Package 'NoRCE'

December 17, 2024

Type Package

Title NoRCE: Noncoding RNA Sets Cis Annotation and Enrichment

Version 1.19.0

Description While some non-coding RNAs (ncRNAs) are assigned critical regulatory roles, most remain functionally uncharacterized. This presents a challenge whenever an interesting set of ncR-NAs needs to be analyzed in a functional context. Transcripts located closeby on the genome are often regulated together. This genomic proximity on the sequence can hint to a functional association. We present a tool, NoRCE, that performs cisenrichment analysis for a given set of ncRNAs. Enrichment is carried out using the functional annotations of the coding genes located proximal to the input ncRNAs. Other biologically relevant information such as topologically associating domain (TAD) boundaries, co-expression patterns, and miRNA target prediction information can be incorporated to conduct a richer enrichment analysis. To this end, NoRCE includes several relevant datasets as part of its data repository, including cell-line specific TAD boundaries, functional gene sets, and expression data for coding & ncRNAs specific to cancer. Additionally, the users can utilize custom data files in their investigation. Enrichment results can be retrieved in a tabular format or visualized in several different ways. NoRCE is currently available for the following species: human, mouse, rat, zebrafish, fruit fly, worm, and yeast.

License MIT + file LICENSE

Depends R (>= 4.2.0)

 $\textbf{Imports} \ \ \textbf{KEGGREST}, \textbf{png}, \textbf{dplyr}, \textbf{graphics}, \textbf{RSQLite}, \textbf{DBI}, \textbf{tidyr}, \textbf{grDevices}, \textbf{stringr}, \textbf{GenomeInfoDb}, \textbf{devices}, \textbf{de$

S4Vectors, Summarized Experiment, reactome.db, rWikiPathways, RCurl,

dbplyr,utils,ggplot2,igraph,stats,reshape2,readr,

GO.db,zlibbioc,

biomaRt, rtracklayer, IRanges, GenomicRanges, GenomicFeatures, AnnotationDbi

Encoding UTF-8

RoxygenNote 7.2.1

Suggests knitr,

TxDb.Hsapiens.UCSC.hg38.knownGene,TxDb.Drerio.UCSC.danRer10.refGene,

TxDb.Mmusculus.UCSC.mm10.knownGene,TxDb.Dmelanogaster.UCSC.dm6.ensGene, testthat,TxDb.Celegans.UCSC.ce11.refGene,rmarkdown,

TxDb.Rnorvegicus.UCSC.rn6.refGene,TxDb.Hsapiens.UCSC.hg19.knownGene, org.Mm.eg.db,

2 Contents

org.Rn.eg.db,org.Hs.eg.db,org.Dr.eg.db,BiocGenerics,
org.Sc.sgd.db, org.Ce.eg.db,org.Dm.eg.db, methods,markdown
VignetteBuilder knitr
biocViews BiologicalQuestion, DifferentialExpression, GenomeAnnotation, GeneSetEnrichment, GeneTarget, GenomeAssembly, GO
LazyData true
BugReports https://github.com/guldenolgun/NoRCE/issues
<pre>git_url https://git.bioconductor.org/packages/NoRCE</pre>
git_branch devel
git_last_commit 18045b1
git_last_commit_date 2024-10-29
Repository Bioconductor 3.21
Date/Publication 2024-12-16
Author Gulden Olgun [aut, cre]
Maintainer Gulden Olgun <gulden@cs.bilkent.edu.tr></gulden@cs.bilkent.edu.tr>

Contents

annGO
assembly
brain_disorder_ncRNA
brain_mirna
breastmRNA
calculateCorr
convertGeneID
convertGMT
corrbased
corrbasedMrna
createNetwork
drawDotPlot
extractBiotype
filterBiotype
geneGOEnricher
genePathwayEnricher
geneRegionGOEnricher
geneRegionPathwayEnricher
getGoDag
getKeggDiagram
getmiRNACount
getNearToExon
getNearToIntron
getReactomeDiagram
getTADOverlap

annGO 3

	getUCSC	2
	goEnrichment	28
	KeggEnrichment	29
	listTAD	30
	mirna	3
	mirnaGOEnricher	3
	mirnaPathwayEnricher	33
	mirnaRegionGOEnricher	3:
	mirnaRegionPathwayEnricher	3′
	mrna	39
	ncRegion	4(
	NoRCE-class	40
	packageCheck	4
	pathwayEnrichment	4
	predictmiTargets	42
	reactomeEnrichment	4.
	setParameters	4
	tad_dmel	4:
	tad_hg19	40
	tad_hg38	40
	tad_mm10	4
	topEnrichment	4
	WikiEnrichment	48
	writeEnrichment	49
Index		50
inuex		J
annG	Annotate the set of genes with the GO terms for a given species and assembly	!

Description

Annotate the set of genes with the GO terms for a given species and assembly

Usage

```
annGO(
  genes,
  GOtype = c("BP", "CC", "MF"),
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3")
)
```

4 assembly

Arguments

genes List of mRNA genes. Supported format for genes is Hugo.

GOtype Hierarchical category of the GO ontology. Possible values are 'BP', 'CC', 'MF'.

org_assembly Genome assembly of interest. Possible assemblies are 'mm10' for mouse, 'dre10'

for zebrafish, 'rn6' for rat, 'dm6' for fruit fly, 'ce11' for worm, 'hg19' and 'hg38'

for human

Value

data frame of the GO term annotation of the genes

assembly

Get the required information for the given assembly

Description

Get the required information for the given assembly

Usage

```
assembly(
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3")
)
```

Arguments

org_assembly

Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human

Value

setting required information

```
## Not run:
assembly('hg19')
## End(Not run)
```

brain_disorder_ncRNA

Description

Differentially expressed non-coding gene

Usage

brain_disorder_ncRNA

Format

Not Available

Source

http://resource.psychencode.org/

Examples

```
data(brain_disorder_ncRNA)
```

brain_mirna

Differentially expressed human brain data

Description

Differentially expressed human brain data

Usage

brain_mirna

Format

Not Available

Source

http://resource.psychencode.org/

Examples

data(brain_mirna)

6 calculateCorr

breastmRNA

Protein coding genes that are differentially expressed in TCGA breast cancer RNAseq data.

Description

Protein coding genes that are differentially expressed in TCGA breast cancer RNAseq data.

Usage

breastmRNA

Format

Not Available

Source

```
https://portal.gdc.cancer.gov/
```

Examples

```
data(breastmRNA)
```

calculateCorr

Calculates the correlation coefficient values between two custom expression data.

Description

Calculates the correlation coefficient values between two custom expression data.

Usage

```
calculateCorr(
  exp1,
  exp2,
  label1 = "",
  label2 = "",
  corrMethod = "pearson",
  varCutoff = 0.0025,
  corCutoff = 0.3,
  pcut = 0.05,
  alternate = "greater",
  conf = 0.95
)
```

convertGeneID 7

Arguments

exp1	Custom expression data matrix or SummarizedExperiment data. Columns must be genes and rows must be patients.
exp2	Custom expression data matrix or SummarizedExperiment data. Columns must be genes and rows must be patients.
label1	Gene names of the custom exp1 expression data. If it is not provided, column name of the exp1 data will be taken.
label2	Gene names of the custom exp2 expression data. If it is not provided, column name of the exp2 data will be taken.
corrMethod	Correlation coefficient method that will be used for evaluation. Possible values are "pearson", "kendall", "spearman"
varCutoff	Variance cut off that genes have less variance than this value will be trimmed
corCutoff	Correlation cut off values for the given correlation method
pcut	P-value cut off for the correlation values
alternate	Holds the alternative hypothesis and "two.sided", "greater" or "less" are the possible values.
conf	Confidence level for the returned confidence interval. It is only used for the Pearson correlation coefficient if there are at least 4 complete pairs of observations.

Value

Pairwise relations between gene-gene with corresponding correlation value and pvalue

Examples

```
## Not run:
#Assume that mirnanorce and mrnanorce are custom patient by gene data
a<-calculateCorr(exp1 = mirna, exp2 = mrna )
## End(Not run)</pre>
```

convertGeneID

Convert gene ids according to the gene type

Description

Convert gene ids according to the gene type

Usage

```
convertGeneID(
  genetype = c("Entrez", "mirna", "Ensembl_gene", "Ensembl_trans", "NCBI"),
  genelist,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3")
)
```

8 convertGMT

Arguments

genetype Type of the input gene list. Possible values are "Entrez", "mirna", "Ensembl_gene",

"Ensembl_trans", "NCBI". For HUGO gene symbol "NCBI" value, for Entrez

gene id "Entrez", for mirbase id "mirna" is used.

genelist Input gene list

org_assembly Genome assembly of interest for the analysis. Possible assemblies are "mm10"

for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for

worm, "sc3" for yeast, "hg19" and "hg38" for human

Value

GRange object of the given input

Examples

convertGMT

Convert gmt formatted pathway file to the Pathway ID, Entrez, symbol

formatted data frame

Description

Convert gmt formatted pathway file to the Pathway ID, Entrez, symbol formatted data frame

Usage

```
convertGMT(gmtName, org_assembly, isSymbol = FALSE)
```

Arguments

gmtName Custom pathway gmt file

org_assembly Genome assembly of interest for the analysis. Possible assemblies are "mm10"

for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for

worm, "sc3" for yeast, "hg19" and "hg38" for human

isSymbol Boolean variable that hold the gene format of the gmt file. If it is set as TRUE,

gene format of the gmt file should be symbol. Otherwise, gene format should be

ENTREZ ID. By default, it is FALSE.

Value

return data frame

corrbased 9

miRNA:mRNA for a given correlation cut-off and cancer.	corrbased	Pearson correlation coefficient value of the miRNA genes between miRNA:mRNA for a given correlation cut-off and cancer.
--	-----------	---

Description

Pearson correlation coefficient value of the miRNA genes between miRNA:mRNA for a given correlation cut-off and cancer.

Usage

corrbased(mirnagene, cancer, minAbsCor, databaseFile)

Arguments

mirnagene Data frame of the miRNA genes in mature format

cancer Name of the TCGA project code such as 'BRCA' that is analyzed for miRNA-

mRNA correlation. Possible cancer types ACC, BLCA, BRCA, CESC, CHOL, COAD, COADREAD, DLBC, ESCA, GBMLGG, HNSC, KICH, KIPAN, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC,

SKCM, STAD, STES, TGCT, THCA, THYM, UCEC, UCS, UVM

minAbsCor Cut-off value for the Pearson correlation coefficient of the miRNA-mRNA

databaseFile Path of the miRcancer.db file

Value

Data frame of the miRNA-mRNA correlation result

corrbasedMrna	Pearson correlation coefficient value of the mRNA genes between miRNA:mRNA for a given correlation cut-off and cancer.
	miniva.mniva jor a given corretation cut-ojj ana cancer.

Description

Pearson correlation coefficient value of the mRNA genes between miRNA:mRNA for a given correlation cut-off and cancer.

Usage

corrbasedMrna(mRNAgene, cancer, minAbsCor, databaseFile)

10 createNetwork

Arguments

mRNAgene Data frame of the mRNA genes

cancer Name of the TCGA project code such as 'BRCA' that is analyzed for miRNA-

mRNA correlation. Possible cancer types ACC, BLCA, BRCA, CESC, CHOL, COAD, COADREAD, DLBC, ESCA, GBMLGG, HNSC, KICH, KIPAN, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC,

SKCM, STAD, STES, TGCT, THCA, THYM, UCEC, UCS, UVM

minAbsCor Cut-off value for the Pearson correlation coefficient of the miRNA-mRNA

databaseFile Path of miRcancer.db file

Value

Data frame of the miRNA-mRNA correlation result

createNetwork Create interaction network for top n enriched GO term:coding RNA or

GO-term:noncoding RNA interaction. Nodes are GO term and RNA, edges are interactions between them. Each GO-term is annotated and

enriched with the mRNAs provided from the input list.

Description

Create interaction network for top n enriched GO term:coding RNA or GO-term:noncoding RNA interaction. Nodes are GO term and RNA, edges are interactions between them. Each GO-term is annotated and enriched with the mRNAs provided from the input list.

Usage

```
createNetwork(
  mrnaObject,
  type = "pvalue",
  n,
  isNonCode = FALSE,
  takeID = FALSE
)
```

Arguments

mrnaObject Output of enrichment results

type Sort in terms of p-values or FDR. Possible values "pvalue", "padjust"

n Number of top enrichments

isNonCode Boolean value that checks whether node of the network is GO-term\& coding or

GO-term\& noncoding genes. By default, it is FALSE so node of the network is GO-term\& coding gene. Otherwise, nodes are GO-term\& noncoding genes.

drawDotPlot 11

takeID

Boolean value that checks the name decision of the GO/pathway node, GO-term/pathway-term or GO ID-pathway ID. If it is true, name of the GO/pathway node will be GO ID/pathway ID will be used, otherwise, name of the GO/pathway node is GO-term. By default, it is FALSE. It is suggested to used when the GO-term is two long or the GO-term is missing for the custom enrichment database.

Value

Network

drawDotPlot

Draw dot plot of the enrichment object

Description

Draw dot plot of the enrichment object

Usage

```
drawDotPlot(mrnaObject, type = "pAdjust", n)
```

Arguments

mrnaObject Object of the enrichment result

type Draw the dot plot according to the p-value or adjusted p-value ("pvalue", "pAd-

just")

n Number of GO terms or pathways, that ordered by type and has least number of

top p-value

Value

Dot plot of the top n enrichment results

extractBiotype Get the biotype of the non-coding genes. It is suitable for the GEN-CODE gtf files

Description

Get the biotype of the non-coding genes. It is suitable for the GENCODE gtf files

Usage

```
extractBiotype(gtfFile)
```

12 filterBiotype

Arguments

gtfFile

Path of the input gtf file which contains biotype information. The gtf file must be provided from the Ensembl or Gencode site. For space efficiency, gft files should be in a zip format.

Value

Tabular form of the gtf file with the required features such as gene id and biotypes

Examples

```
## Not run:
fileImport<-system.file("extdata", "temp.gtf", package = "NoRCE")
gtf <- extractBiotype(gtfFile = fileImport)
## End(Not run)
```

filterBiotype

Extract the genes that have user provided biotypes. This method is useful when input gene list is mixed or when research of the interest is only focused on specific group of genes.

Description

Extract the genes that have user provided biotypes. This method is useful when input gene list is mixed or when research of the interest is only focused on specific group of genes.

Usage

```
filterBiotype(gtfFile, biotypes)
```

Arguments

gtfFile

Input gtf file for the genes provided by the extractBiotype function

biotypes

Selected biotypes for the genes

Value

Table format of genes with a given biotypes

```
## Not run:
biotypes <- c('unprocessed_pseudogene','transcribed_unprocessed_pseudogene')
fileImport<-system.file("extdata", "temp.gtf", package = "NoRCE")
extrResult <- filterBiotype(fileImport, biotypes)
## End(Not run)</pre>
```

geneGOEnricher 13

geneGOEnricher	Given genes that fall in a given upstream and downstream region of mRNAs of interest, GO term enrichment analysis is carried out

Description

Given genes that fall in a given upstream and downstream region of mRNAs of interest, GO term enrichment analysis is carried out

Usage

```
geneGOEnricher(
  gene,
 org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
  genetype = c("Entrez", "mirna", "Ensembl_gene", "Ensembl_trans", "NCBI"),
 backG = "",
  backGType = "pc_gene",
  near = FALSE,
  isTADSearch = FALSE,
  TAD = c(tad_hg19, tad_dmel, tad_hg38, tad_mm10),
  express = FALSE,
  isCustomExp = FALSE,
  cancer,
  exp1,
  exp2,
  label1 = "",
  label2 = "",
  isUnionCorGene = FALSE,
  databaseFile
)
```

Arguments

gene	Input genes other than miRNA
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human
genetype	Type of the input gene list. Possible values are "Entrez", "mirna", "Ensembl_gene". "Ensembl_trans", "NCBI". For HUGO gene symbol "NCBI" value, for Entrez gene id "Entrez" is used.
backG	The set of genes that tested against to the input (background gene)
backGType	Type of the background gene. If miRNA gene set is used for background gene, backGType should be set to the 'mirna'
near	Boolean value presents whether cis-neighbourhood should be considered in the analysis

14 geneGOEnricher

isTADSearch	Boolean value that shows whether TAD analysis is performed. This value has to be TRUE for TAD analysis.
TAD	TAD genomic regions for the species. Predefined TAD regions or any new TAD regions can be used for the analysis. TAD regions must be formated as GRanges object. Predefined TAD regions are 'tad_hg19', 'tad_hg38', 'tad_mm10', 'tad_dmel' for hg19, hg38, mm9 and dm6 assembly, respectively.
express	Boolean variable whether co-expression analysis is performed. If this option is set to TRUE, co-expression analysis will be performed.
isCustomExp	Boolean variable whether co-expression analysis with custom data will be performed. When this option is set, exp1 and exp2 parameters must be defined.
cancer	Defines the name of the TCGA project code such as 'BRCA' for correlation analysis. Possible cancer types ACC, BLCA, BRCA, CESC, CHOL, COAD, COADREAD, DLBC, ESCA, GBMLGG, HNSC, KICH, KIPAN, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC, SKCM, STAD, STES, TGCT, THCA, THYM, UCEC, UCS, UVM
exp1	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
exp2	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
label1	Gene names of the custom exp1 expression data. If it is not provided, column name of the exp1 data will be taken.
label2	Gene names of the custom exp2 expression data. If it is not provided, column name of the exp2 data will be taken.
isUnionCorGene	Boolean value that shows whether union of the output of the co-expression analysis and the other analysis should be considered
databaseFile	Path of miRcancer.db file

Value

GO term enrichment object for the given input

```
## Not run:
ncGO<-geneGOEnricher(gene = brain_disorder_ncRNA, org_assembly='hg19',
near=TRUE, genetype = 'Ensembl_gene')
## End(Not run)</pre>
```

genePathwayEnricher 15

genePathwayEnricher Given genes that fall in the given upstream and downstream region of mRNAs of interest, pathway enrichment analysis is carried out

Description

Given genes that fall in the given upstream and downstream region of mRNAs of interest, pathway enrichment analysis is carried out

Usage

```
genePathwayEnricher(
  gene,
 org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
  genetype = c("Entrez", "mirna", "Ensembl_gene", "Ensembl_trans", "NCBI"),
  near = TRUE,
  isTADSearch = FALSE,
  TAD = tad_hg19,
  gmtName = "",
  express = FALSE,
  isCustomExp = FALSE,
  cancer,
  exp1,
  exp2,
  label1 = "",
  label2 = "",
  isUnionCorGene = FALSE,
  databaseFile,
  isGeneEnrich = FALSE
)
```

Arguments

gene	Input noncoding genes other than miRNA
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human
genetype	Type of the input gene list. Possible values are "Entrez", "mirna", "Ensembl_gene". "Ensembl_trans", "NCBI". For HUGO gene symbol "NCBI" value, for Entrez gene id "Entrez", for mirbase id "mirna" is used.
near	Boolean value presents whether cis-neighbourhood should be considered in the analysis
isTADSearch	Boolean value that shows whether TAD analysis is performed. This value has to be TRUE for TAD analysis.

TAD	TAD genomic regions for the species. Predefined TAD regions or any new TAD regions can be used for the analysis. TAD regions must be formated as GRanges object. Predefined TAD regions are 'tad_hg19', 'tad_hg38', 'tad_mm10', 'tad_dmel' for hg19, hg38, mm9 and dm6 assembly, respectively.
gmtName	Custom pathway gmt file
express	Boolean variable whether co-expression analysis is performed. If this option is set to TRUE, co-expression analysis will be performed.
isCustomExp	Boolean variable whether co-expression analysis with custom data will be performed. When this option is set, exp1 and exp2 parameters must be defined.
cancer	Defines the name of the TCGA project code such as 'BRCA' for correlation analysis. Possible cancer types ACC, BLCA, BRCA, CESC, CHOL,COAD, COADREAD, DLBC, ESCA, GBMLGG, HNSC, KICH, KIPAN, KIRC, KIRP, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC, SKCM, STAD, STES, TGCT, THCA, THYM, UCEC, UCS, UVM, LGG
exp1	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
exp2	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
label1	Gene names of the custom exp1 expression data. If it is not provided, column name of the exp1 data will be taken.
label2	Gene names of the custom exp2 expression data. If it is not provided, column name of the exp2 data will be taken.
isUnionCorGene	Boolean value that shows whether union of the output of the co-expression analysis and the other analysis should be considered
databaseFile	Path of miRcancer.db file
isGeneEnrich	Boolean value whether gene enrichment should be performed

Value

Pathway enrichment object for the given input

geneRegionGOEnricher	Given gene regions that fall in the given upstream and downstream region of mRNAs of interest, GO term enrichment analysis is carried out
	Out

Description

Given gene regions that fall in the given upstream and downstream region of mRNAs of interest, GO term enrichment analysis is carried out

Usage

```
geneRegionGOEnricher(
 org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
 near = TRUE,
 backG = "",
  backGType = "pc_gene",
  isTADSearch = FALSE,
 TAD = c(tad_hg19, tad_dme1, tad_hg38, tad_mm10),
  express = FALSE,
  isCustomExp = FALSE,
  cancer,
  exp1,
  exp2,
  label1 = "",
  label2 = "",
  isUnionCorGene = FALSE,
  databaseFile
)
```

Arguments

region	Bed format of the input gene regions other than miRNA		
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human		
near	Boolean value presents whether cis-neighbourhood should be considered in the analysis		
backG	The set of genes that tested against to the input (background gene)		
backGType	Type of the background gene. If miRNA gene set is used for background gene, backGType should be set to the 'mirna'		
isTADSearch	Boolean value that shows whether TAD analysis is performed. This value has to be TRUE for TAD analysis.		

TAD	TAD genomic regions for the species. Predefined TAD regions or any new TAD regions can be used for the analysis. TAD regions must be formated as GRanges object. Predefined TAD regions are 'tad_hg19', 'tad_hg38', 'tad_mm10', 'tad_dmel' for hg19, hg38, mm9 and dm6 assembly, respectively.	
express	Boolean variable whether co-expression analysis is performed. If this option is set to TRUE, co-expression analysis will be performed.	
isCustomExp	Boolean variable whether co-expression analysis with custom data will be performed. When this option is set, exp1 and exp2 parameters must be defined.	
cancer	Defines the name of the TCGA project code such as 'BRCA' for correlation analysis. Possible cancer types ACC, BLCA, BRCA, CESC, CHOL, COAD, COADREAD, DLBC, ESCA, GBMLGG, HNSC, KICH, KIPAN, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC, SKCM, STAD, STES, TGCT, THCA, THYM, UCEC, UCS, UVM	
exp1	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.	
exp2	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.	
label1	Gene names of the custom exp1 expression data. If it is not provided, column name of the exp1 data will be taken.	
label2	Gene names of the custom exp2 expression data. If it is not provided, column name of the exp2 data will be taken.	
isUnionCorGene	Boolean value that shows whether union of the output of the co-expression analysis and the other analysis should be considered	
databaseFile	Path of miRcancer.db file	

Value

GO term enrichment object for the given input

geneRegionPathwayEnricher

Given gene regions that fall in the given upstream and downstream region of mRNAs of interest, pathway enrichment analysis is carried out

Description

Given gene regions that fall in the given upstream and downstream region of mRNAs of interest, pathway enrichment analysis is carried out

Usage

```
geneRegionPathwayEnricher(
 region,
 org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
 near = FALSE,
 isTADSearch = FALSE,
 TAD = tad_hg19,
  gmtName = "",
 express = FALSE,
  isCustomExp = FALSE,
  cancer,
  exp1,
  exp2,
 label1 = "",
 label2 = "",
  isUnionCorGene = FALSE,
 databaseFile,
  isGeneEnrich = FALSE
)
```

Arguments

region	Bed format of input gene regions other than miRNA. Input must be Granges object.		
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human		
near	Boolean value presents whether cis-neighbourhood should be considered in the analysis		
isTADSearch	Boolean value that shows whether TAD analysis is performed. This value has to be TRUE for TAD analysis.		
TAD	TAD genomic regions for the species. Predefined TAD regions or any new TAD regions can be used for the analysis. TAD regions must be formated as GRanges object. Predefined TAD regions are 'tad_hg19', 'tad_hg38', 'tad_mm10', 'tad_dmel' for hg19, hg38, mm9 and dm6 assembly, respectively.		

gmtName	Custom pathway gmt file		
express	Boolean variable whether co-expression analysis is performed. If this option is set to TRUE, co-expression analysis will be performed.		
isCustomExp	Boolean variable whether co-expression analysis with custom data will be performed. When this option is set, exp1 and exp2 parameters must be defined.		
cancer	Defines the name of the TCGA project code such as 'BRCA' for correlation analysis. Possible cancer types ACC, BLCA, BRCA, CESC, CHOL, COAD, COADREAD, DLBC, ESCA, GBMLGG, HNSC, KICH, KIPAN, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC, SKCM, STAD, STES, TGCT, THCA, THYM, UCEC, UCS, UVM		
exp1	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.		
exp2	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.		
label1	Gene names of the custom exp1 expression data. If it is not provided, column name of the exp1 data will be taken.		
label2	Gene names of the custom exp2 expression data. If it is not provided, column name of the exp2 data will be taken.		
isUnionCorGene	Boolean value that shows whether union of the output of the co-expression analysis and the other analysis should be considered		
databaseFile	Path of miRcancer.db file		
isGeneEnrich	Boolean value whether gene enrichment should be performed		

Value

Pathway enrichment object of the given input

getGoDag 21

antCoDoa	Plat and save the CO term DAC of the ten n envishments in terms of
getGoDag	Plot and save the GO term DAG of the top n enrichments in terms of
	p-values or adjusted p-values with an user provided format

Description

Plot and save the GO term DAG of the top n enrichments in terms of p-values or adjusted p-values with an user provided format

Usage

```
getGoDag(
  mrnaObject,
  type,
  n,
  filename,
  imageFormat,
  p_range = seq(0, 0.05, by = 0.001)
)
```

Arguments

mrnaObject Output of enrichment results

type Sort in terms of p-values or FDR. possible values "pvalue", "padjust"

n Number of top enrichments

filename Name of the DAG file

imageFormat Image format of the DAG. possible values "png" or "svg"

p_range Break points for the p-values or FDR. By default [0.05, 0.001, 0.0005, 0.0001,

0.00005,0.00001,0] is used

Value

Saves image file in a given format

22 getKeggDiagram

getKeggDiagram	Display the enriched KEGG diagram of the KEGG pathway. This function is specific to only one KEGG pathway id and identifies the enriched genes in the diagram.

Description

Display the enriched KEGG diagram of the KEGG pathway. This function is specific to only one KEGG pathway id and identifies the enriched genes in the diagram.

Usage

```
getKeggDiagram(
    mrnaObject,
    pathway,
    org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3")
)
```

Arguments

mrnaObject Output of enrichment results

pathway Kegg pathway term such as 'hsaO4O1O'

org_assembly Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human

Value

Shows kegg diagram marked with an enriched genes in a browser

getmiRNACount 23

getmiRNACount	Get TCGA miRNAseq expression of miRNA genes for the given cancer
Be emilian to our e	Get 1 e Gi i mila i i seq empression of mila i i genes for the given cancer

Description

Get TCGA miRNAseq expression of miRNA genes for the given cancer

Usage

```
getmiRNACount(mirnagene, cancer, databaseFile)
```

Arguments

mirnagene Data frame of the mature format

cancer Name of the TCGA project code such as 'BRCA'

databaseFile Path of miRcancer.db file

Value

Data frame of the raw read count of the given miRNA genes for different patients

getNearToExon Get only those neighbouring genes that fall within exon region

Description

Get only those neighbouring genes that fall within exon region

Usage

```
getNearToExon(
  bedfile,
  upstream,
  downstream,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3")
)
```

Arguments

bedfile Input bed formated file

upstream Maximum upstream distance from the TSS position
downstream Maximum downstream distance from the TES position

org_assembly genomee assembly of interest for the analysis. Possible assemblies are "mm10"

for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for

worm, "sc3" for yeast, "hg19" and "hg38" for human

24 getNearToIntron

Value

genes

Examples

getNearToIntron

Get only those neighbouring genes that fall within intron region

Description

Get only those neighbouring genes that fall within intron region

Usage

```
getNearToIntron(
  bedfile,
  upstream,
  downstream,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3")
)
```

Arguments

bedfile Bed file

upstream upstream distance downstream downstream distance

org_assembly genomee assembly of interest for the analysis. Possible assemblies are "mm10"

for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for

worm, "sc3" for yeast, "hg19" and "hg38" for human

Value

genes

getReactomeDiagram 25

Examples

getReactomeDiagram

Display the enriched Reactome diagram of the given Reactome pathway id. This function is specific to only one pathway id and identifies the enriched genes in the diagram.

Description

Display the enriched Reactome diagram of the given Reactome pathway id. This function is specific to only one pathway id and identifies the enriched genes in the diagram.

Usage

```
getReactomeDiagram(mrnaObject, pathway, imageFormat)
```

Arguments

mrnaObject Output of enrichment results
pathway Reactome pathway term

imageFormat Image format of the diagram. Possible image formats are 'png', 'svg'

Value

Shows reactome diagram marked with an enriched genes in a browser

26 getTADOverlap

getTADOverlap	For given region of interest, overlapped genes in the TAD regions are found. Results can be filtered according to the available cell lines.

Description

For given region of interest, overlapped genes in the TAD regions are found. Results can be filtered according to the available cell lines.

Usage

```
getTADOverlap(
  bedfile,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
  tad = c(tad_hg19, tad_dmel, tad_hg38, tad_mm10),
  near = FALSE,
  upstream = 10000,
  downstream = 10000,
  cellline = "all"
)
```

Arguments

bedfile	Region of interest	
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human	
tad	TAD genomic regions for the species. Predefined TAD regions or any new TAD regions can be used for the analysis. TAD regions must be formated as GRanges object. Predefined TAD regions are 'tad_hg19', 'tad_hg38', 'tad_mm10', 'tad_dmel' for hg19, hg38, mm9 and dm6 assembly, respectively.	
near	Boolean value presents whether cis-neighbourhood should be considered in the analysis	
upstream	Holds upstream distance from the transcription start position	
downstream	Holds downstream distance from the transcription end position	
cellline	Cell lines for TAD regions.	

Value

List of protein coding genes that falls into the TAD regions

getUCSC 27

Examples

getUCSC

Get nearest genes for the window of the upstream/downstream region.

Description

When downstream = 0 / upstream = 0, function converts bed formated regions to HUGO genes

Usage

```
getUCSC(
  bedfile,
  upstream,
  downstream,
  org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3")
)
```

Arguments

bedfile Bed formated input gene regions

upstream Maximum upstream distance from the transcription start region of the input gene

downstream Maximum downstream distance from the transcription end region of the input gene

org_assembly genomee assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human

Value

genes

28 goEnrichment

Examples

goEnrichment

Perform enrichment analysis of the given genes

Description

Perform enrichment analysis of the given genes

Usage

```
goEnrichment(
   genes,
   org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
   GOtype = c("BP", "CC", "MF"),
   pCut = 0.05,
   pAdjCut = 0.05,
   pAdjust = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"),
   min = 5,
   backG = "",
   backGType = "pc_gene",
   enrichTest = c("hyper", "binom", "fisher", "chi")
)
```

Arguments

genes	Set of input genes. Supported format HUGO.			
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" worm, "sc3" for yeast, "hg19" and "hg38" for human			
GOtype	Hierarchical category of the GO ontology. Possible values are "BP"(default), "CC", "MF".			
pCut	Threshold value for the pvalue. Default value is 0.05			
pAdjCut	Cutoff value for the adjusted p-values using one of given method. Default value is 0.05.			

KeggEnrichment 29

pAdjust	Methods of the adjusted p-values. Possible methods are "bonferroni", "holm", "BH"(default)
min	Minimum number of gene that are required for enrichment. By default, it is set to 5
backG	The set of genes that tested against to the input (background gene)
backGType	Type of the background gene. If miRNA gene set is used for background gene, backGType should be set to the 'mirna'
enrichTest	Types of enrichment methods to perform enrichment analysis. Possible values are "hyper"(default), "binom", "fisher", "chi".

Value

GO enrichment results

Examples

KeggEnrichment

KEGG pathway enrichment

Description

KEGG pathway enrichment

Usage

```
KeggEnrichment(
   genes,
   org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
   pCut = 0.05,
   pAdjCut = 0.05,
   pAdjust = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"),
   min = 5,
   gmtFile = "",
   isSymbol = "",
   isGeneEnrich = ""
)
```

30 listTAD

Arguments

genes Input genes Genome assembly of interest for the analysis. Possible assemblies are "mm10" org_assembly for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human pCut Threshold value for the pvalue. Default value is 0.05 pAdjCut Cutoff value for the adjusted p-values using one of given method. Default value is 0.05. Methods of the adjusted p-values. Possible methods are "holm", "hochberg", pAdjust "hommel", "bonferroni", "BH", "BY", "fdr", "none" Minimum number of genes that are required for enrichment. By default, it is set min to 5. gmtFile File path of the gmt file Boolean value that controls the gene formats. If it is TRUE, gene format of the isSymbol gmt file should be symbol. Otherwise, gene format must be ENTREZ ID.

isGeneEnrich Boolean value whether gene enrichment should be performed

Value

KEGG pathway enrichment results

Examples

listTAD

List cell line of the given topological domain regions

Description

List cell line of the given topological domain regions

Usage

listTAD(TADName)

Arguments

TADName input TAD regions

mirna 31

Value

cell line of the input tad data

Examples

```
## Not run:
listTAD(TADName = tad_hg19)
## End(Not run)
```

mirna

Brain miRNA expression retrieved from the TCGA

Description

Brain miRNA expression retrieved from the TCGA

Usage

mirna

Format

Not Available

Source

```
https://www.gencodegenes.org/
```

Examples

data(mirna)

mirnaGOEnricher

GO term enrichments of the microRNA genes with mRNAs that fall in the given upstream/downstream regions of the microRNA genes

Description

GO term enrichments of the microRNA genes with mRNAs that fall in the given upstream/downstream regions of the microRNA genes

32 mirnaGOEnricher

Usage

```
mirnaGOEnricher(
  gene,
 org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
 near = FALSE,
  target = FALSE,
  backGenes = "",
  backGType = "pc_gene",
  isTADSearch = FALSE,
  TAD = c(tad_hg19, tad_dmel, tad_hg38, tad_mm10),
  express = FALSE,
  isCustomExp = FALSE,
  cancer,
  exp1,
  exp2,
  label1 = "",
 label2 = "",
  isUnionCorGene = FALSE,
  databaseFile = ""
)
```

Arguments

g	ene I	Input microRNA go	ene. It supports	both pre-miRNA an	d mature miRNA, how-

ever, when target prediction is performed (target= TRUE), miRNA genes should

be mature.

org_assembly Genome assembly of interest for the analysis. Possible assemblies are "mm10"

for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for

worm, "sc3" for yeast, "hg19" and "hg38" for human

near Boolean value presents whether cis-neighbourhood should be considered in the

analysis

target Boolean value shows whether miRNA target prediction should be performed

backGenes The set of genes that tested against to the input

backGType Type of the background gene. If miRNA gene set is used for background gene,

backGType should be set to the 'mirna'

isTADSearch Boolean value that shows whether TAD analysis is performed. This value has to

be TRUE for TAD analysis.

TAD genomic regions for the species. Predefined TAD regions or any new TAD

regions can be used for the analysis. TAD regions must be formated as GRanges object. Predefined TAD regions are 'tad_hg19', 'tad_hg38', 'tad_mm10', 'tad_dmel'

for hg19, hg38, mm9 and dm6 assembly, respectively.

express Boolean variable whether co-expression analysis is performed. If this option is

set to TRUE, co-expression analysis will be performed.

isCustomExp Boolean variable whether co-expression analysis with custom data will be per-

formed. When this option is set, exp1 and exp2 parameters must be defined.

mirnaPathwayEnricher 33

cancer	Defines the name of the TCGA project code such as 'BRCA' for correlation analysis. Possible cancer types ACC, BLCA, BRCA, CESC, CHOL, COAD, COADREAD, DLBC, ESCA, GBMLGG, HNSC, KICH, KIPAN, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC, SKCM, STAD, STES, TGCT, THCA, THYM, UCEC, UCS, UVM
exp1	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
exp2	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
label1	Gene names of the custom exp1 expression data. If it is not provided, column name of the exp1 data will be taken.
label2	Gene names of the custom exp2 expression data. If it is not provided, column name of the exp2 data will be taken.
isUnionCorGene	Boolean value that shows whether union of the output of the co-expression analysis and the other analysis should be considered
databaseFile	Path of miRcancer.db file

Value

MiRNA GO term enrichment object for the given input

Examples

mirnaPathwayEnricher

Pathway enrichments of the microRNA genes with mRNAs that fall in the given upstream/downstream regions of the microRNA genes

Description

Pathway enrichments of the microRNA genes with mRNAs that fall in the given upstream/downstream regions of the microRNA genes

Usage

```
mirnaPathwayEnricher(
  gene,
 org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
 near = FALSE,
  target = FALSE,
  isTADSearch = FALSE,
  TAD = c(tad_hg19, tad_dme1, tad_hg38, tad_mm10),
  gmtName = "",
  express = FALSE,
  isCustomExp = FALSE,
  cancer,
  exp1,
  exp2,
  label1 = ""
  label2 = ""
  isUnionCorGene = FALSE,
  databaseFile,
  isGeneEnrich = FALSE
)
```

Arguments

gene	Input microRNA gene.	It supports both pre-miRNA	and mature miRNA, how-

ever, when target prediction is performed(target= TRUE), miRNA genes should

be mature.

org_assembly Genome assembly of interest for the analysis. Possible assemblies are "mm10"

for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for

worm, "sc3" for yeast, "hg19" and "hg38" for human

near Boolean value presents whether cis-neighbourhood should be considered in the

analysis

target Boolean value shows whether miRNA target prediction should be performed

isTADSearch Boolean value that shows whether TAD analysis is performed. This value has to

be TRUE for TAD analysis.

TAD genomic regions for the species. Predefined TAD regions or any new TAD

regions can be used for the analysis. TAD regions must be formated as GRanges object. Predefined TAD regions are 'tad_hg19', 'tad_hg38', 'tad_mm10', 'tad_dmel'

for hg19, hg38, mm9 and dm6 assembly, respectively.

gmtName Custom pathway gmt file

express Boolean variable whether co-expression analysis is performed. If this option is

set to TRUE, co-expression analysis will be performed.

isCustomExp Boolean variable whether co-expression analysis with custom data will be per-

formed. When this option is set, exp1 and exp2 parameters must be defined.

cancer Defines the name of the TCGA project code such as 'BRCA' for correlation

analysis. Possible cancer types ACC, BLCA, BRCA, CESC, CHOL, COAD,

	${\it COADREAD, DLBC, ESCA, GBMLGG, HNSC, KICH, KIPAN, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC, SKCM, STAD, STES, TGCT, THCA, THYM, UCEC, UCS, UVM}$
exp1	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
exp2	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
label1	Gene names of the custom exp1 expression data. If it is not provided, column name of the exp1 data will be taken.
label2	Gene names of the custom $\exp 2$ expression data. If it is not provided, column name of the $\exp 2$ data will be taken.
isUnionCorGene	Boolean value that shows whether union of the output of the co-expression analysis and the other analysis should be considered
databaseFile	Path of miRcancer.db file
isGeneEnrich	Boolean value whether gene enrichment should be performed

Value

MiRNA pathway enrichment object for the given input

Examples

```
## Not run:
miPath <- mirnaPathwayEnricher(gene = brain_mirna,</pre>
                                 org_assembly = 'hg19',
                                 near = TRUE)
## End(Not run)
```

mirnaRegionGOEnricher GO enrichments of the microRNA regions with mRNAs that fall in the given upstream/downstream regions of the microRNA genes

Description

GO enrichments of the microRNA regions with mRNAs that fall in the given upstream/downstream regions of the microRNA genes

Usage

```
mirnaRegionGOEnricher(
  region,
 org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
 near = FALSE,
  target = FALSE,
 backG = "",
  backGType = "pc-genes",
  isTADSearch = FALSE,
 TAD = c(tad_hg19, tad_dmel, tad_hg38, tad_mm10),
  express = FALSE,
  isCustomExp = FALSE,
  cancer,
  exp1,
  exp2,
 label1 = "",
label2 = "",
  isUnionCorGene = FALSE,
  databaseFile
)
```

Arguments

cancer

region	MiRNA region in a bed format
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human
near	Boolean value presents whether cis-neighbourhood should be considered in the analysis
target	Boolean value shows whether miRNA target prediction should be performed
backG	The set of genes that tested against to the input
backGType	Type of the background gene. If miRNA gene set is used for background gene, backGType should be set to the 'mirna'
isTADSearch	Boolean value that shows whether TAD analysis is performed. This value has to be TRUE for TAD analysis.
TAD	TAD genomic regions for the species. Predefined TAD regions or any new TAD regions can be used for the analysis. TAD regions must be formated as GRanges object. Predefined TAD regions are 'tad_hg19', 'tad_hg38', 'tad_mm10', 'tad_dmel' for hg19, hg38, mm9 and dm6 assembly, respectively.
express	Boolean variable whether co-expression analysis is performed. If this option is set to TRUE, co-expression analysis will be performed.
isCustomExp	Boolean variable whether co-expression analysis with custom data will be per-

formed. When this option is set, exp1 and exp2 parameters must be defined.

Defines the name of the TCGA project code such as 'BRCA' for correlation

analysis. Possible cancer types ACC, BLCA, BRCA, CESC, CHOL, COAD,

	COADREAD, DLBC, ESCA, GBMLGG, HNSC, KICH, KIPAN, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC, SKCM, STAD, STES, TGCT, THCA, THYM, UCEC, UCS, UVM
exp1	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
exp2	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
label1	Gene names of the custom exp1 expression data. If it is not provided, column name of the exp1 data will be taken.
label2	Gene names of the custom exp2 expression data. If it is not provided, column name of the exp2 data will be taken.
isUnionCorGene	Boolean value that shows whether union of the output of the co-expression analysis and the other analysis should be considered
databaseFile	Path of miRcancer.db file

Value

MiRNA GO enrichment object for the given input

Examples

mirnaRegionPathwayEnricher

Pathway enrichments of the microRNA regions with mRNAs that fall in the given upstream/downstream regions of the microRNA genes

Description

Pathway enrichments of the microRNA regions with mRNAs that fall in the given upstream/downstream regions of the microRNA genes

Usage

```
mirnaRegionPathwayEnricher(
  region,
 org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
 near = FALSE,
  target = FALSE,
  isTADSearch = FALSE,
  TAD = c(tad_hg19, tad_dme1, tad_hg38, tad_mm10),
  gmtName = "",
  express = FALSE,
  isCustomExp = FALSE,
  cancer,
  exp1,
  exp2,
  label1 = ""
  label2 = ""
  isUnionCorGene = FALSE,
  databaseFile,
  isGeneEnrich = FALSE
)
```

Arguments

region MiRNA region in a bed format

org_assembly Genome assembly of interest for the analysis. Possible assemblies are "mm10"

for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for

worm, "sc3" for yeast, "hg19" and "hg38" for human

near Boolean value presents whether cis-neighbourhood should be considered in the

analysis

target Boolean value shows whether miRNA target prediction should be performed

isTADSearch Boolean value that shows whether TAD analysis is performed. This value has to

be TRUE for TAD analysis.

TAD genomic regions for the species. Predefined TAD regions or any new TAD

regions can be used for the analysis. TAD regions must be formated as GRanges object. Predefined TAD regions are 'tad_hg19', 'tad_hg38', 'tad_mm10', 'tad_dmel'

for hg19, hg38, mm9 and dm6 assembly, respectively.

gmtName Custom pathway gmt file

express Boolean variable whether co-expression analysis is performed. If this option is

set to TRUE, co-expression analysis will be performed.

isCustomExp Boolean variable whether co-expression analysis with custom data will be per-

formed. When this option is set, exp1 and exp2 parameters must be defined.

cancer Defines the name of the TCGA project code such as 'BRCA' for correlation

analysis. Possible cancer types ACC, BLCA, BRCA, CESC, CHOL, COAD, COADREAD, DLBC, ESCA, GBMLGG, HNSC, KICH, KIPAN, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC, SKCM,

STAD, STES, TGCT, THCA, THYM, UCEC, UCS, UVM

mrna 39

exp1	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
exp2	Custom expression data matrix. Columns must be genes and rows must be patients. If gene names are provided as header, no need to redefine the headers(labels) of the expression data.
label1	Gene names of the custom exp1 expression data. If it is not provided, column name of the exp1 data will be taken.
label2	Gene names of the custom exp2 expression data. If it is not provided, column name of the exp2 data will be taken.
isUnionCorGene	Boolean value that shows whether union of the output of the co-expression analysis and the other analysis should be considered
databaseFile	Path of miRcancer.db file
isGeneEnrich	Boolean value whether gene enrichment should be performed

Value

miRNA pathway enrichment object for the given input

Examples

mrna

Brain mRNA expression retrieved from the TCGA

Description

Brain mRNA expression retrieved from the TCGA

Usage

mrna

Format

Not Available

NoRCE-class

Source

```
https://www.gencodegenes.org/
```

Examples

```
data(mrna)
```

ncRegion

Differentially expressed non-coding gene regions

Description

Differentially expressed non-coding gene regions

Usage

ncRegion

Format

Not Available

Source

http://resource.psychencode.org/

Examples

data(ncRegion)

NoRCE-class

An S4 class to represent enrichment

Description

An S4 class to represent enrichment

Slots

```
ID factor
Term factor
geneList factor
ncGeneList factor
pvalue factor
pAdj factor
GeneRatio factor
BckRatio factor
```

packageCheck 41

packageCheck

Check the package availability for the given assembly

Description

Check the package availability for the given assembly

Usage

```
packageCheck(pkg)
```

Arguments

pkg

Required packages

Value

return install packages

pathwayEnrichment

For a given gmt file of a specific pathway database, pathway enrichment can be performed. Function supports Entrez ID and symbol based gmt file.

Description

For a given gmt file of a specific pathway database, pathway enrichment can be performed. Function supports Entrez ID and symbol based gmt file.

Usage

```
pathwayEnrichment(
   genes,
   gmtFile,
   org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
   pCut = 0.05,
   pAdjCut = 0.05,
   pAdjust = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"),
   isSymbol,
   min = 5,
   isGeneEnrich = FALSE
)
```

42 predictmiTargets

Arguments

genes Input genes gmtFile File path of the gmt file Genome assembly of interest for the analysis. Possible assemblies are "mm10" org_assembly for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human pCut Threshold value for the pvalue. Default value is 0.05 pAdjCut Cutoff value for the adjusted p-values using one of given method. Default value is 0.05. pAdjust Methods of the adjusted p-values. Possible methods are "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none" isSymbol Boolean value that controls the gene formats. If it is TRUE, gene format of the gmt file should be symbol. Otherwise, gene format must be ENTREZ ID. Minimum number of genes that are required for enrichment. By default, it is set min

Boolean value whether gene enrichment should be performed

Value

Pathway Enrichment

isGeneEnrich

predictmiTargets	Predict the miRNA targets for the miRNA or mRNA genes, which is specified with type parameter

Description

Predict the miRNA targets for the miRNA or mRNA genes, which is specified with type parameter

Usage

```
predictmiTargets(gene, type, org_assembly)
```

gene	Data frame of miRNA or mRNA gene. Formats should be NCBI gene name, ENSEMBL gene or transcript id, and mirna
type	Format of the gene, it should be "NCBI" for NCBI gene name, "Ensembl_gene" for ENSEMBL gene id, "Ensembl_trans" for Ensembl transcript id and "mirna" for miRNA gene
org_assembly	Analyzed genome assembly. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "hg19" and "hg38" for human

reactomeEnrichment 43

Value

miRNA:mRNA target sets of the given genes

Examples

reactomeEnrichment

Reactome pathway enrichment

Description

Reactome pathway enrichment

Usage

```
reactomeEnrichment(
   genes,
   org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
   pCut = 0.05,
   pAdjCut = 0.05,
   pAdjust = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"),
   min = 5,
   gmtFile = "",
   isSymbol = "",
   isGeneEnrich = ""
)
```

genes	Input genes
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human
pCut	Threshold value for the pvalue. Default value is 0.05
pAdjCut	Cutoff value for the adjusted p-values using one of given method. Default value is 0.05.
pAdjust	Methods of the adjusted p-values. Possible methods are "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"

44 setParameters

min Minimum number of genes that are required for enrichment. By default, it is set

to 5.

gmtFile File path of the gmt file

isSymbol Boolean value that controls the gene formats. If it is TRUE, gene format of the

gmt file should be symbol. Otherwise, gene format must be ENTREZ ID.

isGeneEnrich Boolean value whether gene enrichment should be performed

Value

Reactome pathway enrichment results

Examples

```
## Not run:
br_enr<-reactomeEnrichment(genes = breastmRNA,org_assembly='hg19')
## End(Not run)</pre>
```

setParameters

Set the parameters

Description

Parameters: upstream: Upstream distance from the transcription start position downstream: Downstream distance from the transcription end position searchRegion: Search space of the cis-region. Possible values are "all", "exon", "intron" GOtype: Hierarchical category of the GO ontology. Possible values are "BP", "CC", "MF" pCut: Threshold value for the pvalue. Default value is 0.05 pAdjCut: Cutoff value for the adjusted p-values using one of given method. Default value is 0.05. pAdjust: Methods of the adjusted p-values. Possible methods are "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none" min: Minimum number of genes that are required for enrichment. By default, this value is set to 5. cellline: Cell lines for TAD regions. corrMethod Correlation coefficnt method that will be used for evaluation. Possible values are "pearson", "kendall", "spearman" varCutoff: Variance cutt off that genes have less variance than this value will be trimmed pcut: P-value cut off for the correlation values alternate: Holds the alternative hypothesis and "two.sided", "greater" or "less" are the possible values. conf: Confidence level for the returned confidence interval. It is only used for the Pearson correlation coefficient if there are at least 4 complete pairs of observations. minAbsCor: Cut-off value for the Pearson correlation coefficient of the miRNA-mRNA pathwayType: Pathway database for enrichment. Possible values are 'reactome' for Reactome, 'kegg' for KEGG, 'wiki' for WikiPathways, 'other' for custom database enrichTest: Types of enrichment methods to perform enrichment analysis. Possible values are "hyper"(default), "binom", "fisher", "chi". isSymbol: Boolean variable that hold the gene format of the gmt file. If it is set as TRUE, gene format of the gmt file should be symbol. Otherwise, gene format should be ENTREZ ID. By default, it is FALSE.

Usage

```
setParameters(type, value)
```

tad_dmel 45

Arguments

type List of parameter names

value New values for the parameters. Value and the parameter names must be in the

same order.

Value

changed parameters

Examples

```
## Not run:
type <- c('downstream','upstream')
value <- c(2000,30000)
setParameters(type,value)
## End(Not run)</pre>
```

tad_dmel

TAD regions for the fly

Description

TAD regions for the fly

Usage

tad_dmel

Format

Not Available

Source

```
http://chorogenome.ie-freiburg.mpg.de/data_sources.html#hi-c_datasets
```

Examples

```
data(tad_dmel)
```

46 tad_hg38

tad_hg19

TAD regions for human hg19 assembly

Description

TAD regions for human hg19 assembly

Usage

tad_hg19

Format

Not Available

Source

```
http://promoter.bx.psu.edu/hi-c/publications.html
```

Examples

data(tad_hg19)

tad_hg38

TAD regions for human hg38 assembly

Description

TAD regions for human hg38 assembly

Usage

tad_hg38

Format

Not Available

Source

```
http://promoter.bx.psu.edu/hi-c/publications.html
```

Examples

```
data(tad_hg38)
```

tad_mm10 47

tad_mm10

TAD regions for mouse

Description

TAD regions for mouse

Usage

tad_mm10

Format

Not Available

Source

```
http://promoter.bx.psu.edu/hi-c/publications.html
```

Examples

data(tad_mm10)

topEnrichment

Number of top enrichment results of the pathway or GO terms for the given object and the order type - p-value or adjusted p-value.

Description

Number of top enrichment results of the pathway or GO terms for the given object and the order type - p-value or adjusted p-value.

Usage

```
topEnrichment(mrnaObject, type, n)
```

mrnaObject	Object of the enrichment result
type	Draw the dot plot according to the p-value or adjusted p-value ("pvalue", "pAdjust")
n	Number of GO terms or pathways, that ordered by type and has least number of top p-value

48 WikiEnrichment

Value

Give top n enrichment results

Examples

```
## Not run:
ncGO<-geneGOEnricher(gene = brain_disorder_ncRNA, org_assembly='hg19',
    near=TRUE, genetype = 'Ensembl_gene')
result = topEnrichment(mrnaObject = ncGO, type = "pvalue", n = 10)
## End(Not run)</pre>
```

WikiEnrichment

WikiPathways Enrichment

Description

WikiPathways Enrichment

Usage

```
WikiEnrichment(
   genes,
   org_assembly = c("hg19", "hg38", "mm10", "dre10", "rn6", "dm6", "ce11", "sc3"),
   pCut = 0.05,
   pAdjCut = 0.05,
   pAdjust = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"),
   min = 5,
   gmtFile = "",
   isSymbol = "",
   isGeneEnrich = ""
)
```

genes	Input genes
org_assembly	Genome assembly of interest for the analysis. Possible assemblies are "mm10" for mouse, "dre10" for zebrafish, "rn6" for rat, "dm6" for fruit fly, "ce11" for worm, "sc3" for yeast, "hg19" and "hg38" for human
pCut	Threshold value for the pvalue. Default value is 0.05
pAdjCut	Cutoff value for the adjusted p-values using one of given method. Default value is 0.05.
pAdjust	Methods of the adjusted p-values. Possible methods are "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"

writeEnrichment 49

min Minimum number of genes that are required for enrichment. By default, it is set

to 5.

gmtFile File path of the gmt file

isSymbol Boolean value that controls the gene formats. If it is TRUE, gene format of the

gmt file should be symbol. Otherwise, gene format must be ENTREZ ID.

isGeneEnrich Boolean value whether gene enrichment should be performed

Value

Wiki Pathway Enrichment

writeEnrichment Write the tabular form of the pathway or GO term enrichment results

Description

Write the tabular form of the pathway or GO term enrichment results

Usage

```
writeEnrichment(mrnaObject, fileName, sept = "\t", type = "pAdjust", n)
```

Arguments

mrnaObject Object of the enrichment result

fileName File name of the txt file

sept File separator, by default, it is tab('\t')

type Draw the dot plot according to the p-value or adjusted p-value ("pvalue", "pAd-

just"). Default value is "pAdjust".

n Number of GO terms or pathways, that ordered by type and has least number of

top p-value

Value

Text file of the enrichment results in a tabular format

Examples

```
## Not run:
ncGO<-geneGOEnricher(gene = brain_disorder_ncRNA, org_assembly='hg19',
    near=TRUE, genetype = 'Ensembl_gene')
writeEnrichment(mrnaObject = ncGO,fileName = "a.txt",sept = '\t')
## End(Not run)</pre>
```

Index

* datasets	getReactomeDiagram, 25		
brain_disorder_ncRNA, 5	getTADOverlap, 26		
brain_mirna,5	getUCSC, 27		
breastmRNA, 6	goEnrichment, 28		
mirna, 31			
mrna, 39	KeggEnrichment, 29		
ncRegion, 40	lictIAD 20		
tad_dmel, 45	listTAD, 30		
tad_hg19, 46	mirna,31		
tad_hg38, 46	mirnaGOEnricher, 31		
tad_mm10,47	mirnaPathwayEnricher, 33		
200000	mirnaRegionGOEnricher, 35		
annGO, 3 assembly, 4	mirnaRegionPathwayEnricher, 37		
assembly, 4	mrna, 39		
brain_disorder_ncRNA, 5			
brain_mirna, 5	ncRegion, 40		
breastmRNA, 6	NoRCE-class, 40		
	mankamaChank 41		
calculateCorr, 6	packageCheck, 41		
convertGeneID, 7	pathwayEnrichment, 41		
convertGMT, 8	predictmiTargets, 42		
corrbased, 9	reactomeEnrichment, 43		
corrbasedMrna, 9	reactione Emiliarity, 13		
createNetwork, 10	setParameters, 44		
drawDotPlot, 11	tad_dmel,45		
11	tad_hg19, 46		
extractBiotype, 11	tad_hg38,46		
filterBiotype, 12	tad_mm10,47		
Titter brotype, 12	topEnrichment,47		
geneGOEnricher, 13			
genePathwayEnricher, 15	WikiEnrichment, 48		
geneRegionGOEnricher, 17	writeEnrichment,49		
geneRegionPathwayEnricher, 19			
getGoDag, 21			
getKeggDiagram, 22			
getmiRNACount, 23			
getNearToExon, 23			
getNearToIntron. 24			