1 Basics

1.1 Install chevreuldata

R is an open-source statistical environment which can be easily modified to enhance its functionality via packages. chevreuldata is a R package available via the Bioconductor repository for packages. R can be installed on any operating system from CRAN after which you can install chevreuldata by using the following commands in your R session:

if (!requireNamespace("BiocManager", quietly = TRUE)) {
      install.packages("BiocManager")
  }

BiocManager::install("chevreuldata")

## Check that you have a valid Bioconductor installation
BiocManager::valid()

1.2 Required knowledge

chevreuldata is an ExperimentHub based data package containing smart-seq based scRNA-seq data as a SingleCellExperiment object from human retinal organoids. All included data is generated by the Cobrinik laboratory at Children’s Hospital Los Angeles.

1.3 Citing chevreuldata

We hope that chevreuldata will be useful for your research. Please use the following information to cite the package and the overall approach. Thank you!

## Citation info
citation("chevreuldata")
#> To cite package 'chevreuldata' in publications use:
#> 
#>   Stachelek K (2024). _chevreuldata: Example data for the chevreul
#>   package_. R package version 0.99.22,
#>   <https://github.com/cobriniklab/chevreuldata>.
#> 
#> A BibTeX entry for LaTeX users is
#> 
#>   @Manual{,
#>     title = {chevreuldata: Example data for the chevreul package},
#>     author = {Kevin Stachelek},
#>     year = {2024},
#>     note = {R package version 0.99.22},
#>     url = {https://github.com/cobriniklab/chevreuldata},
#>   }

2 Quick start to using chevreuldata

library("chevreuldata")

To access data use helper functions as below

chevreul_sce <- chevreuldata::human_gene_transcript_sce()
#> see ?chevreuldata and browseVignettes('chevreuldata') for documentation
#> loading from cache
#> Loading required namespace: BiocSingular

Data has been processed using the chevreul package. Expression information is available for both gene (main experiment) and transcript (alt experiment) features

mainExpName(chevreul_sce)
#> [1] "integrated"
altExpNames(chevreul_sce)
#> [1] "gene"       "transcript"

cell metadata includes organoid age Age, preparation method Prep.Method, and louvain clustering identities at multiple resolutions gene_snn_res.x.x

colData(chevreul_sce)
#> DataFrame with 794 rows and 33 columns
#>                                           batch         Sequencing_Run
#>                                     <character>            <character>
#> hs20151130-SC1-26             20151130-HS-C1-Hs      20151130-HS-C1-Hs
#> hs20151130-SC1-28             20151130-HS-C1-Hs      20151130-HS-C1-Hs
#> hs20151130-SC1-29             20151130-HS-C1-Hs      20151130-HS-C1-Hs
#> hs20151130-SC1-41             20151130-HS-C1-Hs      20151130-HS-C1-Hs
#> hs20151130-SC1-53             20151130-HS-C1-Hs      20151130-HS-C1-Hs
#> ...                                         ...                    ...
#> 20200312-DS-dissected-78 20200312-DS-dissecte.. 20200312-DS-dissecte..
#> 20200312-DS-dissected-79 20200312-DS-dissecte.. 20200312-DS-dissecte..
#> 20200312-DS-dissected-80 20200312-DS-dissecte.. 20200312-DS-dissecte..
#> 20200312-DS-dissected-81 20200312-DS-dissecte.. 20200312-DS-dissecte..
#> 20200312-DS-dissected-83 20200312-DS-dissecte.. 20200312-DS-dissecte..
#>                          nCount_Gene nFeature_Gene nCount_transcript
#>                            <numeric>     <numeric>         <numeric>
#> hs20151130-SC1-26             788792          3084            788792
#> hs20151130-SC1-28             597724          2109            597724
#> hs20151130-SC1-29             557492          3116            557492
#> hs20151130-SC1-41             173551          1381            173551
#> hs20151130-SC1-53             394839          1813            394839
#> ...                              ...           ...               ...
#> 20200312-DS-dissected-78     8418799         13494           8418799
#> 20200312-DS-dissected-79     3620195          9842           3620195
#> 20200312-DS-dissected-80     2088577          7635           2088577
#> 20200312-DS-dissected-81      907918          7942            907918
#> 20200312-DS-dissected-83     2870483         11220           2870483
#>                          nFeature_transcript              Sample_ID Fetal_Age
#>                                    <numeric>            <character> <numeric>
#> hs20151130-SC1-26                       4439                     NA        17
#> hs20151130-SC1-28                       3022                     NA        17
#> hs20151130-SC1-29                       4378                     NA        17
#> hs20151130-SC1-41                       1641                     NA        17
#> hs20151130-SC1-53                       2836                     NA        17
#> ...                                      ...                    ...       ...
#> 20200312-DS-dissected-78               34453 20200312-DS-dissecte..        16
#> 20200312-DS-dissected-79               21163 20200312-DS-dissecte..        16
#> 20200312-DS-dissected-80               16046 20200312-DS-dissecte..        16
#> 20200312-DS-dissected-81               14447 20200312-DS-dissecte..        16
#> 20200312-DS-dissected-83               24821 20200312-DS-dissecte..        16
#>                          Collection_Group      Retina Collection_Method
#>                                 <numeric> <character>       <character>
#> hs20151130-SC1-26                       1        17_8                C1
#> hs20151130-SC1-28                       1        17_8                C1
#> hs20151130-SC1-29                       1        17_0                C1
#> hs20151130-SC1-41                       1        17_8                C1
#> hs20151130-SC1-53                       1        17_8                C1
#> ...                                   ...         ...               ...
#> 20200312-DS-dissected-78               18        16_1              FACS
#> 20200312-DS-dissected-79               18        16_9              FACS
#> 20200312-DS-dissected-80               18        16_3              FACS
#> 20200312-DS-dissected-81               18        16_0              FACS
#> 20200312-DS-dissected-83               18        16_3              FACS
#>                             S.Score   G2M.Score       Phase percent.mt
#>                           <numeric>   <numeric> <character>  <numeric>
#> hs20151130-SC1-26        -0.1139030   0.0965684         G2M   3.825333
#> hs20151130-SC1-28        -0.0882956  -0.0774102          G1   1.495177
#> hs20151130-SC1-29         0.0130033  -0.0825102           S   0.340833
#> hs20151130-SC1-41         0.0581814  -0.0345965           S   6.298886
#> hs20151130-SC1-53        -0.0928946   0.0958001         G2M   1.921312
#> ...                             ...         ...         ...        ...
#> 20200312-DS-dissected-78 -0.0630722 -0.01325330          G1   0.825358
#> 20200312-DS-dissected-79  0.1023802 -0.04216473           S   0.877506
#> 20200312-DS-dissected-80 -0.1593829 -0.01744812          G1   0.645136
#> 20200312-DS-dissected-81 -0.1169104  0.00254407         G2M   0.363801
#> 20200312-DS-dissected-83 -0.1367366 -0.05563077          G1   0.643866
#>                          cluster_names_Res_0.4 cluster_names_Res_1.6
#>                                    <character>           <character>
#> hs20151130-SC1-26                         iPRP                    TR
#> hs20151130-SC1-28                         iPRP                    TR
#> hs20151130-SC1-29                           ER                    ER
#> hs20151130-SC1-41                         iPRP                    TR
#> hs20151130-SC1-53                           ER                    TR
#> ...                                        ...                   ...
#> 20200312-DS-dissected-78                    LM                   LM1
#> 20200312-DS-dissected-79                RPC/MG                    MG
#> 20200312-DS-dissected-80                    LM                   LM2
#> 20200312-DS-dissected-81                    ER                    ER
#> 20200312-DS-dissected-83                    LM                   LM2
#>                          integrated_snn_res.0.2 integrated_snn_res.0.4
#>                                        <factor>               <factor>
#> hs20151130-SC1-26                             1                      2
#> hs20151130-SC1-28                             1                      2
#> hs20151130-SC1-29                             1                      1
#> hs20151130-SC1-41                             1                      2
#> hs20151130-SC1-53                             1                      1
#> ...                                         ...                    ...
#> 20200312-DS-dissected-78                      0                      0
#> 20200312-DS-dissected-79                      2                      3
#> 20200312-DS-dissected-80                      0                      0
#> 20200312-DS-dissected-81                      1                      1
#> 20200312-DS-dissected-83                      0                      0
#>                          integrated_snn_res.0.6 integrated_snn_res.0.8
#>                                        <factor>               <factor>
#> hs20151130-SC1-26                             3                      3
#> hs20151130-SC1-28                             3                      3
#> hs20151130-SC1-29                             2                      2
#> hs20151130-SC1-41                             3                      3
#> hs20151130-SC1-53                             2                      3
#> ...                                         ...                    ...
#> 20200312-DS-dissected-78                      1                      1
#> 20200312-DS-dissected-79                      4                      4
#> 20200312-DS-dissected-80                      0                      0
#> 20200312-DS-dissected-81                      2                      2
#> 20200312-DS-dissected-83                      0                      0
#>                          integrated_snn_res.1.2 integrated_snn_res.1.4
#>                                        <factor>               <factor>
#> hs20151130-SC1-26                             5                      4
#> hs20151130-SC1-28                             5                      4
#> hs20151130-SC1-29                             0                      0
#> hs20151130-SC1-41                             5                      4
#> hs20151130-SC1-53                             5                      4
#> ...                                         ...                    ...
#> 20200312-DS-dissected-78                      1                      1
#> 20200312-DS-dissected-79                      5                      4
#> 20200312-DS-dissected-80                      4                      3
#> 20200312-DS-dissected-81                      0                      0
#> 20200312-DS-dissected-83                      4                      3
#>                          integrated_snn_res.1.6 integrated_snn_res.1.8
#>                                        <factor>               <factor>
#> hs20151130-SC1-26                             8                      9
#> hs20151130-SC1-28                             8                      9
#> hs20151130-SC1-29                             0                      7
#> hs20151130-SC1-41                             8                      9
#> hs20151130-SC1-53                             8                      9
#> ...                                         ...                    ...
#> 20200312-DS-dissected-78                      1                     1 
#> 20200312-DS-dissected-79                      9                     10
#> 20200312-DS-dissected-80                      3                     3 
#> 20200312-DS-dissected-81                      0                     0 
#> 20200312-DS-dissected-83                      3                     3 
#>                          integrated_snn_res.2 integrated_snn_res.1    ident
#>                                      <factor>             <factor> <factor>
#> hs20151130-SC1-26                           9                    3        9
#> hs20151130-SC1-28                           9                    3        9
#> hs20151130-SC1-29                           7                    1        7
#> hs20151130-SC1-41                           9                    3        9
#> hs20151130-SC1-53                           9                    3        9
#> ...                                       ...                  ...      ...
#> 20200312-DS-dissected-78                   1                     0       1 
#> 20200312-DS-dissected-79                   10                    4       10
#> 20200312-DS-dissected-80                   3                     5       3 
#> 20200312-DS-dissected-81                   0                     1       0 
#> 20200312-DS-dissected-83                   3                     5       3 
#>                          gene_snn_res.0.2 gene_snn_res.0.4 gene_snn_res.0.6
#>                                  <factor>         <factor>         <factor>
#> hs20151130-SC1-26                       1                1                1
#> hs20151130-SC1-28                       2                1                1
#> hs20151130-SC1-29                       1                2                2
#> hs20151130-SC1-41                       1                1                1
#> hs20151130-SC1-53                       2                1                1
#> ...                                   ...              ...              ...
#> 20200312-DS-dissected-78                1                2                2
#> 20200312-DS-dissected-79                3                3                4
#> 20200312-DS-dissected-80                1                2                2
#> 20200312-DS-dissected-81                2                1                1
#> 20200312-DS-dissected-83                1                2                2
#>                          gene_snn_res.0.8 gene_snn_res.1
#>                                  <factor>       <factor>
#> hs20151130-SC1-26                       1              1
#> hs20151130-SC1-28                       1              2
#> hs20151130-SC1-29                       2              1
#> hs20151130-SC1-41                       1              1
#> hs20151130-SC1-53                       1              2
#> ...                                   ...            ...
#> 20200312-DS-dissected-78                2              1
#> 20200312-DS-dissected-79                4              5
#> 20200312-DS-dissected-80                2              1
#> 20200312-DS-dissected-81                1              2
#> 20200312-DS-dissected-83                2              1

For more information on data generation consult Shayler et al. https://www.biorxiv.org/content/10.1101/2023.02.28.530247v1

3 Reproducibility

The chevreuldata package (Stachelek, 2024) was made possible thanks to:

  • R (R Core Team, 2024)
  • BiocStyle (Oleś, 2024)
  • knitr (Xie, 2024)
  • RefManageR (McLean, 2017)
  • rmarkdown (Allaire, Xie, Dervieux, McPherson, Luraschi, Ushey, Atkins, Wickham, Cheng, Chang, and Iannone, 2024)
  • sessioninfo (Wickham, Chang, Flight, Müller, and Hester, 2021)
  • testthat (Wickham, 2011)

This package was developed using biocthis.

Code for creating the vignette

## Create the vignette
library("rmarkdown")
system.time(render("human_gene_transcript_sce.Rmd", "BiocStyle::html_document"))

## Extract the R code
library("knitr")
knit("human_gene_transcript_sce.Rmd", tangle = TRUE)

Date the vignette was generated.

#> [1] "2024-11-19 16:28:16 EST"

Wallclock time spent generating the vignette.

#> Time difference of 25.657 secs

R session information.

#> ─ Session info ───────────────────────────────────────────────────────────────────────────────────────────────────────
#>  setting  value
#>  version  R Under development (unstable) (2024-10-21 r87258)
#>  os       Ubuntu 24.04.1 LTS
#>  system   x86_64, linux-gnu
#>  ui       X11
#>  language (EN)
#>  collate  C
#>  ctype    en_US.UTF-8
#>  tz       America/New_York
#>  date     2024-11-19
#>  pandoc   3.1.3 @ /usr/bin/ (via rmarkdown)
#> 
#> ─ Packages ───────────────────────────────────────────────────────────────────────────────────────────────────────────
#>  package              * version  date (UTC) lib source
#>  abind                  1.4-8    2024-09-12 [3] CRAN (R 4.5.0)
#>  AnnotationDbi          1.69.0   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  AnnotationHub        * 3.15.0   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  backports              1.5.0    2024-05-23 [3] CRAN (R 4.5.0)
#>  beachmat               2.23.1   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  bibtex                 0.5.1    2023-01-26 [3] CRAN (R 4.5.0)
#>  Biobase              * 2.67.0   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  BiocFileCache        * 2.15.0   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  BiocGenerics         * 0.53.3   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  BiocManager            1.30.25  2024-08-28 [2] CRAN (R 4.5.0)
#>  BiocParallel           1.41.0   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  BiocSingular           1.23.0   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  BiocStyle            * 2.35.0   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  BiocVersion            3.21.1   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  Biostrings             2.75.1   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  bit                    4.5.0    2024-09-20 [3] CRAN (R 4.5.0)
#>  bit64                  4.5.2    2024-09-22 [3] CRAN (R 4.5.0)
#>  blob                   1.2.4    2023-03-17 [3] CRAN (R 4.5.0)
#>  bookdown               0.41     2024-10-16 [3] CRAN (R 4.5.0)
#>  bslib                  0.8.0    2024-07-29 [3] CRAN (R 4.5.0)
#>  cachem                 1.1.0    2024-05-16 [3] CRAN (R 4.5.0)
#>  chevreuldata         * 0.99.22  2024-11-19 [1] Bioconductor
#>  cli                    3.6.3    2024-06-21 [3] CRAN (R 4.5.0)
#>  codetools              0.2-20   2024-03-31 [4] CRAN (R 4.5.0)
#>  crayon                 1.5.3    2024-06-20 [3] CRAN (R 4.5.0)
#>  curl                   6.0.1    2024-11-14 [2] CRAN (R 4.5.0)
#>  DBI                    1.2.3    2024-06-02 [3] CRAN (R 4.5.0)
#>  dbplyr               * 2.5.0    2024-03-19 [3] CRAN (R 4.5.0)
#>  DelayedArray           0.33.2   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  digest                 0.6.37   2024-08-19 [3] CRAN (R 4.5.0)
#>  dplyr                  1.1.4    2023-11-17 [3] CRAN (R 4.5.0)
#>  evaluate               1.0.1    2024-10-10 [3] CRAN (R 4.5.0)
#>  ExperimentHub        * 2.15.0   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  fansi                  1.0.6    2023-12-08 [3] CRAN (R 4.5.0)
#>  fastmap                1.2.0    2024-05-15 [3] CRAN (R 4.5.0)
#>  filelock               1.0.3    2023-12-11 [3] CRAN (R 4.5.0)
#>  generics             * 0.1.3    2022-07-05 [3] CRAN (R 4.5.0)
#>  GenomeInfoDb         * 1.43.1   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  GenomeInfoDbData       1.2.13   2024-10-23 [3] Bioconductor
#>  GenomicRanges        * 1.59.1   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  glue                   1.8.0    2024-09-30 [3] CRAN (R 4.5.0)
#>  htmltools              0.5.8.1  2024-04-04 [3] CRAN (R 4.5.0)
#>  httr                   1.4.7    2023-08-15 [3] CRAN (R 4.5.0)
#>  IRanges              * 2.41.1   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  irlba                  2.3.5.1  2022-10-03 [3] CRAN (R 4.5.0)
#>  jquerylib              0.1.4    2021-04-26 [3] CRAN (R 4.5.0)
#>  jsonlite               1.8.9    2024-09-20 [3] CRAN (R 4.5.0)
#>  KEGGREST               1.47.0   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  knitr                  1.49     2024-11-08 [3] CRAN (R 4.5.0)
#>  lattice                0.22-6   2024-03-20 [4] CRAN (R 4.5.0)
#>  lifecycle              1.0.4    2023-11-07 [3] CRAN (R 4.5.0)
#>  lubridate              1.9.3    2023-09-27 [3] CRAN (R 4.5.0)
#>  magrittr               2.0.3    2022-03-30 [3] CRAN (R 4.5.0)
#>  Matrix                 1.7-1    2024-10-18 [4] CRAN (R 4.5.0)
#>  MatrixGenerics       * 1.19.0   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  matrixStats          * 1.4.1    2024-09-08 [3] CRAN (R 4.5.0)
#>  memoise                2.0.1    2021-11-26 [3] CRAN (R 4.5.0)
#>  mime                   0.12     2021-09-28 [3] CRAN (R 4.5.0)
#>  pillar                 1.9.0    2023-03-22 [3] CRAN (R 4.5.0)
#>  pkgconfig              2.0.3    2019-09-22 [3] CRAN (R 4.5.0)
#>  plyr                   1.8.9    2023-10-02 [3] CRAN (R 4.5.0)
#>  png                    0.1-8    2022-11-29 [3] CRAN (R 4.5.0)
#>  purrr                  1.0.2    2023-08-10 [3] CRAN (R 4.5.0)
#>  R6                     2.5.1    2021-08-19 [3] CRAN (R 4.5.0)
#>  rappdirs               0.3.3    2021-01-31 [3] CRAN (R 4.5.0)
#>  Rcpp                   1.0.13-1 2024-11-02 [3] CRAN (R 4.5.0)
#>  RefManageR           * 1.4.0    2022-09-30 [3] CRAN (R 4.5.0)
#>  rlang                  1.1.4    2024-06-04 [3] CRAN (R 4.5.0)
#>  rmarkdown              2.29     2024-11-04 [3] CRAN (R 4.5.0)
#>  RSQLite                2.3.8    2024-11-17 [3] CRAN (R 4.5.0)
#>  rsvd                   1.0.5    2021-04-16 [3] CRAN (R 4.5.0)
#>  S4Arrays               1.7.1    2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  S4Vectors            * 0.45.2   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  sass                   0.4.9    2024-03-15 [3] CRAN (R 4.5.0)
#>  ScaledMatrix           1.15.0   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  sessioninfo          * 1.2.2    2021-12-06 [3] CRAN (R 4.5.0)
#>  SingleCellExperiment * 1.29.1   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  SparseArray            1.7.2    2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  stringi                1.8.4    2024-05-06 [3] CRAN (R 4.5.0)
#>  stringr                1.5.1    2023-11-14 [3] CRAN (R 4.5.0)
#>  SummarizedExperiment * 1.37.0   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  tibble                 3.2.1    2023-03-20 [3] CRAN (R 4.5.0)
#>  tidyselect             1.2.1    2024-03-11 [3] CRAN (R 4.5.0)
#>  timechange             0.3.0    2024-01-18 [3] CRAN (R 4.5.0)
#>  UCSC.utils             1.3.0    2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  utf8                   1.2.4    2023-10-22 [3] CRAN (R 4.5.0)
#>  vctrs                  0.6.5    2023-12-01 [3] CRAN (R 4.5.0)
#>  withr                  3.0.2    2024-10-28 [3] CRAN (R 4.5.0)
#>  xfun                   0.49     2024-10-31 [3] CRAN (R 4.5.0)
#>  xml2                   1.3.6    2023-12-04 [3] CRAN (R 4.5.0)
#>  XVector                0.47.0   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#>  yaml                   2.3.10   2024-07-26 [2] CRAN (R 4.5.0)
#>  zlibbioc               1.53.0   2024-11-19 [3] Bioconductor 3.21 (R 4.5.0)
#> 
#>  [1] /tmp/Rtmp5hbeG6/Rinst48655226a5e09
#>  [2] /home/pkgbuild/packagebuilder/workers/jobs/3332/R-libs
#>  [3] /home/biocbuild/bbs-3.21-bioc/R/site-library
#>  [4] /home/biocbuild/bbs-3.21-bioc/R/library
#> 
#> ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────

4 Bibliography

This vignette was generated using BiocStyle (Oleś, 2024) with knitr (Xie, 2024) and rmarkdown (Allaire, Xie, Dervieux et al., 2024) running behind the scenes.

Citations made with RefManageR (McLean, 2017).

[1] J. Allaire, Y. Xie, C. Dervieux, et al. rmarkdown: Dynamic Documents for R. R package version 2.29. 2024. URL: https://github.com/rstudio/rmarkdown.

[2] M. W. McLean. “RefManageR: Import and Manage BibTeX and BibLaTeX References in R”. In: The Journal of Open Source Software (2017). DOI: 10.21105/joss.00338.

[3] A. Oleś. BiocStyle: Standard styles for vignettes and other Bioconductor documents. R package version 2.35.0. 2024. DOI: 10.18129/B9.bioc.BiocStyle. URL: https://bioconductor.org/packages/BiocStyle.

[4] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria, 2024. URL: https://www.R-project.org/.

[5] K. Stachelek. chevreuldata: Example data for the chevreul package. R package version 0.99.22. 2024. URL: https://github.com/cobriniklab/chevreuldata.

[6] H. Wickham. “testthat: Get Started with Testing”. In: The R Journal 3 (2011), pp. 5–10. URL: https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf.

[7] H. Wickham, W. Chang, R. Flight, et al. sessioninfo: R Session Information. R package version 1.2.2. 2021. DOI: 10.32614/CRAN.package.sessioninfo. URL: https://CRAN.R-project.org/package=sessioninfo.

[8] Y. Xie. knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.49. 2024. URL: https://yihui.org/knitr/.