Package 'a4Core'

December 16, 2024

Type Package

Version 1.55.0 **Date** 2020-10-14

Title Automated Affymetrix Array Analysis Core Package

Description Utility functions for the Automated Affymetrix Array Analysis set of packages.
Imports Biobase, glmnet, methods, stats
Suggests knitr, rmarkdown
License GPL-3
biocViews Microarray, Classification
RoxygenNote 7.1.1
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/a4Core
git_branch devel
git_last_commit 85fe6a4
git_last_commit_date 2024-10-29
Repository Bioconductor 3.21
Date/Publication 2024-12-16
Author Willem Talloen [aut], Tobias Verbeke [aut], Laure Cougnaud [cre]
Maintainer Laure Cougnaud <laure.cougnaud@openanalytics.eu></laure.cougnaud@openanalytics.eu>
Contents
confusionMatrix2simulateData2topTable3topTable-methods4
Index 5

2 simulateData

Generic function to produce a confusion matrix (related to a classification problem)

Description

Generic function to produce a confusion matrix (related to a classification problem)

Usage

```
confusionMatrix(x, ...)
```

Arguments

x object (usually a model fit object) that contains all information needed to produce the confusion matrix.

... further arguments for a specific method

Value

A confusion matrix

Author(s)

Tobias Verbeke

simulateData

Simulate Data for Package Testing and Demonstration Purposes

Description

Simulate Data for Package Testing and Demonstration Purposes

Usage

```
simulateData(nCols = 40, nRows = 1000, nEffectRows = 5, nNoEffectCols = 5,
betweenClassDifference = 1, withinClassSd = 0.5)
```

topTable 3

Arguments

nCols number of samples; currently this should be an even number

nRows number of features (genes)

nEffectRows number of differentially expressed features

nNoEffectCols number of samples for which the profile of a differentially expressed feature will

be set similar to the other class

betweenClassDifference

Average mean difference between the two classes to simulate a certain signal in

the features for which an effect was introduced; the default is set to 1

withinClassSd Within class standard deviation used to add a certain noise level to the features

for which an effect was introduced; the default standard deviation is set to 0.5

Value

object of class ExpressionSet with the characteristics specified

Note

The simulation assumes the variances are equal between the two classes. Heterogeneity could easily be introduced in the simulation if this would be requested by the users.

Author(s)

W. Talloen and T. Verbeke

Examples

```
someEset \leftarrow simulateData(nCols = 40, nRows = 1000, nEffectRows = 5, nNoEffectCols = 5) someEset
```

topTable

S4 Generic for obtaining a top table

Description

a top table is a rectangular object (e.g. data frame) which lists the top n most relevant variables

Usage

```
topTable(fit, n, ...)
```

Arguments

fit	object for which to obtain a top table, generally a fit object for a given model
	class

n number of features (variables) to list in the top table, ranked by importance

... further arguments for specific methods

4 topTable-methods

Value

Top table with top n relevant variable.

Author(s)

Tobias Verbeke

topTable-methods

Methods for topTable

Description

Methods for topTable. topTable extracts the top n most important features for a given classification or regression procedure

Arguments

fit object resulting from a classification or regression procedure

n number of features that one wants to extract from a table that ranks all features according to their importance in the classification or regression model; defaults

to 10 for limma objects

Methods

glmnet and lognet

fit = "glmnet", n = "numeric"glmnet objects are produced by lassoClass (a4Classif) or lassoReg (a4Base)

- fit = "lognet", n = "numeric"lognet objects are produced by lassoClass (a4Classif) or lassoReg (a4Base)
- fit = "elnet", n = "numeric"elnet objects are produced by lassoClass (a4Classif) or lassoReg (a4Base)

Index

```
* manip
    simulateData, 2
    top Table-methods, 4\\
*\ methods
    topTable-methods, 4
* models
    confusionMatrix, 2
confusionMatrix, 2
simulateData, 2
topTable, 3
top Table, elnet-method\\
        (topTable-methods), 4
topTable,glmnet-method
        (topTable-methods), 4
topTable,lognet-method
        (topTable-methods), 4
topTable-methods, 4
```