## ----'installDer', eval = FALSE--------------------------------------------
#  ## try http:// if https:// URLs are not supported
#  source("https://bioconductor.org/biocLite.R")
#  biocLite("derfinder")
#  
#  ## Check that you have a valid Bioconductor installation
#  biocValid()

## ----'citation'------------------------------------------------------------
## Citation info
citation('derfinder')

## ----vignetteSetup, echo=FALSE, message=FALSE, warning = FALSE-------------
## Track time spent on making the vignette
startTime <- Sys.time()

## Bib setup
library('knitcitations')

## Load knitcitations with a clean bibliography
cleanbib()
cite_options(hyperlink = 'to.doc', citation_format = 'text', style = 'html')
# Note links won't show for now due to the following issue
# https://github.com/cboettig/knitcitations/issues/63

## Write bibliography information
bib <- c(knitcitations = citation('knitcitations'),
    derfinder = citation('derfinder')[1], 
    BiocStyle = citation('BiocStyle'),
    knitrBootstrap = citation('knitrBootstrap'), 
    knitr = citation('knitr')[3],
    rmarkdown = citation('rmarkdown'),
    brainspan = RefManageR::BibEntry(bibtype = 'Unpublished',
        key = 'brainspan',
        title = 'Atlas of the Developing Human Brain [Internet]. Funded by ARRA Awards 1RC2MH089921-01, 1RC2MH090047-01, and 1RC2MH089929-01.',
        author = 'BrainSpan', year = 2011, url = 'http://www.brainspan.org/'),
    originalder = citation('derfinder')[2],
    R = citation(),
    IRanges = citation('IRanges'),
    devtools = citation('devtools'),
    testthat = citation('testthat'),
    GenomeInfoDb = RefManageR::BibEntry(bibtype = 'manual',
        key = 'GenomeInfoDb',
        author = 'Sonali Arora and Martin Morgan and Marc Carlson and H. Pagès',
        title = "GenomeInfoDb: Utilities for manipulating chromosome and other 'seqname' identifiers",
        year = 2017, doi = '10.18129/B9.bioc.GenomeInfoDb'),
    GenomicRanges = citation('GenomicRanges'),
    ggplot2 = citation('ggplot2'),
    biovizBase = citation('biovizBase'),
    bumphunter = citation('bumphunter')[1],
    TxDb.Hsapiens.UCSC.hg19.knownGene = citation('TxDb.Hsapiens.UCSC.hg19.knownGene'),
    AnnotationDbi = RefManageR::BibEntry(bibtype = 'manual',
        key = 'AnnotationDbi',
        author = 'Hervé Pagès and Marc Carlson and Seth Falcon and Nianhua Li',
        title = 'AnnotationDbi: Annotation Database Interface',
        year = 2017, doi = '10.18129/B9.bioc.AnnotationDbi'),
    BiocParallel = citation('BiocParallel'),
    derfinderHelper = citation('derfinderHelper'),
    GenomicAlignments = citation('GenomicAlignments'),
    GenomicFeatures = citation('GenomicFeatures'),
    GenomicFiles = citation('GenomicFiles'),
    Hmisc = citation('Hmisc'),
    qvalue = citation('qvalue'),
    Rsamtools = citation('Rsamtools'),
    rtracklayer = citation('rtracklayer'),
    S4Vectors = RefManageR::BibEntry(bibtype = 'manual', key = 'S4Vectors',
        author = 'Hervé Pagès and Michael Lawrence and Patrick Aboyoun',
        title = "S4Vectors: S4 implementation of vector-like and list-like objects",
        year = 2017, doi = '10.18129/B9.bioc.S4Vectors'),
    bumphunterPaper = RefManageR::BibEntry(bibtype = 'article',
        key = 'bumphunterPaper',
        title = 'Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies',
        author = 'Jaffe, Andrew E and Murakami, Peter and Lee, Hwajin and Leek, Jeffrey T and Fallin, M Daniele and Feinberg, Andrew P and Irizarry, Rafael A',
        year = 2012, journal = 'International Journal of Epidemiology'),
    derfinderData = citation('derfinderData')
)

write.bibtex(bib, file = 'quickstartRef.bib')

## Working on Windows?
windowsFlag <- .Platform$OS.type == 'windows'

## ----'ultraQuick', eval = FALSE--------------------------------------------
#  ## Load libraries
#  library('derfinder')
#  library('derfinderData')
#  library('GenomicRanges')
#  
#  ## Determine the files to use and fix the names
#  files <- rawFiles(system.file('extdata', 'AMY', package = 'derfinderData'),
#      samplepatt = 'bw', fileterm = NULL)
#  names(files) <- gsub('.bw', '', names(files))
#  
#  ## Load the data from disk -- On Windows you have to load data from Bam files
#  fullCov <- fullCoverage(files = files, chrs = 'chr21', verbose = FALSE)
#  
#  ## Get the region matrix of Expressed Regions (ERs)
#  regionMat <- regionMatrix(fullCov, cutoff = 30, L = 76, verbose = FALSE)
#  
#  ## Get pheno table
#  pheno <- subset(brainspanPheno, structure_acronym == 'AMY')
#  
#  ## Identify which ERs are differentially expressed, that is, find the DERs
#  library('DESeq2')
#  
#  ## Round matrix
#  counts <- round(regionMat$chr21$coverageMatrix)
#  
#  ## Round matrix and specify design
#  dse <- DESeqDataSetFromMatrix(counts, pheno, ~ group + gender)
#  
#  ## Perform DE analysis
#  dse <- DESeq(dse, test = 'LRT', reduced = ~ gender, fitType = 'local')
#  
#  ## Extract results
#  mcols(regionMat$chr21$regions) <- c(mcols(regionMat$chr21$regions), results(dse))
#  
#  ## Save info in an object with a shorter name
#  ers <- regionMat$chr21$regions
#  ers

## ----'start', message=FALSE------------------------------------------------
## Load libraries
library('derfinder')
library('derfinderData')
library('GenomicRanges')

## ----'locateAMYfiles'------------------------------------------------------
## Determine the files to use and fix the names
files <- rawFiles(system.file('extdata', 'AMY', package = 'derfinderData'),
    samplepatt = 'bw', fileterm = NULL)
names(files) <- gsub('.bw', '', names(files))

## ----'getData', eval = !windowsFlag----------------------------------------
## Load the data from disk
fullCov <- fullCoverage(files = files, chrs = 'chr21', verbose = FALSE,
    totalMapped = rep(1, length(files)), targetSize = 1)

## ----'getDataWindows', eval = windowsFlag, echo = FALSE--------------------
#  ## Load data in Windows case
#  foo <- function() {
#      load(system.file('extdata', 'fullCov', 'fullCovAMY.RData',
#          package = 'derfinderData'))
#      return(fullCovAMY)
#  }
#  fullCov <- foo()

## ----'regionMatrix'--------------------------------------------------------
## Get the region matrix of Expressed Regions (ERs)
regionMat <- regionMatrix(fullCov, cutoff = 30, L = 76, verbose = FALSE)

## ----'exploreRegMatRegs'---------------------------------------------------
## regions output
regionMat$chr21$regions

## ----'exploreRegMatBP'-----------------------------------------------------
## Base-level coverage matrices for each of the regions
## Useful for plotting
lapply(regionMat$chr21$bpCoverage[1:2], head, n = 2)

## Check dimensions. First region is 565 long, second one is 138 bp long.
## The columns match the number of samples (12 in this case).
lapply(regionMat$chr21$bpCoverage[1:2], dim)

## ----'exploreRegMatrix'----------------------------------------------------
## Dimensions of the coverage matrix
dim(regionMat$chr21$coverageMatrix)

## Coverage for each region. This matrix can then be used with limma or other pkgs
head(regionMat$chr21$coverageMatrix)

## ----'phenoData'-----------------------------------------------------------
## Get pheno table
pheno <- subset(brainspanPheno, structure_acronym == 'AMY')

## ----'identifyDERsDESeq2'--------------------------------------------------
## Identify which ERs are differentially expressed, that is, find the DERs
library('DESeq2')

## Round matrix
counts <- round(regionMat$chr21$coverageMatrix)

## Round matrix and specify design
dse <- DESeqDataSetFromMatrix(counts, pheno, ~ group + gender)

## Perform DE analysis
dse <- DESeq(dse, test = 'LRT', reduced = ~ gender, fitType = 'local')

## Extract results
mcols(regionMat$chr21$regions) <- c(mcols(regionMat$chr21$regions),
    results(dse))

## Save info in an object with a shorter name
ers <- regionMat$chr21$regions
ers

## ----'vennRegions', fig.cap = "Venn diagram showing ERs by annotation class."----
## Find overlaps between regions and summarized genomic annotation
annoRegs <- annotateRegions(ers, genomicState$fullGenome, verbose = FALSE)

library('derfinderPlot')
venn <- vennRegions(annoRegs, counts.col = 'blue',
    main = 'Venn diagram using TxDb.Hsapiens.UCSC.hg19.knownGene annotation')

## ----'nearestGene'---------------------------------------------------------
## Load database of interest
library('TxDb.Hsapiens.UCSC.hg19.knownGene')
txdb <- keepSeqlevels(TxDb.Hsapiens.UCSC.hg19.knownGene, 'chr21')

## Find nearest feature
library('bumphunter')
genes <- annotateTranscripts(txdb)
annotation <- matchGenes(ers, subject = genes)

## View annotation results
head(annotation)
## You can use derfinderPlot::plotOverview() to visualize this information

## ----'firstfive', fig.cap = paste0("Base-pair resolution plot of differentially expressed region ", 1:5, ".")----
## Extract the region coverage
regionCov <- regionMat$chr21$bpCoverage
plotRegionCoverage(regions = ers, regionCoverage = regionCov, 
    groupInfo = pheno$group, nearestAnnotation = annotation, 
    annotatedRegions = annoRegs, whichRegions = seq_len(5), txdb = txdb,
    scalefac = 1, ask = FALSE, verbose = FALSE)

## ----createVignette, eval=FALSE--------------------------------------------
#  ## Create the vignette
#  library('rmarkdown')
#  system.time(render('derfinder-quickstart.Rmd', 'BiocStyle::html_document'))
#  
#  ## Extract the R code
#  library('knitr')
#  knit('derfinder-quickstart.Rmd', tangle = TRUE)

## ----createVignette2-------------------------------------------------------
## Clean up
file.remove('quickstartRef.bib')

## ----reproducibility1, echo=FALSE------------------------------------------
## Date the vignette was generated
Sys.time()

## ----reproducibility2, echo=FALSE------------------------------------------
## Processing time in seconds
totalTime <- diff(c(startTime, Sys.time()))
round(totalTime, digits=3)

## ----reproducibility3, echo=FALSE-------------------------------------------------------------------------------------
## Session info
library('devtools')
options(width = 120)
session_info()

## ----vignetteBiblio, results = 'asis', echo = FALSE, warning = FALSE, message = FALSE---------------------------------
## Print bibliography
bibliography()