COLOR)

1444 backpar = false

1445 end

1446 elseif head and head.id == HLIST and head.subtype == BOX then

1447 if head.width > 0 then

1448 if head.height == 0 then

This is a possible margin note.

1449 bpmn, mnflag = check_marginnote(head, line, colno, vpos, bpmn)

1450 if mnflag then pageflag = true end

1451 page_bottom, body_bottom = check_EOP(nextnode)

1452 else

Leave check_vtop if a two columns box starts.

1453 local hf = head.list

1454 if hf and hf.id == VLIST and hf.subtype == 0 then

1455 ⟨dbg⟩ texio.write_nl('check_vtop: BREAK => multicol')

1456 ⟨dbg⟩ texio.write_nl(' ')

1457 break

1458 else

1459 line = line + 1

1460 pageline = pageline + 1

1461 end

1462 end

1463 end

This is an \hbox (f.i. centred), let’s update vpos and check for page bottom. Counter
pageline is not incremented.

1464 vpos = vpos + head.height + head.depth

1465 page_bottom, body_bottom = check_EOP (nextnode)

1466 elseif head.id == HLIST and

1467 (head.subtype == EQN or head.subtype == ALIGN) and

1468 (head.height > 0 or head.depth > 0) then

This line is a displayed or aligned equation. Let’s update vpos and the line number.

1469 vpos = vpos + head.height + head.depth

1470 if footnote then

38

1471 ftnline = ftnline + 1

1472 line = ftnline

1473 else

1474 pageline = pageline + 1

1475 line = pageline

1476 end

Is this line the last one on the page or before footnotes? (information needed to set
the pageshort flag).

1477 page_bottom, body_bottom = check_EOP (nextnode)

Let’s check for an ‘Overfull box’. For a displayed equation it is straightforward. A set of
aligned equations all have the same (maximal) width; in order to avoid highlighting
the whole set, we have to look for glues at the end of embedded HLISTs.

1478 local fl = true

1479 local wd = 0

1480 local hmax = 0

1481 if head.subtype == EQN then

1482 local f = head.list

1483 wd = rangedimensions(head,f)

1484 hmax = head.width + tex.hfuzz

1485 else

1486 wd = head.width

1487 hmax = tex.getdimen("linewidth") + tex.hfuzz

1488 end

1489 if wd > hmax and OverfullLines then

1490 if head.subtype == ALIGN then

1491 local first = head.list

1492 for n in traverse_id(HLIST, first) do

1493 local last = slide(n.list)

1494 if last.id == GLUE and last.subtype == USER then

1495 wd = wd - effective_glue(last,n)

1496 if wd <= hmax then fl = false end

1497 end

1498 end

1499 end

1500 if fl then

1501 pageflag = true

1502 local w = wd - hmax + tex.hfuzz

1503 local wpt = string.format("%.2fpt", w/65536)

1504 local msg = "OVERFULL equation " .. wpt

1505 log_flaw(msg, line, colno, footnote)

1506 local COLOR = luatypo.colortbl[8]

1507 color_line (head, COLOR)

1508 end

1509 end

1510 elseif head and head.id == RULE and head.subtype == 0 then

1511 vpos = vpos + head.height + head.depth

This is a RULE, possibly a footnote rule. It hasmost likely been detected on the previous
line (then body_bottom=true) but might have no text before (footnote-only page!).

1512 local prev = head.prev

1513 if body_bottom or footnoterule_ahead (prev) then

39

If it is, set the footnote flag and reset some counters and flags for the coming footnote
lines.

1514 ⟨dbg⟩ texio.write_nl('check_vtop: footnotes start')

1515 ⟨dbg⟩ texio.write_nl(' ')

1516 footnote = true

1517 ftnline = 0

1518 body_bottom = false

1519 orphanflag = false

1520 hyphcount = 0

1521 firstwd = ""

1522 lastwd = ""

1523 end

Track short pages: check the number of lines at end of page, in case this number is
low, and vpos is less than vpos_min , fetch the last line and colour it.

1524 elseif body_bottom and head.id == GLUE and head.subtype == 0 then

1525 if first_bot then

1526 ⟨dbg⟩ local vpos_pt = string.format("%.1fpt", vpos/65536)

1527 ⟨dbg⟩ local vmin_pt = string.format("%.1fpt", vpos_min/65536)

1528 ⟨dbg⟩ texio.write_nl('pageline=' .. pageline)

1529 ⟨dbg⟩ texio.write_nl('vpos=' .. vpos_pt)

1530 ⟨dbg⟩ texio.write(' vpos_min=' .. vmin_pt)

1531 ⟨dbg⟩ if page_bottom then

1532 ⟨dbg⟩ local tht = tex.getdimen("textheight")

1533 ⟨dbg⟩ local tht_pt = string.format("%.1fpt", tht/65536)

1534 ⟨dbg⟩ texio.write(' textheight=' .. tht_pt)

1535 ⟨dbg⟩ end

1536 ⟨dbg⟩ texio.write_nl(' ')

1537 if pageline > 1 and pageline < PAGEmin

1538 and vpos < vpos_min and ShortPages then

1539 pageshort = true

1540 pageflag = true

1541 local msg = "SHORT PAGE: only " .. pageline .. " lines"

1542 log_flaw(msg, line, colno, footnote)

1543 local COLOR = luatypo.colortbl[10]

1544 local n = head

1545 repeat

1546 n = n.prev

1547 until n.id == HLIST and n.subtype == LINE

1548 color_line (n, COLOR)

1549 end

1550 first_bot = false

1551 end

1552 elseif head.id == GLUE then

Increment vpos on other vertical glues.

1553 vpos = vpos + effective_glue(head,top)

1554 elseif head.id == KERN and head.subtype == 1 then

This is a vertical kern, let’s update vpos .

1555 vpos = vpos + head.kern

1556 elseif head.id == VLIST then

40

This is a \vbox , let’s update vpos .

1557 vpos = vpos + head.height + head.depth

1558 ⟨dbg⟩ local tht = head.height + head.depth

1559 ⟨dbg⟩ local tht_pt = string.format("%.1fpt", tht/65536)

1560 ⟨dbg⟩ texio.write(' vbox: height=' .. tht_pt)

1561 end

1562 head = nextnode

1563 end

1564 ⟨dbg⟩ if nextnode then

1565 ⟨dbg⟩ texio.write('Exit check_vtop, next=')

1566 ⟨dbg⟩ texio.write(tostring(node.type(nextnode.id)))

1567 ⟨dbg⟩ texio.write('-'.. nextnode.subtype)

1568 ⟨dbg⟩ else

1569 ⟨dbg⟩ texio.write_nl('Exit check_vtop, next=nil')

1570 ⟨dbg⟩ end

1571 ⟨dbg⟩ texio.write_nl('')

Update the list of flagged pages avoiding duplicates:

1572 if pageflag then

1573 local plist = luatypo.pagelist

1574 local lastp = tonumber(string.match(plist, "%s(%d+),%s$"))

1575 if not lastp or pageno > lastp then

1576 luatypo.pagelist = luatypo.pagelist .. tostring(pageno) .. ", "

1577 end

1578 end

1579 return head, done

head is nil unless check_vtop exited on a two column start. done is true unless check_vtop
found no text line.

1580 end

check-page This is themain functionwhichwill be added to the pre_shipout_filter callbackunless
option None is selected. It executes get_pagebody which returns a node of type VLIST-0,
then scans this VLIST: expected are VLIST-0 (full width block) or HLIST-2 (multi column
block). Thevertical positionof the current node is stored in the vpos dimension (integer
in ‘sp’ units, 1 pt = 65536 sp). It is used to detect short pages.

1581 luatypo.check_page = function (head)

1582 local pageno = tex.getcount("c@page")

1583 local body = get_pagebody(head)

1584 local textwd, textht, checked, boxed

1585 local top, first, next

1586 local n2, n3, col, colno

1587 local vpos = 0

1588 local footnote = false

1589 local count = 0

1590 if body then

1591 top = body

1592 first = body.list

1593 textwd = tex.getdimen("textwidth")

1594 textht = tex.getdimen("textheight")

1595 ⟨dbg⟩ texio.write_nl('Body=' .. tostring(node.type(top.id)))

1596 ⟨dbg⟩ texio.write('-' .. tostring(top.subtype))

41

1597 ⟨dbg⟩ texio.write('; First=' .. tostring(node.type(first.id)))

1598 ⟨dbg⟩ texio.write('-' .. tostring(first.subtype))

1599 ⟨dbg⟩ texio.write_nl(' ')

1600 end

1601 if ((first and first.id == HLIST and first.subtype == BOX) or

1602 (first and first.id == VLIST and first.subtype == 0)) and

1603 (first.width == textwd and first.height > 0 and not boxed) then

Some classes (memoir, tugboat…) use one more level of bowing for two columns, let’s
step down one level.

1604 ⟨dbg⟩ local boxwd = string.format("%.1fpt", first.width/65536)

1605 ⟨dbg⟩ texio.write_nl('One step down: boxwd=' .. boxwd)

1606 ⟨dbg⟩ texio.write_nl('Glue order=' .. tostring(first.glue_order))

1607 ⟨dbg⟩ texio.write_nl(' ')

1608 top = body.list

A float on top of a page is a VLIST-0 included in aVLIST-0 (body), it should not trigger
this step down. Workaround: the body will be scanned again.

1609 if first.id == VLIST then

1610 boxed = body

1611 end

1612 end

Main loop:

1613 while top do

1614 first = top.list

1615 next = top.next

1616 ⟨dbg⟩ count = count + 1

1617 ⟨dbg⟩ texio.write_nl('Page loop' .. count)

1618 ⟨dbg⟩ texio.write(': top=' .. tostring(node.type(top.id)))

1619 ⟨dbg⟩ texio.write('-' .. tostring(top.subtype))

1620 ⟨dbg⟩ if first then

1621 ⟨dbg⟩ texio.write(' first=' .. tostring(node.type(first.id)))

1622 ⟨dbg⟩ texio.write('-' .. tostring(first.subtype))

1623 ⟨dbg⟩ end

1624 if top and top.id == VLIST and top.subtype == 0 and

1625 top.width > textwd/2 then

Single column, run check_vtop on the top vlist.

1626 ⟨dbg⟩ local boxht = string.format("%.1fpt", top.height/65536)

1627 ⟨dbg⟩ local boxwd = string.format("%.1fpt", top.width/65536)

1628 ⟨dbg⟩ texio.write_nl('**VLIST: ')

1629 ⟨dbg⟩ texio.write(tostring(node.type(top.id)))

1630 ⟨dbg⟩ texio.write('-' .. tostring(top.subtype))

1631 ⟨dbg⟩ texio.write(' wd=' .. boxwd .. ' ht=' .. boxht)

1632 ⟨dbg⟩ texio.write_nl(' ')

1633 local n, ok = check_vtop(top,colno,vpos)

1634 if ok then checked = true end

1635 if n then

1636 next = n

1637 end

1638 elseif (top and top.id == HLIST and top.subtype == BOX) and

42

1639 (first and first.id == VLIST and first.subtype == 0) and

1640 (first.height > 0 and first.width > 0) then

Two or more columns, each one is boxed in a vlist.
Run check_vtop on every column.

1641 ⟨dbg⟩ texio.write_nl('**MULTICOL type1:')

1642 ⟨dbg⟩ texio.write_nl(' ')

1643 colno = 0

1644 for col in traverse_id(VLIST, first) do

1645 colno = colno + 1

1646 ⟨dbg⟩ texio.write_nl('Start of col.' .. colno)

1647 ⟨dbg⟩ texio.write_nl(' ')

1648 local n, ok = check_vtop(col,colno,vpos)

1649 if ok then checked = true end

1650 ⟨dbg⟩ texio.write_nl('End of col.' .. colno)

1651 ⟨dbg⟩ texio.write_nl(' ')

1652 end

1653 colno = nil

1654 top = top.next

1655 ⟨dbg⟩ texio.write_nl('MULTICOL type1 END: next=')

1656 ⟨dbg⟩ texio.write(tostring(node.type(top.id)))

1657 ⟨dbg⟩ texio.write('-' .. tostring(top.subtype))

1658 ⟨dbg⟩ texio.write_nl(' ')

1659 elseif (top and top.id == HLIST and top.subtype == BOX) and

1660 (first and first.id == HLIST and first.subtype == BOX) and

1661 (first.height > 0 and first.width > 0) then

Two or more columns, each one is boxed in an hlist which holds a vlist.
Run check_vtop on every column.

1662 ⟨dbg⟩ texio.write_nl('**MULTICOL type2:')

1663 ⟨dbg⟩ texio.write_nl(' ')

1664 colno = 0

1665 for n in traverse_id(HLIST, first) do

1666 colno = colno + 1

1667 local col = n.list

1668 if col and col.list then

1669 ⟨dbg⟩ texio.write_nl('Start of col.' .. colno)

1670 ⟨dbg⟩ texio.write_nl(' ')

1671 local n, ok = check_vtop(col,colno,vpos)

1672 if ok then checked = true end

1673 ⟨dbg⟩ texio.write_nl('End of col.' .. colno)

1674 ⟨dbg⟩ texio.write_nl(' ')

1675 end

1676 end

1677 colno = nil

1678 end

Workaround for top floats: check the whole body again.

1679 if boxed and not next then

1680 next = boxed

1681 boxed = nil

1682 end

43

1683 top = next

1684 end

1685 if not checked then

1686 luatypo.failedlist = luatypo.failedlist .. tostring(pageno) .. ", "

1687 ⟨dbg⟩ texio.write_nl(' ')

1688 ⟨dbg⟩ texio.write_nl('WARNING: no text line found on page ')

1689 ⟨dbg⟩ texio.write(tostring(pageno))

1690 ⟨dbg⟩ texio.write_nl(' ')

1691 end

1692 return true

1693 end
1694 return luatypo.check_page

1695 \end{luacode}

NOTE: effective_glue requires a ‘parent’ node, as pointed out by Marcel Krüger on
S.E., this implies using pre_shipout_filter instead of pre_output_filter .
Add the luatypo.check_page function to the pre_shipout_filter callback (with priority
1 for colour attributes to be effective), unless option None is selected.

1696 \AtBeginDocument{%
1697 \directlua{

1698 if not luatypo.None then

1699 luatexbase.add_to_callback

1700 ("pre_shipout_filter",luatypo.check_page,"check_page",1)

1701 end

1702 }%

1703 }

Load a config file if present in LaTeX’s search path or set reasonnable defaults.

1704 \InputIfFileExists{lua-typo.cfg}%
1705 {\PackageInfo{lua-typo.sty}{"lua-typo.cfg" file loaded}}%

1706 {\PackageInfo{lua-typo.sty}{"lua-typo.cfg" file not found.

1707 \MessageBreak Providing default values.}%

1708 \definecolor{LTgrey}{gray}{0.6}%

1709 \definecolor{LTred}{rgb}{1,0.55,0}

1710 \definecolor{LTline}{rgb}{0.7,0,0.3}

1711 \luatypoSetColor1{red}% Paragraph last full line hyphenated

1712 \luatypoSetColor2{red}% Page last word hyphenated

1713 \luatypoSetColor3{red}% Hyphens on to many consecutive lines

1714 \luatypoSetColor4{red}% Short word at end of line

1715 \luatypoSetColor5{cyan}% Widow

1716 \luatypoSetColor6{cyan}% Orphan

1717 \luatypoSetColor7{cyan}% Paragraph ending on a short line

1718 \luatypoSetColor8{blue}% Overfull lines

1719 \luatypoSetColor9{blue}% Underfull lines

1720 \luatypoSetColor{10}{red}% Nearly empty page

1721 \luatypoSetColor{11}{LTred}% First word matches

1722 \luatypoSetColor{12}{LTred}% Last word matches

1723 \luatypoSetColor{13}{LTgrey}% Paragraph ending on a nearly full line

1724 \luatypoSetColor{14}{cyan}% Footnote split

1725 \luatypoSetColor{15}{red}% Too short first (final) word on the page

1726 \luatypoSetColor{16}{LTline}% Line color for multiple flaws

1727 \luatypoSetColor{17}{red}% Margin note ending too low

44

1728 \luatypoBackPI=1em\relax

1729 \luatypoBackFuzz=2pt\relax

1730 \ifdim\parindent=0pt \luatypoLLminWD=20pt\relax

1731 \else\luatypoLLminWD=2\parindent\relax\fi

1732 \luatypoStretchMax=200\relax

1733 \luatypoHyphMax=2\relax

1734 \luatypoPageMin=5\relax

1735 \luatypoMinFull=3\relax

1736 \luatypoMinPart=4\relax

1737 \luatypoMinLen=4\relax

1738 \luatypoMarginparTol=\baselineskip

1739 }%

6 Configuration file
%%% Configuration file for lua-typo.sty

%%% These settings can also be overruled in the preamble.

%% Minimum gap between end of paragraphs’ last lines and the right margin

\luatypoBackPI=1em\relax

\luatypoBackFuzz=2pt\relax

%% Minimum length of paragraphs’ last lines

\ifdim\parindent=0pt \luatypoLLminWD=20pt\relax

\else \luatypoLLminWD=2\parindent\relax

\fi

%% Maximum number of consecutive hyphenated lines

\luatypoHyphMax=2\relax

%% Nearly empty pages: minimum number of lines

\luatypoPageMin=5\relax

%% Maximum acceptable stretch before a line is tagged as Underfull

\luatypoStretchMax=200\relax

%% Minimum number of matching characters for words at begin/end of line

\luatypoMinFull=3\relax

\luatypoMinPart=4\relax

%% Minimum number of characters for the first word on a page if it ends

%% a sentence (version >= 0.65).

\ifdefined\luatypoMinLen \luatypoMinLen=4\relax\fi

%% Acceptable marginpars must end at |\luatypoMarginparTol| under

%% the page’s last line or above (version >= 0.85).

\ifdefined\luatypoMarginparTol \luatypoMarginparTol=\baselineskip \fi

%% Default colours = red, cyan, blue, LTgrey, LTred, LTline.

\definecolor{LTgrey}{gray}{0.6}

\definecolor{LTred}{rgb}{1,0.55,0}

\definecolor{LTline}{rgb}{0.7,0,0.3}

\luatypoSetColor1{red}% Paragraph last full line hyphenated

45

\luatypoSetColor2{red}% Page last word hyphenated

\luatypoSetColor3{red}% Hyphens on to many consecutive lines

\luatypoSetColor4{red}% Short word at end of line

\luatypoSetColor5{cyan}% Widow

\luatypoSetColor6{cyan}% Orphan

\luatypoSetColor7{cyan}% Paragraph ending on a short line

\luatypoSetColor8{blue}% Overfull lines

\luatypoSetColor9{blue}% Underfull lines

\luatypoSetColor{10}{red}% Nearly empty page

\luatypoSetColor{11}{LTred}% First word matches

\luatypoSetColor{12}{LTred}% Last word matches

\luatypoSetColor{13}{LTgrey}% Paragraph ending on a nearly full line

\luatypoSetColor{14}{cyan}% Footnote split

\luatypoSetColor{15}{red}% Too short first (final) word on the page

\luatypoSetColor{16}{LTline}% Line color for multiple flaws

\luatypoSetColor{17}{red}% Margin note ending too low

%% Language specific settings (example for French):

%% short words (two letters max) to be avoided at end of lines.

%%\luatypoOneChar{french}{"A À Ô Y"}

%%\luatypoTwoChars{french}{"Ah Au Ça Çà Ce De Il Je La Là Le Ma Me Ne Ni

%% Oh On Or Ou Où Sa Se Si Ta Tu Va Vu"}

7 Debugging lua-typo

Personal stuff useful only for maintaining the lua-typo package has been added at the
end of lua-typo.dtx in version 0.60. It is not extracted unless a) both ‘\iffalse ’ and
‘\fi ’ on lines 41 and 46 at the beginning of lua-typo.dtx are commented out and b) all
files are generated again by a luatex lua-typo.dtx command; then a (very) verbose
version of lua-typo.sty is generated together with a scan-page.sty file which can be
used instead of lua-typo.sty to show the structured list of nodes found in a document.

46

8 Change History

Changes are listed in reverse order (latest first) from version 0.30.

v0.88
General: New function ‘check_vbox’. 28

v0.87
General: Add warning: lua-typo

incompatible with the ‘reledmac’
package. 9

v0.86
General: Typo corrected in the

signature function. 16
v0.85

General: New function
‘check_marginnote’. 27

Warn in case some pages failed to
be checked properly. 10

v0.80
General: ‘check_line_first_word’ and

‘check_line_last_word’: argument
footnote added. 18

‘color_line’ no longer overwrites
colors set previously. 15

New table ‘luatypo.map’ for
colours. 10

check-vtop : Colouring lines deferred
until the full line is scanned. . . . 32

hlist-2: added detection of page
bottom and increment vpos. . . . 38

v0.70
General: ‘check_line_first_word’ and

‘check_line_last_word’: length of
matches corrected. 18

Package options no longer require
‘kvoptions’, they rely on LaTeX
‘ltkeys’ package. 6

v0.65
General: All ligatures are now split

using the node’s ‘components’
field rather than a table. 16

New ‘check_page_first_word’
function. 23

Three new functions for utf-8
strings’ manipulations. 14

v0.61
General: ‘check_line_first_word’

returns a flag to set pageflag. . . . 21
‘check_line_last_word’ returns a
flag to set pageflag. 18

‘check_regexpr’ returns a flag to set
pageflag in ‘check_vtop’. 24

Colours mygrey, myred renamed as
LTgrey, LTred. 44

v0.60
General: Debugging stuff added. . . 46
check-page : Loop redesigned to

properly handle two colums. . . . 41
check-vtop : Break ‘check_vtop’ loop if

a two columns box starts. 30
Loop redesigned. 30
Typographical flaws are recorded
here (formerly in check_page). . . 30

v0.51
footnoterule-ahead : In some cases

glue nodes might preceed the
footnote rule; next line added . . 26

v0.50
General: Callback ‘pre_output_filter’

replaced by ‘pre_shipout_filter’, in
the former the material is not
boxed yet and footnotes are not
visible. 44

Go down deeper into hlists and
vlists to colour nodes. 15

Homeoarchy detection added for
lines starting or ending on \mbox . 18

Rollback mechanism used for
recovering older versions. 5

Summary of flaws written to file
‘\jobname.typo ’. 16

check-vtop : Consider displayed and
aligned equations too for overfull
boxes. 38

Detection of overfull boxes fixed:
the former code didn’t work for
typewriter fonts. 32

footnoterule-ahead : New function
‘footnoterule_ahead’. 26

v0.40
check-vtop : All hlists of subtype LINE

now count as a pageline. 33
Both MKERN and LFTSKIP may
occur on the same line. 33

Title pages, pages with figures
and/or tables may not be empty
pages: check ‘vpos’ last line’s
position. 30

v0.32
General: Better protection against

unexpected nil nodes. 14
Functions ‘check_line_first_word’
and ‘check_line_last_word’
rewritten. 18

47

	1 What is it about?
	2 Usage
	3 Known issues
	4 Customisation
	5 TeXnical details
	6 Configuration file
	7 Debugging lua-typo
	8 Change History

The document was declared to be of type PDF/A-4f but hasn't any attachments. LaTeX therefore added this dummy file.

