Package 'gcatest'

December 5, 2025

Title Genotype Conditional Association TEST

Version 2.11.0

Encoding UTF-8

LazyData true

Description

GCAT is an association test for genome wide association studies that controls for population structure under a general class of trait models. This test conditions on the trait, which makes it immune to confounding by unmodeled environmental factors. Population structure is modeled via logistic factors, which are estimated using the `lfa` package.

Imports methods, Ifa

Depends R (>= 4.0)

Suggests knitr, ggplot2, testthat, BEDMatrix, genio

VignetteBuilder knitr

License GPL (>= 3)

biocViews SNP, DimensionReduction, PrincipalComponent, GenomeWideAssociation

BugReports https://github.com/StoreyLab/gcatest/issues

URL https://github.com/StoreyLab/gcatest

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

git_url https://git.bioconductor.org/packages/gcatest

git_branch devel

git_last_commit 67c4903

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-12-05

2 delta_deviance_lf

```
Author Wei Hao [aut],

Minsun Song [aut],

Alejandro Ochoa [aut, cre] (ORCID:

<a href="https://orcid.org/0000-0003-4928-3403">https://orcid.org/0000-0003-4928-3403</a>),

John D. Storey [aut] (ORCID: <a href="https://orcid.org/0000-0001-5992-402X">https://orcid.org/0000-0001-5992-402X</a>)
```

Maintainer Alejandro Ochoa <alejandro.ochoa@duke.edu>

Contents

	delta_devia																												3
	sim_geno sim_trait .																												
Index																													6
delta	_deviance	_lf	Cal	cul	late	e de	elta	a d	lev.	iaı	nce	e oj	f le	ogi	ist	ic 1	nu	ll/d	alte	err	ıat	ive	n	100	de	ls			

Description

This function fits, at each locus of a given genotype matrix, two logistic models, and under the assumption that the models are nested, calculates the delta deviance between the two. This general function is intended for testing models in a broad setting; for the specific problem of genetic association, the interface in gcat() and gcat.stat() are more user-friendly.

Usage

```
delta_deviance_lf(X, LF0, LF1)
```

Arguments

X	A matrix of SNP genotypes, i.e. an integer matrix of 0's, 1's, 2's and NAs. BEDMatrix is supported. Sparse matrices of class Matrix are not supported (yet).
LF0	Logistic factors for null model.
LF1	Logistic factors for alternative model.

Value

The vector of delta deviance values, one per locus of X.

gcat 3

Examples

```
library(lfa)
# make example data smaller so example is fast
# goes from 1000 to 100 individuals
indexes <- sample.int( ncol(sim_geno), 100 )</pre>
sim_geno <- sim_geno[ , indexes ]</pre>
sim_trait <- sim_trait[ indexes ]</pre>
# now run LFA and get delta deviances for trait assoc
# (recapitulating `gcat.stat` in this case)
LF <- lfa(sim_geno, 3)
LF0 <- LF # structure is null
LF1 <- cbind(LF, sim_trait) # trait is alt
devdiff_assoc <- delta_deviance_lf(sim_geno, LF0, LF1)</pre>
# can instead do delta deviances for structure only
LF0 <- cbind(rep.int(1, ncol(sim_geno))) # intercept only is null
LF1 <- LF # structure is alt, no trait
devdiff_struc <- delta_deviance_lf(sim_geno, LF0, LF1)</pre>
```

gcat

Genotype Conditional Association TEST

Description

Performs the GCAT association test between SNPs and trait, returning p-values.

Usage

```
gcat(X, LF, trait, adjustment = NULL)
gcatest(X, LF, trait, adjustment = NULL)
gcat.stat(X, LF, trait, adjustment = NULL)
```

Arguments

A matrix of SNP genotypes, i.e. an integer matrix of 0's, 1's, 2's and NAs. BEDMatrix is supported. Sparse matrices of class Matrix are not supported

(yet).

LF matrix of logistic factors from lfa::lfa()

trait vector

adjustment matrix of adjustment variables

4 sim_geno

Value

vector of p-values

Functions

- gcatest(): Alias of gcat
- gcat.stat(): returns the association statistics instead of the p-value.

References

Song, M, Hao, W, Storey, JD (2015). Testing for genetic associations in arbitrarily structured populations. Nat. Genet., 47, 5:550-4.

Examples

```
library(lfa)

# make example data smaller so example is fast
# goes from 1000 to 100 individuals
indexes <- sample.int( ncol(sim_geno), 100 )
sim_geno <- sim_geno[ , indexes ]
sim_trait <- sim_trait[ indexes ]

# now run LFA and GCATest
LF <- lfa(sim_geno, 3)
gcat_p <- gcat(sim_geno, LF, sim_trait)
gcat_stat <- gcat.stat(sim_geno, LF, sim_trait)</pre>
```

sim_geno

Simulated data from PSD model

Description

10,000 SNPs, 1,000 individuals, first five SNPs are associated.

Usage

sim_geno

Format

```
a matrix of 0's, 1's and 2's for the genotypes
```

Value

simulated genotype matrix

sim_trait 5

sim_trait

 $Simulated\ data\ from\ PSD\ model$

Description

10,000 SNPs, 1,000 individuals, first five SNPs are associated.

Usage

sim_trait

Format

a vector of traits

Value

simulated traits

Index

```
delta_deviance_1f, 2
gcat, 3
gcat(), 2
gcat.stat(), 2
gcatest (gcat), 3

lfa::lfa(), 3

sim_geno, 4
sim_trait, 5
```