## ----setup, echo=FALSE, warning=FALSE-------------------------------------- set.seed(42) knitr::opts_chunk$set( comment='##' ) # knitr::opts_chunk$set(comment=NA, # fig.align="center", # fig.width = 7, # fig.height = 7, # warning=FALSE) ## ----install, eval=FALSE--------------------------------------------------- # source("http://bioconductor.org/biocLite.R") # biocLite("flowcatchR") ## ----install-devel, eval=FALSE--------------------------------------------- # install.packages("devtools") # if needed # devtools::install_github("federicomarini/flowcatchR") ## ----helpmaintainer-------------------------------------------------------- maintainer("flowcatchR") ## ----citationPkg----------------------------------------------------------- citation("flowcatchR") ## ----loadData,results='hide',message=TRUE---------------------------------- library("flowcatchR") data("MesenteriumSubset") ## ----meseLoaded------------------------------------------------------------ # printing summary information for the MesenteriumSubset object MesenteriumSubset ## ----workflowCompact,eval=FALSE,results='hide'----------------------------- # # one command to seize them all :) # fullResults <- kinematics(trajectories(particles(channel.Frames(MesenteriumSubset,"red")))) ## ----newFrames,eval=FALSE-------------------------------------------------- # # initialization # fullData <- read.Frames(image.files="/path/to/folder/containing/images/", nframes=100) # # printing summary information for the Frames object # fullData ## ----inspectRaw,fig.height=4,fig.width=7.5,fig.cap="The first 9 frames of the MesenteriumSubset dataset. The red channel stores information about platelets, while the green channel is dedicated to leukocytes"---- inspect.Frames(MesenteriumSubset, nframes=9, display.method="raster") ## ----selectRed------------------------------------------------------------- plateletsMesenterium <- channel.Frames(MesenteriumSubset, mode="red") plateletsMesenterium ## ----inspectPlatelets,fig.height=4,fig.width=7.5,fig.cap="The first 9 frames for the red channel of the MesenteriumSubset dataset. This is just displaying the GrayScale signal for the red channel stored in `plateletsMesenterium` (for the thrombocytes)"---- inspect.Frames(plateletsMesenterium, nframes=9, display.method="raster") ## ----segmentPreprocess----------------------------------------------------- preprocessedPlatelets <- preprocess.Frames(plateletsMesenterium, brush.size=3, brush.shape="disc", at.offset=0.15, at.wwidth=10, at.wheight=10, kern.size=3, kern.shape="disc", ws.tolerance=1, ws.radius=1) preprocessedPlatelets ## ----inspectSegm,fig.height=4,fig.width=7.5,fig.cap="The first 9 frames after preprocessing of the MesenteriumSubset dataset. The binarized image shows the detected objects after thresholding."---- inspect.Frames(preprocessedPlatelets, nframes=9, display.method="raster") ## ----cropFrames------------------------------------------------------------ croppedFrames <- crop.Frames(plateletsMesenterium, cutLeft=6, cutRight=6, cutUp=3, cutDown=3, testing=FALSE) croppedFrames ## ----rotateFrames---------------------------------------------------------- rotatedFrames <- rotate.Frames(plateletsMesenterium, angle=30) rotatedFrames ## ----selectFrames---------------------------------------------------------- subsetFrames <- select.Frames(plateletsMesenterium, framesToKeep=c(1:10,14:20)) subsetFrames ## ----normalizeFrames------------------------------------------------------- normFrames <- normalizeFrames(plateletsMesenterium,normFun = "median") ## ----particleSet----------------------------------------------------------- platelets <- particles(plateletsMesenterium, preprocessedPlatelets) platelets ## ----selectParticles------------------------------------------------------- selectedPlatelets <- select.particles(platelets, min.area=3) selectedPlatelets ## ----checkSelection,fig.height=4,fig.width=7.5,fig.cap="Particles detected in the first 9 frames. Particles detected in the first 9 frames are shown in yellow, with their contours defined by the segmentation procedure."---- paintedPlatelets <- add.contours(raw.frames=MesenteriumSubset, binary.frames=preprocessedPlatelets, mode="particles") inspect.Frames(paintedPlatelets, nframes=9, display.method="raster") ## ----penFunc--------------------------------------------------------------- defaultPenalty <- penaltyFunctionGenerator() print(defaultPenalty) ## ----linkParticles--------------------------------------------------------- linkedPlatelets <- link.particles(platelets, L=26, R=3, epsilon1=0, epsilon2=0, lambda1=1, lambda2=0, penaltyFunction=penaltyFunctionGenerator(), include.area=FALSE) linkedPlatelets ## ----expo-impo,eval=FALSE-------------------------------------------------- # # export to csv format # export.particles(platelets, dir="/path/to/export/folder/exportParticleSet/") # # re-import the previously exported, in this case # importedPlatelets <- read.particles(particle.files="/path/to/export/folder/exportParticleSet/") ## ----generateTrajs--------------------------------------------------------- trajPlatelets <- trajectories(linkedPlatelets) trajPlatelets ## ----cubeTrajs,fig.cap="A 2D+time representation of the trajectories. This is produced by plotting a `TrajectoryList` object",eval=TRUE---- plot(trajPlatelets, MesenteriumSubset) ## ----overviewTrajs,fig.height=4,fig.width=7.5,fig.cap='A 2D "flat" representation of the trajectories. This is more suitable to give an indication of the global movement'---- plot2D.TrajectorySet(trajPlatelets, MesenteriumSubset) ## ----contourTrajs---------------------------------------------------------- paintedTrajectories <- add.contours(raw.frames=MesenteriumSubset, binary.frames=preprocessedPlatelets, trajectoryset=trajPlatelets, mode="trajectories") paintedTrajectories ## ----inspectTrajs,fig.height=4,fig.width=7.5,fig.cap="Particles detected in the first 9 frames. These are shown this time in colours corresponding to the identified trajectories, again with their contours defined by the segmentation procedure."---- inspect.Frames(paintedTrajectories,nframes=9,display.method="raster") ## ----traj11,fig.height=4,fig.width=7.5,fig.cap="First 9 frames for trajectory with ID 11. This is supplied to the `trajIds` argument of `add.contours`"---- traj11 <- add.contours(raw.frames=MesenteriumSubset, binary.frames=preprocessedPlatelets, trajectoryset=trajPlatelets, mode="trajectories", trajIDs=11) traj11 inspect.Frames(traj11, nframes=9, display.method="raster") ## ----viewTraj11------------------------------------------------------------ trajPlatelets[[11]] ## ----exportTraj11,eval=FALSE----------------------------------------------- # export.Frames(traj11, dir=tempdir(), nameStub="vignetteTest_traj11", # createGif=TRUE, removeAfterCreatingGif=FALSE) ## ----loopExport,eval=FALSE------------------------------------------------- # evaluatedTrajectories <- trajPlatelets # # for(i in 1:length(trajPlatelets)) # { # paintedTraj <- add.contours(raw.frames=MesenteriumSubset, # binary.frames=preprocessedPlatelets, # trajectoryset=trajPlatelets, # mode="trajectories", # col="yellow", # trajIDs=i) # export.Frames(paintedTraj, # nameStub=paste0("vignetteTest_evaluation_traj_oneByOne_",i), # createGif=TRUE, removeAfterCreatingGif=TRUE) # ### uncomment the code below to perform the interactive evaluation of the single trajectories # # # cat("Should I keep this trajectory? --- 0: NO, 1:YES --- no other values allowed") # # userInput <- readLines(n=1L) # # ## if neither 0 nor 1, do not update # # ## otherwise, this becomes the value for the field keep in the new TrajectoryList # # evaluatedTrajectories@.Data[[i]]$keep <- as.logical(as.numeric(userInput)) # } ## ----kinemFeats------------------------------------------------------------ allKinematicFeats.allPlatelets <- kinematics(trajPlatelets, trajectoryIDs=NULL, # will select all trajectory IDs acquisitionFrequency=30, # value in milliseconds scala=50, # 1 pixel is equivalent to ... micrometer feature=NULL) # all kinematic features available ## ----kinemInspect---------------------------------------------------------- allKinematicFeats.allPlatelets ## ----kinemFeatsAvailable--------------------------------------------------- allKinematicFeats.allPlatelets <- kinematics(trajPlatelets, feature="?") ## ----allVelos,fig.cap="Histogram of the curvilinear velocities for all trajectories identified in the MesenteriumSubset dataset",warning=FALSE---- allVelocities <- kinematics(trajPlatelets, feature="curvilinearVelocity") hist(allVelocities, breaks=10, probability=TRUE, col="cadetblue", xlab="Curvilinear Velocities Distribution", main="Trajectory Analysis: Curvilinear Velocities") lines(density(allVelocities, na.rm=TRUE), col="steelblue", lwd=2) ## ----snapFrames,eval=FALSE------------------------------------------------- # snap(MesenteriumSubset,preprocessedPlatelets, # platelets,trajPlatelets, # frameID = 1,showVelocity = T) ## ----snapExample,echo=FALSE,fig.width=7,fig.cap="Output generated by the snap function. The user wanted to identify the particle and additionally display the trajectory information (ID, instantaneous velocity) on it."---- display(readImage(system.file("extdata/snapExp.jpg",package="flowcatchR")), method = "raster") ## ----launchShiny,eval=FALSE------------------------------------------------ # shinyFlow() ## ----notebooksLocation----------------------------------------------------- list.files(system.file("extdata",package = "flowcatchR"),pattern = "*.ipynb") ## ----ipynb,eval=FALSE------------------------------------------------------ # $ ipython notebook ## ----sessionInfo, echo=FALSE----------------------------------------------- sessionInfo()