--- title: "SeSAMe Data User Guide" shorttitle: "sesameData guide" package: sesameData output: rmarkdown::html_vignette fig_width: 6 fig_height: 5 vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{sesameData User Guide} %\VignetteEncoding{UTF-8} --- # Introduction `sesameData` package provides associated data for the `sesame` package. This includes example data for testing and instructional purposes, as well as probe annotation for different Infinium platforms. # Exported functions overview Data access and caching: - `sesameDataList()` list available data titles - `sesameDataHas()` check if titles exist - `sesameDataGet()` load a data object by title - `sesameDataCache()` / `sesameDataCacheAll()` cache data locally - `sesameDataGet_resetEnv()` clear the in-memory cache Platform and genome helpers: - `inferPlatformFromProbeIDs()` infer platform from probe IDs - `sesameData_check_platform()` validate or infer platform - `sesameData_check_genome()` validate or infer genome build - `sesameData_getGenomeInfo()` load genome metadata Manifests, probes, and annotation: - `sesameData_getManifestGRanges()` load manifest GRanges - `sesameData_getProbesByRegion()` select probes by genomic range - `sesameData_getProbesByGene()` select probes by gene/promoter - `sesameData_annoProbes()` annotate probes by features Transcript utilities: - `sesameData_getTxnGRanges()` get transcripts or merged genes - `sesameData_txnToGeneGRanges()` merge transcripts to genes ```{r setup, message=FALSE, warning=FALSE} library(sesameData) library(GenomicRanges) sesameDataCache(c("genomeInfo.mm10", "HM450.address")) ``` # Genome Information Sesame provides some utility functions to process transcript models, which can be represented as data.frame, GRanges and GRangesList objects. For example, `sesameData_getTxnGRanges` calls `sesameDataGet("genomeInfo.mm10")$txns` to retrieve a transcript-centric GRangesList object from GENCODE including its gene annotation, exon and cds (for protein-coding genes). It is then turned into a simple GRanges object of transcript: ```{r txn-granges} sesameData_getTxnGRanges("mm10") ``` The returned GRanges object does not contain the exon coordinates. We can further collapse different transcripts of the same gene (isoforms) to gene level. Gene start is the minimum of all isoform starts and end is the maximum of all isoform ends. ```{r txn-granges-merged} sesameData_getTxnGRanges("mm10", merge2gene=TRUE) ``` # Probes ```{r load-genomicranges, message = FALSE, warning = FALSE} library(GenomicRanges) ``` The following code get probes from different parts of the genome. ```{r probes-examples, eval=FALSE} ## probes in a region sesameData_getProbesByRegion(GRanges('chr5', IRanges(135313937, 135419936)), platform = 'Mammal40') ## get chrX probes sesameData_getProbesByRegion(chrm = 'chrX', platform = "Mammal40") ## get autosomal probes sesameData_getProbesByRegion( chrm_to_exclude = c("chrX", "chrY"), platform = "Mammal40") ## get DNMT3A probes sesameData_getProbesByGene('DNMT3A', "Mammal40", upstream=500) ## get DNMT3A promoter probes sesameData_getProbesByGene('DNMT3A', "Mammal40", promoter = TRUE) ## get all promoter probes sesameData_getProbesByGene(NULL, "Mammal40", promoter = TRUE) ``` One can annotate given probe ID using any genomic features stored in GRanges objects. For example, the following demonstrate the annotation of 500 random Mammal40 probes for gene promoters. ```{r anno-probes-examples, eval=FALSE} input_probes <- names(sesameData_getManifestGRanges("Mammal40"))[1:500] ## annotate for promoter regs <- promoters(sesameData_getTxnGRanges("hg38")) sesameData_annoProbes(input_probes, regs, column = "gene_name") ## annotate for gene association regs <- sesameData_getTxnGRanges("hg38", merge2gene = TRUE) sesameData_annoProbes(input_probes, regs, column = "gene_name") ## get genes associated with probes regs <- sesameData_getTxnGRanges("hg38", merge2gene = TRUE) sesameData_annoProbes(input_probes, regs, return_ov_features=TRUE) ## get genes associated with probes extending 10kb input_probes <- c("cg14620903","cg22464003") sesameData_annoProbes(input_probes, regs+10000, column = "gene_name") ``` # Manifest Sesame provides access to array manifest stored as GRanges object. These GRanges object are converted from the raw tsv files on our [array annotation website](http://zwdzwd.github.io/InfiniumAnnotation) using the [conversion code](https://tinyurl.com/8bt9dssc) ```{r manifest-granges} gr <- sesameData_getManifestGRanges("HM450") length(gr) ``` Note that by default the GRanges object exclude decoy sequence probes (e.g., _alt, and _random contigs). To include them, we need to use the `decoy = TRUE` option in sesameData_getManifestDF. # Raw Data Retrieval Titles of all the available data can be shown with: ```{r data-list} head(sesameDataList()) ``` Each sesame datum from ExperimentHub is accessible through the `sesameDataGet` interface. It should be noted that all data must be pre-cached to local disk before they can be used. This design is to prevent conflict in annotation data caching and remove internet dependency. Caching needs only be done once per sesame/sesameData installation. One can cache data using ```{r cache-data} sesameDataCache() ``` Once a data object is loaded, it is stored to a temporary cache, so that the data doesn't need to be retrieved again next time we call `sesameDataGet`. This design is meant to speed up the run time. For example, the annotation for HM27 can be retrieved with the title: ```{r get-data-example} HM27.address <- sesameDataGet('HM27.address') ``` It's worth noting that once a data is retrieved through the `sesameDataGet` interface (below), it will stay in memory so next time the object will be returned immediately. This design avoids repeated disk/web retrieval. In some rare situation, one may want to redo the download/disk IO, or empty the cache to save memory. This can be done with: ```{r reset-env} sesameDataGet_resetEnv() ``` ```{r session-info} sessionInfo() ```