--- title: "BiocOncoTK: a set of cancer-oriented software components for Bioconductor" author: "Vincent J. Carey, stvjc at channing.harvard.edu" date: "`r format(Sys.time(), '%B %d, %Y')`" vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{BiocOncoTK -- cancer oriented components for Bioconductor} %\VignetteEncoding{UTF-8} output: BiocStyle::html_document: highlight: pygments number_sections: yes theme: united toc: yes --- ```{r setup,echo=FALSE,results="hide"} suppressPackageStartupMessages({ suppressMessages({ library(BiocOncoTK) library(BiocStyle) library(dplyr) library(DBI) library(magrittr) library(pogos) library(org.Hs.eg.db) library(restfulSE) }) }) ``` # Overview This package provides a unified approach to programming with Bioconductor components to address problems in cancer genomics. Central concerns are: - __Ontology applications__ that systematize the conceptual structure of cancer biology. There are particular concerns with structured vocabularies for - general human anatomy - experimental cell lines - cancer therapeutics - genome and epigenome elements and alterations related to cancer - __Communications infrastructure__ to support extraction and analysis of well-structured, self-describing data from public archives and portals. Key resource centers of interest include - [TCGA](https://cancergenome.nih.gov/), with curated representations through - the [ISB Cancer Genomics Cloud project](http://cgc.systemsbiology.net/) - Bioconductor's [curatedTCGAData](https://bioconductor.org/packages/curatedTCGAData/) interface - The [ISB pan-cancer atlas mirror](http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/PanCancer-Atlas-Mirror.html) - [TARGET](https://ocg.cancer.gov/programs/target) through ISB-CGC - [cBioPortal](http://www.cbioportal.org/); our main concern is to simplify usage of the RESTful API with R - [CLUE](http://clue.io), "a cloud-based software platform for the analysis of perturbational datasets generated using gene expression (L1000) and proteomic (P100 and GCP) assays" - [Ivy Glioblastoma Atlas Project](http://glioblastoma.alleninstitute.org/) - [TCIA](http://www.cancerimagingarchive.net/), with radiology and pathology components available through [ISB/BigQuery](http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/TCGA-images.html) - [TCRN](https://cancerdatanetwork.org/): the TIES (Text Information Extraction System) Cancer Research Network -- we'll have to learn more about [JWT with httr](https://cran.r-project.org/web/packages/jose/vignettes/jwt.html) before progressing with this - [CONQUER](http://imlspenticton.uzh.ch:3838/conquer/), an archive of uniformly processed __single-cell RNA-seq__ datasets, a number of which related to cancer. We have 'curated' CONQUER's version of the GBM single cell study of [Patel et al. 2014](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4123637/), with the large data component in an AWS S3 bucket. Below we indicate how to retrieve the Patel data for local computation. A larger, more recent single cell transcriptomics experiment in GBM is that of [Darmanis et al. 2017](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5810554/). We curated the CONQUER representation of this experiment in a public HDF Object Store and describe how to use it below. - __Remote analysis support__ to "move the computation to the data". Bridging [Google Cloud Datalab](https://cloud.google.com/datalab/) to the ISB TCGA and CCLE images is a first target. - __Social coding practice__: at present, users and developers should use the [issue tracker](https://github.com/vjcitn/BiocOncoTK/issues) at the [BiocOncoTK github repository](https://github.com/vjcitn/BiocOncoTK) to comment, critique, and propose new approaches. # Ontology ## Oncotree The NCI Thesaurus project distributes an OBO representation of oncotree. We can use this through the `r Biocpkg("ontoProc")` (devel branch only) and `r CRANpkg("ontologyPlot")` packages. Code for visualizing the location of 'Glioblastoma' in the context of its 'siblings' in the ontology follows. ```{r lkgbm,fig=TRUE,message=FALSE} library(ontoProc) library(ontologyPlot) oto = getOncotreeOnto() glioTag = names(grep("Glioblastoma$", oto$name, value=TRUE)) st = siblings_TAG(glioTag, oto, justSibs=FALSE) onto_plot(oto, slot(st, "ontoTags"), fontsize=50) ``` # Resource interfaces ## PanCancer Atlas In conjunction with `r Biocpkg("restfulSE")` which handles aspects of the interface to BigQuery, this package provides tools for working with the PanCancer atlas project data. ### Sample types A key feature distinguishing the pancancer-atlas project from TCGA is the availability of data from normal tissue or metastatic or recurrent tumor samples. Codes are used to distinguish the different sources: ```{r lktata} BiocOncoTK::pancan_sampTypeMap ``` ### SummarizedExperiments per assay per tumor or other sample type The following code will run if you have a valid setting for environment variable `CGC_BILLING`, to allow BiocOncoTK::pancan_BQ() to generate a proper BigQueryConnection. ```{r lkl, eval=FALSE} library(BiocOncoTK) if (nchar(Sys.getenv("CGC_BILLING"))>0) { pcbq = pancan_BQ() # basic connection BRCA_mir = restfulSE::pancan_SE(pcbq) } ``` The result is ``` > BRCA_mir class: SummarizedExperiment dim: 743 1068 metadata(0): assays(1): assay rownames(743): hsa-miR-30d-3p hsa-miR-486-3p ... hsa-miR-525-3p hsa-miR-892b rowData names(0): colnames(1068): TCGA-LD-A7W6 TCGA-BH-A18I ... TCGA-E9-A1N9 TCGA-B6-A0X0 colData names(746): bcr_patient_uuid bcr_patient_barcode ... bilirubin_upper_limit days_to_last_known_alive ``` ### Subsetting to normal To shift attention to the normal tissue samples provided, use ```{r lknor,eval=FALSE} BRCA_mir_nor = restfulSE::pancan_SE(pcbq, assaySampleTypeCode="NT") ``` to find ``` class: SummarizedExperiment dim: 743 90 metadata(0): assays(1): assay rownames(743): hsa-miR-7641 hsa-miR-135a-5p ... hsa-miR-1323 hsa-miR-520d-5p rowData names(0): colnames(90): TCGA-BH-A18P TCGA-BH-A18S ... TCGA-E9-A1N6 TCGA-E9-A1N9 colData names(746): bcr_patient_uuid bcr_patient_barcode ... bilirubin_upper_limit days_to_last_known_alive ``` The intersection of the colnames from the two SummarizedExperiments thus formed (patients contributing both solid tumor and matched normal) has length 89. ### Shifting focus to another tissue/assay You need to know what type of sample has been assayed for the tumor type of interest. Here is how you find the candidates. ```{r dotab, eval=FALSE} bqcon %>% tbl(pancan_longname("rnaseq")) %>% filter(Study=="GBM") %>% group_by(SampleTypeLetterCode) %>% summarise(n=n()) ``` To get RNA-seq on recurrent GBM samples: ```{r lkgbmr, eval=FALSE} pancan_SE(bqcon, colDFilterValue="GBM", tumorFieldValue="GBM", assayDataTableName=pancan_longname("rnaseq"), assaySampleTypeCode="TR", assayFeatureName="Symbol", assayValueFieldName="normalized_count") ``` ### Multiassay experiments per tumor Suppose we want to work with the mRNA, RPPA, 27k/450k merged methylation and miRNA data together. We can invoke pancan_SE again, specifying the appropriate tables and fields. ```{r dose2, eval=FALSE} BRCA_mrna = pancan_SE(pcbq, assayDataTableName = pancan_longname("rnaseq"), assayFeatureName = "Entrez", assayValueFieldName = "normalized_count") BRCA_rppa = pancan_SE(pcbq, assayDataTableName = pancan_longname("RPPA"), assayFeatureName = "Protein", assayValueFieldName = "Value") BRCA_meth = pancan_SE(pcbq, assayDataTableName = pancan_longname("27k")[2], assayFeatureName = "ID", assayValueFieldName = "Beta") ``` After obtaining the clinical data for BRCA with ``` library(dplyr) library(magrittr) clinBRCA = pcbq %>% tbl(pancan_longname("clinical")) %>% filter(acronym=="BRCA") %>% as.data.frame() rownames(clinBRCA) = clinBRCA[,2] clinDF = DataFrame(clinBRCA) ``` we use ``` library(MultiAssayExperiment) brcaMAE = MultiAssayExperiment( ExperimentList(rnaseq=BRCA_mrna, meth=BRCA_meth, rppa=BRCA_rppa, mirna=BRCA_mir),colData=clinDF) ``` to generate `brcaMAE`. No assay data are present in this object, but data are retrieved on request. ``` > brcaMAE A MultiAssayExperiment object of 4 listed experiments with user-defined names and respective classes. Containing an ExperimentList class object of length 4: [1] rnaseq: SummarizedExperiment with 20531 rows and 1097 columns [2] meth: SummarizedExperiment with 22601 rows and 1067 columns [3] rppa: SummarizedExperiment with 259 rows and 873 columns [4] mirna: SummarizedExperiment with 743 rows and 1068 columns Features: experiments() - obtain the ExperimentList instance colData() - the primary/phenotype DataFrame sampleMap() - the sample availability DataFrame `$`, `[`, `[[` - extract colData columns, subset, or experiment *Format() - convert into a long or wide DataFrame assays() - convert ExperimentList to a SimpleList of matrices ``` It is convenient to check for sample availability for the different assays using `upsetSamples` in `r Biocpkg("MultiAssayExperiment")`. ![The upset diagram for brcaMAE, showing sample availability per assay.](brca4upset.png) ## Supporting infrastructure The API for `pancan_SE` in `r Biocpkg("restfulSE")` is complicated. ```{r lkapi} args(restfulSE::pancan_SE) ``` Long, metadata-laden names are used for some tables, the clinical characteristics table has over 700 variables, and fields bearing information common to different tables may not have common names. Help is needed to permit programming for integrative analysis. BiocOncoTK provides the following assistance: - `pancan_app`: a shiny app that provides interactive table and data overviews ![pancan_app](pancanApp.png) - `pancan_longname`: a helper for generating the long table names using a hint that will be processed by `agrep`: ```{r lklo} pancan_longname("rnaseq") ``` - `pancan_BQ`: a function that will generate a BigQueryConnection instance provided billing code and Google authentication succeed. ## TARGET We assume that an ISB-CGC Google BigQuery billing number is assigned to the environment variable `CGC_BILLING`. First we list the tables available and have a look at the RNA-seq table. ```{r lktarg, message=FALSE,eval=FALSE} billco = Sys.getenv("CGC_BILLING") if (nchar(billco)>0) { con = DBI::dbConnect(bigrquery::dbi_driver(), project="isb-cgc", dataset="TARGET_hg38_data_v0", billing=billco) DBI::dbListTables(con) con %>% tbl("RNAseq_Gene_Expression") %>% glimpse() } ``` ``` ## Observations: NA ## Variables: 16 ## $ project_short_name "TARGET-RT", "TARGET-RT", "TARGET-RT", "TARGE... ## $ case_barcode "TARGET-52-PARPFY", "TARGET-52-PARPFY", "TARG... ## $ sample_barcode "TARGET-52-PARPFY-11A", "TARGET-52-PARPFY-11A... ## $ aliquot_barcode "TARGET-52-PARPFY-11A-01R", "TARGET-52-PARPFY... ## $ gene_name "RIC8B", "ATOH7", "ZNF532", "XKR5", "RP11-33O... ## $ gene_type "protein_coding", "protein_coding", "protein_... ## $ Ensembl_gene_id "ENSG00000111785", "ENSG00000179774", "ENSG00... ## $ Ensembl_gene_id_v "ENSG00000111785.17", "ENSG00000179774.8", "E... ## $ HTSeq__Counts 2396, 35, 5367, 17, 323, 1718, 1, 4, 3151, 25... ## $ HTSeq__FPKM 3.212811104, 0.247184268, 4.693986615, 0.0353... ## $ HTSeq__FPKM_UQ 7.790066e+04, 5.993448e+03, 1.138145e+05, 8.5... ## $ case_gdc_id "5cdd05ea-5285-50b7-971a-8bc005d01669", "5cdd... ## $ sample_gdc_id "7448bf2b-4ba0-5f98-ad0f-e87fa6619a43", "7448... ## $ aliquot_gdc_id "TARGET-52-PARPFY-11A-01R", "TARGET-52-PARPFY... ## $ file_gdc_id "f31fe296-402e-4e7d-b072-e4a6571a9c8a", "f31f... ## $ platform "Illumina", "Illumina", "Illumina", "Illumina... ``` Now let's see what tumor types are available. ```{r lklk, message=FALSE, warning=FALSE,eval=FALSE} if (nchar(billco)>0) { con %>% tbl("RNAseq_Gene_Expression") %>% select(project_short_name) %>% group_by(project_short_name) %>% summarise(n=n()) } ``` ``` ## # Source: lazy query [?? x 2] ## # Database: BigQueryConnection ## project_short_name n ## ## 1 TARGET-NBL 9495831 ## 2 TARGET-AML 11310321 ## 3 TARGET-RT 302415 ## 4 TARGET-WT 7983756 ``` NBL is neuroblastoma, RT is rhabdoid tumor, WT is Wilms' tumor. ## CCLE Figure 3a of Barretina et al 2012 shows that cell lines with NRAS mutations can be ordered according to a measure of PD-0325901 activity, and that this drug activity measure is correlated with expression of AHR. We will acquire the mutation and expression data using BigQuery as provided by ISB. Here is a listing of all tables: ```{r lkccle2, message=FALSE, eval=FALSE} billco = Sys.getenv("CGC_BILLING") if (nchar(billco)>0) { con = DBI::dbConnect(bigrquery::dbi_driver(), project="isb-cgc", dataset="ccle_201602_alpha", billing=billco) DBI::dbListTables(con) } ``` ``` ## [1] "AffyU133_RMA_expression" "Copy_Number_segments" ## [3] "DataFile_info" "Mutation_calls" ## [5] "Sample_information" "fastqc_metrics" ``` ### Mutation data First we get an overview of the content: ```{r lkmucc,eval=FALSE} muttab = con %>% tbl("Mutation_calls") length(muttab %>% colnames()) muttab %>% select(Cell_line_primary_name, Hugo_Symbol, Variant_Classification, cDNA_Change)%>% glimpse() ``` ``` ## [1] 53 ``` Now let's filter by NRAS and get a feel for how many observations are returned per cell line. ```{r lknras, warning=FALSE,eval=FALSE} nrastab = muttab %>% select(Variant_Classification, Hugo_Symbol, Cell_line_primary_name, CCLE_name) %>% filter(Hugo_Symbol == "NRAS") %>% group_by(Hugo_Symbol) nrastab %>% summarise(n=n()) nrasdf = nrastab %>% as.data.frame() ``` We need to carve up the CCLE name to get the organ. ```{r dospl,eval=FALSE} spl = function(x) { z = strsplit(x, "_") fir = vapply(z, function(x)x[1], character(1)) rest = vapply(z, function(x) paste(x[-1], collapse="_"), character(1)) list(fir, rest) } nrasdf$organ = spl(nrasdf$CCLE_name)[[2]] ``` ```{r getmodnr,echo=FALSE} nrasdf = load_nrasdf() ```{r illus} head(nrasdf) table(nrasdf$organ) prim_names = as.character(nrasdf$Cell_line_primary_name) ``` ### Expression data Let's obtain the expression of AHR for these NRAS-mutated cell lines. ```{r lkccleex, message=FALSE, warning=FALSE, eval=FALSE} ccexp = con %>% tbl("AffyU133_RMA_expression") ccexp %>% glimpse() ccexp %>% select(Cell_line_primary_name, RMA_normalized_expression, HGNC_gene_symbol) %>% filter(HGNC_gene_symbol == "AHR") %>% filter(Cell_line_primary_name %in% nrasdf$Cell_line_primary_name) %>% as.data.frame() -> NRAS_AHR head(NRAS_AHR) ``` ```{r domockahr,echo=FALSE} NRAS_AHR = load_NRAS_AHR() head(NRAS_AHR) ``` ### Drug responsiveness data from CCLE, using pogos The pogos package (submitted, see github.com/vjcitn/pogos) includes software to query pharmacodb.pmgenomics.ca. We will use this to develop drug-response profiles for PD-0325901. ```{r dopog,eval=FALSE} library(pogos) ccleNRAS = DRTraceSet(NRAS_AHR[,1], drug="PD-0325901") plot(ccleNRAS) ``` ```{r dopogmock,echo=FALSE,results="hide",fig=TRUE} ccleNRAS = load_ccleNRAS() plot(ccleNRAS) ``` We'll define a responsiveness method, that takes a function f that is applied to the responses component of the dose-response profile. ```{r drrr} responsiveness = function (x, f) { r = sapply(slot(x, "traces"), function(x) f(slot(slot(x,"DRProfiles")[[1]],"responses"))) data.frame(Cell_line_primary_name = slot(x,"cell_lines"), resp = r, drug = slot(x,"drug"), dataset = x@dataset) } ``` The activity area for a compound in this design is defined as ```{r lkaa} AA = function(x) sum((pmax(0, x/100))) head(rr <- responsiveness(ccleNRAS, AA)) summary(rr$resp) ``` This is based on the supplement to Barretina et al. 2012. (There a slightly different formula in the addendum which uses notation that includes multiplying by a factor of i for dose index level i.) Let's merge the responsiveness data with the expression data for gene AHR. ```{r mrg} rexp = merge(rr, NRAS_AHR) rexp[1:2,] ``` ### CLUE The CLUE platform is an interface to results of work on the connectivity map at Broad Institute. Usage of functions in this toolkit requires an API key, which can be acquired through registration at clue.io. Set the environment variable `CLUE_KEY` so that it can be found by `Sys.getenv` to use default `key` parameter to functions described here. A basic purpose of the interface to CLUE is to allow identification of gene signatures of perturbations in specific cellular contexts. We have serialized data on cell lines and perturbagens available in the GSE70138 snapshot of LINCS. ```{r lkda} data(cell_70138) names(cell_70138) table(cell_70138$primary_site) data(pert_70138) dim(pert_70138) names(pert_70138) ``` A number of API services have demonstration query expressions available in the package: ```{r lkdem} cd = clueDemos() names(cd) cd$sigs ``` We use `query_clue` to query a service. Here we ask for perturbagens that have EGFR among their targets. We'll retrieve a single 'gold' signature identifier. ```{r lkp1} if (nchar(Sys.getenv("CLUE_KEY"))>0) { lkbytarg = query_clue(service="perts", filter=list(where=list(target="EGFR"))) print(names(lkbytarg[[1]])) sig1 = lkbytarg[[1]]$sig_id_gold[1] } ``` Now we obtain the metadata about this signature. ```{r lkp2} if (nchar(Sys.getenv("CLUE_KEY"))>0) { sig1d = query_clue(service="sigs", filter=list(where=list(sig_id=sig1))) print(names(sig1d[[1]])) print(head(sig1d[[1]]$pert_iname)) # perturbagen print(head(sig1d[[1]]$cell_id)) # cell type print(head(sig1d[[1]]$dn50_lm)) # some downregulated genes among the landmark print(head(sig1d[[1]]$up50_lm)) # some upregulated genes among the landmark } ``` #### Example Task: Assess the effects of perturbagens on transcription in the NPC cell line. We'll check for recurrence of landmark genes among the top 50 upregulated for perturbagens that are identified as HDAC inhibitors. ```{r lknpc, cache=TRUE} # use pertClasses() to get names of perturbagen classes in Clue if (nchar(Sys.getenv("CLUE_KEY"))>0) { tuinh = query_clue("perts", filter=list(where=list(pcl_membership=list(inq=list("CP_HDAC_INHIBITOR"))))) inames_tu = sapply(tuinh, function(x)x$pert_iname) npcSigs = query_clue(service="sigs", filter=list(where=list(cell_id="NPC"))) length(npcSigs) gns = lapply(npcSigs, function(x) x$up50_lm) perts = lapply(npcSigs, function(x) x$pert_iname) touse = which(perts %in% inames_tu) rec = names(tab <- sort(table(unlist(gns[touse])),decreasing=TRUE)[1:5]) cbind(select(org.Hs.eg.db, keys=rec, columns="SYMBOL"), n=as.numeric(tab)) } ``` We can abstract from this process a function that takes perturbagen classes and cell lines to deliver collections of LINCS signatures of genes considered to produce transcriptional activities of certain kinds. # Curated single cell expression data from cancer studies In this section we illustrate different modalities for acquiring and working with single cell transcriptomics data, after processing by the CONQUER workflow. ## Patel 2014 The Patel et al. experiment assayed 864 cells. A standard in-memory representation is straightforward. The curated SummarizedExperiment is distributed in an AWS S3 bucket sponsored by the Bioconductor Foundation. The `loadPatel` function retrieves this and places it in a `r Biocpkg("BiocFileCache") instance. ```{r trylop} patelSE = loadPatel() # uses BiocFileCache patelSE assay(patelSE[1:4,1:3]) # in memory ``` Exploratory analysis of this dataset is described in the companion vignette on single cell transcriptomics for GBM. ## Darmanis 2017 The Darmanis et al. experiment assayed over 3500 cells. The CONQUER compressed RDS representation of all the data is about 4 GB on disk. The gene level quantifications and sample-level data were manually extracted from this archive. The gene level quantifications in the `count_lstpm` form were then loaded into a public HDF object store sponsored by John Readey. These data will persist in this format for some time; a Bioconductor-sponsored representation will be introduced as soon as possible. ```{r lkdar} # count_lstpm from CONQUER data(darmGBMcls) assay(darmGBMcls) # out of memory ``` # Summary `BiocOncoTK` is a result of work carried out under NCI ITCR U01 "Accelerating cancer genomics with cloud-scale Bioconductor". This package illustrates several Bioconductor-based representations of cancer data and metadata. Some of the resources, such as the PanCancer atlas, CCLE, and high-resolution single-cell transcriptomics studies are sufficiently large that cloud-oriented representation and analysis may be cost-effective. As this package matures, additional resources will be highlighted, with particular attention to integration processes.