## ----libraries,echo=FALSE, error=FALSE,echo=TRUE,results='hide',warning=FALSE---- suppressPackageStartupMessages({ library(ggplot2) library(GGally) library(GSEABase) library(limma) library(reshape2) library(data.table) library(knitr) library(TxDb.Hsapiens.UCSC.hg19.knownGene) library(stringr) library(NMF) library(rsvd) library(RColorBrewer) library(MAST) }) #options(mc.cores = detectCores() - 1) #if you have multiple cores to spin options(mc.cores = 1) knitr::opts_chunk$set(message = FALSE,error = FALSE,warning = FALSE,cache = FALSE,fig.width=8,fig.height=6, auto.dep=TRUE) ## ----MASToptions----------------------------------------------------------- freq_expressed <- 0.2 FCTHRESHOLD <- log2(1.5) ## ----data,results='hide'--------------------------------------------------- data(maits, package='MAST') dim(maits$expressionmat) head(maits$cdat) head(maits$fdat) ## ----createSca------------------------------------------------------------- scaRaw <- FromMatrix(t(maits$expressionmat), maits$cdat, maits$fdat) ## ----heatmap, dpi = 36,dev="png"------------------------------------------- aheatmap(assay(scaRaw[1:1000,]), labRow='', annCol=as.data.frame(colData(scaRaw)[,c('condition', 'ourfilter')]), distfun='spearman') ## ----pca, dpi = 36--------------------------------------------------------- set.seed(123) plotPCA <- function(sca_obj){ projection <- rpca(t(assay(sca_obj)), retx=TRUE, k=4)$x colnames(projection)=c("PC1","PC2","PC3","PC4") pca <- data.table(projection, as.data.frame(colData(sca_obj))) print(ggpairs(pca, columns=c('PC1', 'PC2', 'PC3', 'libSize', 'PercentToHuman', 'nGeneOn', 'exonRate'), mapping=aes(color=condition), upper=list(continuous='blank'))) invisible(pca) } plotPCA(scaRaw) filterCrit <- with(colData(scaRaw), pastFastqc=="PASS"& exonRate >0.3 & PercentToHuman>0.6 & nGeneOn> 4000) ## ----filter_outlying_cell,results='hide'----------------------------------- sca <- subset(scaRaw,filterCrit) eid <- select(TxDb.Hsapiens.UCSC.hg19.knownGene,keys = mcols(sca)$entrez,keytype ="GENEID",columns = c("GENEID","TXNAME")) ueid <- unique(na.omit(eid)$GENEID) sca <- sca[mcols(sca)$entrez %in% ueid,] ## Remove invariant genes sca <- sca[sample(which(freq(sca)>0), 6000),] ## ---- fig.width=4, fig.height=4-------------------------------------------- cdr2 <-colSums(assay(sca)>0) qplot(x=cdr2, y=colData(sca)$nGeneOn) + xlab('New CDR') + ylab('Old CDR') ## -------------------------------------------------------------------------- colData(sca)$cngeneson <- scale(cdr2) ## ----pcaFilter, dpi = 36--------------------------------------------------- plotPCA(sca) ## ----distribution, fig.width=6, fig.height=6------------------------------- scaSample <- sca[sample(which(freq(sca)>.1), 20),] flat <- as(scaSample, 'data.table') ggplot(flat, aes(x=value))+geom_density() +facet_wrap(~symbolid, scale='free_y') ## ----threshold, results='hide', fig.width=6-------------------------------- thres <- thresholdSCRNACountMatrix(assay(sca), nbins = 20, min_per_bin = 30) par(mfrow=c(5,4)) plot(thres) ## ----assignThresh---------------------------------------------------------- assays(sca) <- list(thresh=thres$counts_threshold, tpm=assay(sca)) expressed_genes <- freq(sca) > freq_expressed sca <- sca[expressed_genes,] ## ----zlm------------------------------------------------------------------- cond<-factor(colData(sca)$condition) cond<-relevel(cond,"Unstim") colData(sca)$condition<-cond zlmCond <- zlm(~condition + cngeneson, sca) # The following are equivalent ## lrt <- lrTest(zlm, "condition") ## lrt <- lrTest(zlm, CoefficientHypothesis('conditionStim')) # This would test if 2*cngeneson=conditionStim # This is sheer nonsense biologically and statistically, but gives an example of the flexibility. ## lrt <- lrTest(zlm, Hypothesis('2*cngeneson-conditionStim')) ## ----zlmSummary------------------------------------------------------------ #only test the condition coefficient. summaryCond <- summary(zlmCond, doLRT='conditionStim') #print the top 4 genes by contrast using the logFC print(summaryCond, n=4) ## by discrete Z-score print(summaryCond, n=4, by='D') ## by continuous Z-score print(summaryCond, n=4, by='C') ## -------------------------------------------------------------------------- summaryDt <- summaryCond$datatable fcHurdle <- merge(summaryDt[contrast=='conditionStim' & component=='H',.(primerid, `Pr(>Chisq)`)], #hurdle P values summaryDt[contrast=='conditionStim' & component=='logFC', .(primerid, coef, ci.hi, ci.lo)], by='primerid') #logFC coefficients fcHurdle[,fdr:=p.adjust(`Pr(>Chisq)`, 'fdr')] fcHurdleSig <- merge(fcHurdle[fdr<.05 & abs(coef)>FCTHRESHOLD], as.data.table(mcols(sca)), by='primerid') setorder(fcHurdleSig, fdr) ## ---- fig.width=8,fig.height=8, dpi = 36----------------------------------- entrez_to_plot <- fcHurdleSig[1:50,primerid] symbols_to_plot <- fcHurdleSig[1:50,symbolid] flat_dat <- as(sca[entrez_to_plot,], 'data.table') ggbase <- ggplot(flat_dat, aes(x=condition, y=thresh,color=condition)) + geom_jitter()+facet_wrap(~symbolid, scale='free_y')+ggtitle("DE Genes in Activated MAIT Cells") ggbase+geom_violin() ## ---- dpi = 36------------------------------------------------------------- flat_dat[,lmPred:=lm(thresh~cngeneson + condition)$fitted, key=symbolid] ggbase +aes(x=cngeneson) + geom_line(aes(y=lmPred), lty=1) + xlab('Standardized Cellular Detection Rate') ## ---- dpi = 36------------------------------------------------------------- ## This is all rather kludgy at the moment MM <- model.matrix(~condition,unique(colData(sca)[,c("condition"),drop=FALSE])) rownames(MM) <- str_extract(rownames(MM), 'Stim|Unstim') predicted <- predict(zlmCond,modelmatrix=MM) ## Avert your eyes... predicted[, primerid:=as.character(primerid)] predicted_sig <- merge(mcols(sca), predicted[primerid%in%entrez_to_plot], by='primerid') predicted_sig <- as.data.table(predicted_sig) ## plot with inverse logit transformed x-axis ggplot(predicted_sig)+aes(x=invlogit(etaD),y=muC,xse=seD,yse=seC,col=sample)+ facet_wrap(~symbolid,scales="free_y")+theme_linedraw()+ geom_point(size=0.5)+scale_x_continuous("Proportion expression")+ scale_y_continuous("Estimated Mean")+ stat_ell(aes(x=etaD,y=muC),level=0.95, invert='x') ## ---- fig.height=8--------------------------------------------------------- mat_to_plot <- assay(sca[entrez_to_plot,]) rownames(mat_to_plot) <- symbols_to_plot aheatmap(mat_to_plot,annCol=colData(sca)[,"condition"],main="DE genes",col=rev(colorRampPalette(colors = brewer.pal(name="PiYG",n=10))(20))) ## -------------------------------------------------------------------------- table(colData(sca)$beta, exclude=NULL) #Note that we currently throw an uninformative error if a covariate is `NA` scaHasBeta <- subset(sca, !is.na(beta)) ## ----residuals------------------------------------------------------------- scaDE <- sca[entrez_to_plot,] zlmResidDE <- zlm(~condition + cngeneson, scaDE, hook=deviance_residuals_hook) residDE <- zlmResidDE@hookOut residDEMatrix <- do.call(rbind, residDE) ## ----addResiduals, dpi = 36------------------------------------------------ assays(scaDE) <- c(assays(scaDE), list(resid=residDEMatrix)) scaResidFlat <- as(scaDE, 'data.table') scaResidFlat[1:4,] ggplot(scaResidFlat, aes(x=ngeneson, y=resid))+geom_point(aes(col=condition))+geom_smooth()+facet_wrap(~symbolid) ## ----boots, eval=TRUE------------------------------------------------------ # bootstrap, resampling cells # R should be set to >50 if you were doing this for real. boots <- bootVcov1(zlmCond, R = 4) ## ----setupBTM, dependson="data;zlm;boots",results='hide'------------------- module <- "BTM" min_gene_in_module <- 5 packageExt <- system.file("extdata", package='MAST') module_file <- list.files(packageExt, pattern = module, full.names = TRUE) gene_set <- getGmt(module_file) gene_ids <- geneIds(gene_set) gene_ids <- gene_ids[!names(gene_ids)%like%"TBA"&!names(gene_ids)%like%"B cell"] sets_indices <- limma::ids2indices(gene_ids, mcols(sca)$symbolid) # Only keep modules with at least min_gene_in_module sets_indices <- sets_indices[sapply(sets_indices, length) >= min_gene_in_module] ## ----gsea------------------------------------------------------------------ gsea <- gseaAfterBoot(zlmCond, boots, sets_indices, CoefficientHypothesis("conditionStim")) z_stat_comb <- summary(gsea, testType='normal') ## ----gseaView-------------------------------------------------------------- sigModules <- z_stat_comb[combined_adj<.01] gseaTable <- melt(sigModules[,.(set, disc_Z, cont_Z, combined_Z)], id.vars='set') ggplot(gseaTable, aes(y=set, x=variable, fill=value))+geom_raster() + scale_fill_distiller(palette="PiYG")