--- title: "SDY269: Correlating HAI with Flow Cytometry and ELISPOT Results" author: "Renan Sauteraud" date: "`r Sys.Date()`" output: html_document: toc: true toc_float: true number_sections: true vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{SDY269: Correlating HAI with Flow Cytometry and ELISPOT Results} --- ```{r knitr-opts, echo = FALSE, message = FALSE, cache = FALSE} library(knitr) opts_chunk$set(cache = FALSE, echo = TRUE, message = FALSE, warning = FALSE, fig.width = 8, fig.height = 4, dpi = 100, fig.align = "center") ``` ```{r netrc_req, echo = FALSE} # This chunk is only useful for BioConductor checks and shouldn't affect any other setup if (!any(file.exists("~/.netrc", "~/_netrc"))) { labkey.netrc.file <- ImmuneSpaceR:::get_env_netrc() labkey.url.base <- ImmuneSpaceR:::get_env_url() } ``` `ImmuneSpaceR` code produces consistent results, regardless of whether it is being executed from a module or UI based report on the server or on a local machine. This vignette reproduces a report available on the ImmuneSpace portal using the same code. # Summary This report investigate the association between the number influenza-specific cells measured by ELISPOT measured at day 7 with the number of plasmablast measured by flow cytometry and day 7 and the HAI response measured at day 28 (log-fold day28/day0). It basically reproduces Figure 1 d-e) of Nakaya et al. (2011) published as part of the original study. # Load ImmuneSpaceR and other libraries ```{r libraries, cache=FALSE} library(ImmuneSpaceR) library(ggplot2) library(data.table) ``` # Connect to the study and get datasets ```{r connection} study <- CreateConnection("SDY269") dt_hai <- study$getDataset("hai", reload = TRUE) dt_fcs <- study$getDataset("fcs_analyzed_result", reload = TRUE) dt_elispot <- study$getDataset("elispot", reload = TRUE) ``` # Transform data ```{r data-subset} # Compute max fold change for HAI, and remove time zero dt_hai <- dt_hai[, hai_response := value_preferred / value_preferred[study_time_collected == 0], by = "virus,cohort,participant_id"][study_time_collected == 28] dt_hai <- dt_hai[, list(hai_response = max(hai_response)), by = "cohort,participant_id"] # Define variable for ELISPOT, keep only the IgG class dt_elispot <- dt_elispot[, elispot_response := spot_number_reported + 1][study_time_collected == 7 & analyte == "IgG"] # Compute % plasmablasts dt_fcs <- dt_fcs[, fcs_response := (as.double(population_cell_number) + 1) / as.double(base_parent_population)][study_time_collected == 7] ``` # Merge data and phenodata ```{r merging} # Let's key the different datasets setkeyv(dt_hai, c("participant_id")) setkeyv(dt_fcs, c("participant_id")) setkeyv(dt_elispot, c("participant_id")) dt_all <- dt_hai[dt_fcs, nomatch = 0][dt_elispot, nomatch = 0] ``` The figure below shows the absolute number of plasmablast cells measured by flow cytometry vs. the number of frequency of influenza-specific cells measured by ELISPOT. ```{r plot1, dev='png'} ggplot(dt_all, aes(x = as.double(fcs_response), y = elispot_response, color = cohort)) + geom_point() + scale_y_log10() + scale_x_log10() + geom_smooth(method="lm") + xlab("Total plasmablasts (%)") + ylab("Influenza specific cells\n (per 10^6 PBMCs)") + theme_IS() ``` The figure below shows the HAI fold increase over baseline vs. the number of frequency of influenza-specific cells measured by ELISPOT. ```{r plot2, dev='png'} ggplot(dt_all, aes(x = as.double(hai_response), y = elispot_response, color = cohort)) + geom_point() + scale_x_continuous(trans = "log2") + scale_y_log10() + geom_smooth(method = "lm") + xlab("HAI fold") + ylab("Influenza specific cells\n (per 10^6 PBMCs)") + theme_IS() ``` In each case, we observe good correlations between the different responses, at least for the TIV cohort.