Package 'flowGraph'

December 4, 2025

```
Title Identifying differential cell populations in flow cytometry data
      accounting for marker frequency
Version 1.19.0
Description Identifies maximal differential cell populations in flow cytometry data taking into ac-
      count dependencies between cell populations; flowGraph calculates and plots SpecEnr abun-
      dance scores given cell population cell counts.
Date 2019-11-30
License Artistic-2.0
VignetteBuilder knitr
Depends R (>= 4.1)
Imports effsize, furrr, future, purrr, ggiraph, ggrepel, ggplot2,
      igraph, Matrix, matrixStats, stats, utils, visNetwork,
      htmlwidgets, grDevices, methods, stringr, stringi, Rdpack,
      data.table (>= 1.9.5), gridExtra,
Suggests BiocStyle, dplyr, knitr, rmarkdown, testthat (>= 2.1.0)
biocViews FlowCytometry, StatisticalMethod, ImmunoOncology, Software,
      CellBasedAssays, Visualization
BugReports https://github.com/aya49/flowGraph/issues
URL https://github.com/aya49/flowGraph
RoxygenNote 7.1.1
RdMacros Rdpack
LazyData no
git_url https://git.bioconductor.org/packages/flowGraph
git_branch devel
git_last_commit 7de3bf9
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2025-12-04
```

Type Package

2 Contents

Author Alice Yue [aut, cre]

Maintainer Alice Yue <aya43@sfu.ca>

Contents

cell_type_layers	3
extract_markers	4
fg_add_feature	5
fg_add_summary	6
fg_clean_phen	8
fg_clear_features	9
fg_clear_summary	9
fg_data_fca	0
fg_data_pos2	1
fg_data_pos30	1
fg_extract_phenotypes	2
fg_extract_raw	3
-8	4
<u>c</u> = =	5
0- 1- 1 1	6
8	7
c-	8
-6	9
<u>6</u>	20
6–6 –	21
<i>C</i> = <i>C</i> = =	22
<i>C</i> = <i>C</i> = =	23
-6-6-6-1-6-1-6-1-6-1-6-1-6-1-6-1-6-1-6-	24
C-C =	25
8-6	25
<i>C-C - 7</i>	26
<u>c=</u> c = 7=	29
-6-8	80
fg_get_summary_tables	
8-8-1-1	32
8-8-1-1	33
-6	34
E= E	35
8- 8 r	86
<i>8</i> −1 · · · · · · · · · · · · · · · · · · ·	37
C-I -	10
	12
-6-r11 · · · · · · · · · · · · · · · · ·	4
8= 1=	16
8= =	17
E= = 7	8
fg save	19

cell_type_layers	2
cell Type Javers	3
cen_t, pe_ta_yets	

fg_save_plots	50
fg_set_layout	52
fg_summary	53
flowGraph	55
flowGraph-class	58
flowGraphSubset	61
flowGraphSubset_summary_adjust	64
flowGraphSubset_summary_pars	64
fpurrr_map	
get_child	65
get_eprop	66
get_paren	67
get_phen_list	
get_phen_meta	68
ggdf	69
loop_ind_f	70
mean_diff	71
ms_create	71
ms_psig	72
plot_gr	73
set_layout_graph	74
summary_table	75
test_c	
time_output	
tstr	
	78

cell_type_layers

Determines the layer on which a phenotype resides.

Description

Determines the layer on which the given phenotypes reside.

Usage

```
cell_type_layers(phen)
```

Arguments

phen

A string vector of phenotype or cell population name labels.

Details

Given a vector of phenotypes, returns an equal length vector of the number of markers in each phenotype.

4 extract_markers

Value

A numeric vector with the same length as phen indicating which layer each phenotype resides on.

See Also

```
get_phen_list get_phen_meta
```

Examples

```
phen <- c('A+B+C-D++', 'A+B-', '', 'B++D-E+')
cell_type_layers(phen)</pre>
```

extract_markers

Extracts markers from cell population phenotypes

Description

Extracts all unique markers from cell population phenotypes

Usage

```
extract_markers(phen)
```

Arguments

phen

A vector of cell population phenotypes.

Value

A vector of unique markers

See Also

```
str_split
```

fg_add_feature 5

fg_add_feature	Adds a feature.	
----------------	-----------------	--

Description

Adds a feature created using feat_fun from fg OR m into a given flowGraph object. Only use this function if you cannot generate the desired features using the existing flowGraph functions starting with fg_feat_<feature name>.

Usage

```
fg_add_feature(
   fg,
   type = "node",
   feature,
   m = NULL,
   feat_fun = NULL,
   overwrite = FALSE,
   ...
)
```

Arguments

fg	flowGraph object.
type	A string specifying the type of the feature being added i.e. 'node' or 'edge'.
feature	A string indicating the unique name of the feature added.
m	A numeric matrix with feature values; it should contain the same sample id's on row names as in fg_get_meta(fg)\$id and node or edge names as column names (i.e. if m is a node feature, it would have the same column names as those in fg_get_graph(fg)\$v\$phenotype; if it is an edge feature, its column names should be the same as paste0(fg_get_graph(fg)\$e\$from, '_', fg_get_graph(fg)\$e\$to)).
feat_fun	A function that ouputs a feature matrix as in m given fg and other optional parameters.
overwrite	A logical variable indicating whether or not the function should replace the existing feature with the same name if one is already in fg.
• • •	Other parameters that would be used as input into feat_fun.

Details

fg_add_feature adds the given new feature matrix to the given flowGraph object fg updating slots feat and feat_desc. See flowGraph-class slot feat and feat_desc for what should be in these slots. We do not recommend users to directly use this method unless there is a clear understanding on how the row and column names should be specified. Instead, we recommend users to use the functions listed in the "See also" sections prefixed with "fg_feat_".

6 fg_add_summary

Value

flowGraph object.

See Also

```
\label{lowGraph-class} fg\_feat\_node\_prop\ fg\_feat\_node\_specenr\ fg\_get\_feature\ fg\_rm\_feature\ fg\_get\_feature\_desc
```

Examples

fg_add_summary

Adds a feature summary.

Description

Adds a feature summary into a given flowGraph object. Only use this function if your summary statistic cannot be calcuated using the fg_summary function.

Usage

```
fg_add_summary(
  fg,
  type = "node",
  summary_meta = NULL,
  p = NULL,
  summ_fun = NULL,
  overwrite = FALSE,
  ...
)
```

Arguments

fg flowGraph object.

type A string indicating feature type the summary was created for; 'node' or 'edge'.

fg_add_summary 7

summary_meta	The user must provide type and summary_meta. summary_meta is a list containing feature (feature name), test_name (summary statistic name), class (class), label1, and label2 (class labels compared). See fg_get_summary_desc for details.
p	A list containing summary values; this list contains elements: values (a vector containing summary statistics e.g. p-values; this vector should be named by their associated phenotype or edge name), test_custom (a function of the statistical test used), and adjust_custom (a function of the p-value correction method used). This list must contain the values element.
summ_fun	A function that ouputs a feature summary matrix as in p given fg and other optional parameters.
overwrite	A logical variable indicating whether or not the function should replace the existing feature summary with the same name if one is already in fg.
	Other parameters that would be used as input into summ_fun.

Details

fg_add_summary adds the given feature summary list p or the output of the given function summ_fun to the given flowGraph object fg updating slots summary and summary_desc. See flowGraph-class slot summary and summary_desc for what should be in these slots. We do not recommend users directly use this function unless what is required is duly in the above slots is well understood — note these slots are used in plotting functions e.g. fg_plot. We instead recommend users to use the fg_summary function.

Value

flowGraph object.

See Also

 $\verb|flowGraph-class|| fg_summary|| fg_get_summary|| fg_rm_summary|| fg_get_summary_desc|| fg_add_feature|| flowGraph-class|| fg_summary|| fg_get_summary|| fg_g$

8 fg_clean_phen

fg_clean_phen

Reformats phenotype

Description

Reformats cell population phenotypes into flowGraph format

Usage

```
fg_clean_phen(phen, markers = NULL)
```

Arguments

phen Vector of cell population phenotype names as character strings.

markers markers extracted from phen.

Value

Vector with the same length as phen containing reformatted and not necessarily changed cell population phenotype names.

See Also

```
str_extract,str_split
```

```
# fg_clean_phen(c("A+_B+", "B+_notC", "A-_C"))
```

fg_clear_features 9

fg_clear_features

Clears all featuresin a flowGraph object.

Description

Returns a flowGraph object with only the count feature.

Usage

```
fg_clear_features(fg)
```

Arguments

fg

flowGraph object.

Value

flowGraph object with only the count node feature.

See Also

```
flowGraph-class
```

Examples

fg_clear_summary

Removes all summary statistics.

Description

Removes all summary statistics in a flowGraph object; we recommend doing this to save space.

Usage

```
fg_clear_summary(fg)
```

10 fg_data_fca

Arguments

fg

flowGraph object.

Value

flowGraph object with an empty summary slot.

See Also

```
flowGraph-class fg_summary
```

Examples

fg_data_fca

fg_data_fca

Description

```
fg_data_fca
```

Usage

fg_data_fca

Format

A list containing the following elements derived from the flowCAP-II AML data set for cell populations up to layer 3.

- count: A numeric sample x cell population node matrix with cell count values.
- meta: A data frame containing meta information on samples in count; it contains columns:
 - class: a string indicating whether a sample is from a "control" or "aml" subject.
 - id: a string containing sample id's.
 - train: a logical variable indicating whether a sample is from the train or test set.
 - subject: a numeric variable containing the id of the subject from whom the sample came from
 - tube: the tube or panel number; all samples in this data set is analyzed under the 6th panel.

fg_data_pos2

Source

Aghaeepour N, Finak G, Hoos H, Mosmann TR, Brinkman R, Gottardo R, Scheuermann RH, Consortium F, Consortium DREAM, others (2013). "Critical assessment of automated flow cytometry data analysis techniques." *Nature methods*, **10**(3), 228–238.

fg_data_pos2

fg_data_pos2

Description

fg_data_pos2

Usage

fg_data_pos2

Format

A list containing the following elements for a positive control data set with markers A, B, C, D. This is a positive control data set where node A+B+C+ increased by 50

- count: A numeric sample x cell population node matrix with cell count values
- meta: A data frame containing meta information on samples in count; it contains columns:
 - id: a string containing sample id's.
 - class: a string indicating whether a sample is from a "control" or "exp" (experiment) subject.

fg_data_pos30

fg_data_pos30

Description

fg_data_pos30

Usage

fg_data_pos30

Format

A list containing the following elements for a positive control data set with markers A, B, C, D; note it was made with two and three thresholds for markers A and B to test functions with multiple thresholds (this is a positive control data set where nodes A+..B+..C+ increased by 50

- count: A numeric sample x cell population node matrix with cell count values
- meta: A data frame containing meta information on samples in count; it contains columns:
 - id: a string containing sample id's.
 - class: a string indicating whether a sample is from a "control" or "exp" (experiment) subject.

Description

Extracts or removes a specified set of phenotypes from a flowGraph object.

Usage

```
fg_extract_phenotypes(fg, phenotypes)
```

Arguments

fg flowGraph object.

phenotypes A string vector of phenotype or cell population name labels.

Details

The summary in fg will not be modified; we recommend users recalculate them.

Value

flowGraph object.

See Also

flowGraph-class fg_get_feature_desc fg_merge fg_extract_samples fg_merge_samples

fg_extract_raw 13

Examples

fg_extract_raw

Clears all features and feature summaries in a flowGraph object.

Description

Returns a flowGraph object with only the count feature and meta data. This function clears all other features and feature summaries to save space.

Usage

```
fg_extract_raw(fg)
```

Arguments

fg

flowGraph object.

Value

flowGraph object with all summary statistics and feature values removed except for the node count feature

See Also

```
flowGraph-class
```

14 fg_extract_samples

fg_extract_samples

Extracts a set of samples from a flowGraph object.

Description

Extracts or removes a specified set of samples from a flowGraph object.

Usage

```
fg_extract_samples(fg, sample_ids, rm_summary = TRUE)
```

Arguments

fg flowGraph object.

sample_ids A string vector of sample id's that the user wants to keep in fg.

rm_summary A logical indicating whether or not to clear summary.

Details

The summaries in fg will not be modified; we recommend the user recalculates them.

Value

flowGraph object.

See Also

flowGraph-class fg_get_feature_desc fg_merge fg_extract_phenotypes

fg_feat_cumsum 15

fg_feat_cumsum

Converts cell counts into cumulated cell counts.

Description

Converts the cell counts in a flowGraph object into cumulated cell counts; this is optional and can be done only for there is more than one threshold for one or more markers. This should also only be ran when initializing a flowGraph object as converting back and forth is computationally expensive. If the user is interested in seeing non- and cumulated counts, we recommend keeping two flowGraph objects, one for each version. This function simply converts e.g. the count of A+ or A++ into the sum of count of A+, A++, and A+++ or A++, and A+++.

Usage

```
fg_feat_cumsum(fg, no_cores)
```

Arguments

fg flowGraph object.

no_cores An integer indicating how many cores to parallelize on.

Details

fg_feat_cumsum returns the given flowGraph object with an adjusted count feature. As in our example,

Value

flowGraph object with cumulated counts.

See Also

```
flowGraph-class Matrix
```

16 fg_feat_edge_prop

fg_feat_edge_prop	Generates the proportion edge feature.
-------------------	--

Description

Generates the proportion edge feature and returns it inside the flowGraph object.

Usage

```
fg_feat_edge_prop(fg, no_cores = 1, overwrite = FALSE)
```

Arguments

fg flowGraph object.

no_cores An integer indicating how many cores to parallelize on.

overwrite A logical variable indicating whether to overwrite the existing proportion edge

feature if it exists.

Details

Given a flowGraph object, fg_feat_edge_prop returns the same flowGraph object with an additional proportions prop edge feature and its meta data. The proportions feature is made using the node count feature and is the cell count of each cell population (e.g. A+B+) over the cell count of its parent (e.g. A+); each edge then corresponds with such a relationship. The edge feature matrix has column names <from>_<to> e.g. A+_A+B+.

Value

flowGraph object containing the proportion edge feature.

See Also

```
\label{lowGraph-class} fg\_feat\_node\_prop\ fg\_feat\_node\_specenr\ fg\_add\_feature\ fg\_get\_feature\ fg\_rm\_feature\ fg\_get\_feature\_desc
```

fg_feat_edge_specenr 17

Description

Generates the SpecEnr edge feature and returns it inside the flowGraph object.

Usage

```
fg_feat_edge_specenr(fg, no_cores = 1, overwrite = FALSE)
```

Arguments

fg flowGraph object.

no_cores An integer indicating how many cores to parallelize on.

overwrite A logical variable indicating whether to overwrite the existing proportion edge

feature if it exists.

Details

Given a flowGraph object, fg_feat_edge_SpecEnr returns the same flowGraph object with an additional SpecEnr and expected proportions expect_prop edge feature and its meta data. The expected proportions edge feature is calculated by taking the ratio of the child nodes' (e.g. A+B+) expected proportion value over its parent nodes' (e.g. A+) actual proportion value. The SpecEnr feature is the actual over expected proportion ratio, logged. The edge feature matrix has column names <from>_<to> e.g. A+_A+B+.

Value

flowGraph object containing the proportion edge feature.

See Also

```
\label{lowGraph-class} fg\_feat\_node\_prop\ fg\_feat\_node\_specenr\ fg\_add\_feature\ fg\_get\_feature\ fg\_rm\_feature\ fg\_get\_feature\_desc
```

18 fg_feat_mean_class

fg_feat_mean_class Normalizes all features for class.

Description

For each class label in column class of meta, fg_feat_mean_class takes the column mean of the rows in the given feature matrices (as specified in node_features and edge_features) associated with that class; it then takes the difference point by point between these means and the original rows for that class.

FUNCTION_DESCRIPTION

Usage

```
fg_feat_mean_class(
  fg,
  class,
  no_cores = 1,
  node_features = NULL,
  edge_features = NULL
)
```

Arguments

fg	PARAM_DESCRIPTION
class	a column name in fg_get_meta(fg) indicating the meta data that should be used as the class label of each sample while conudcting normalization.
no_cores	An integer indicating how many cores to parallelize on.
node_features	A string vector indicating the node features to perform normalization on; set as NULL to normalize all.
edge_features	A string vector indicating the edge features to perform normalization on; set as NULL to normalize all.

Details

For all features in the given flowGraph object and for each class label in column class of meta, fg_feat_mean_class. It takes the column mean of the rows in the given feature matrices (as specified in node_features and edge_features) associated with that class; it then takes the difference point by point between these means and the original rows for that class. fg_feat_mean_class

Value

A numeric matrix whose dimensions equate to that of the input and whose values are normalized per class.

flowGraph object with normalized features.

fg_feat_node_prop 19

See Also

```
flowGraph-class
```

Examples

fg_feat_node_prop

Generates the proportion node feature.

Description

Generates the proportion node feature and returns it inside the returned flowGraph object.

Usage

```
fg_feat_node_prop(fg, overwrite = FALSE)
```

Arguments

fg flowGraph object.

overwrite A logical variable indicating whether to overwrite the existing proportion node

feature if it exists.

Details

Given a flowGraph object, fg_feat_node_prop returns the same flowGraph object, inside of which is an additional proportions prop node feature and its meta data. The proportions feature is made using the node count feature and is the cell count of each cell population over the total cell count.

Value

flowGraph object containing the proportion node feature.

See Also

```
\label{lowGraph-class} fg\_feat\_node\_specenr\ fg\_add\_feature\ fg\_get\_feature\ fg\_rm\_feature\ fg\_get\_feature\_desc
```

Examples

fg_feat_node_specenr Generates the SpecEnr node feature.

Description

Generates the SpecEnr node feature and returns it inside the returned flowGraph object.

Usage

```
fg_feat_node_specenr(fg, no_cores = 1, feature = "prop", overwrite = FALSE)
```

Arguments

fg flowGraph object

no_cores An integer indicating how many cores to parallelize on.

feature A string indicating feature name; this is the feature SpecEnr will be calculated

on.

overwrite A logical variable indicating whether to overwrite the existing SpecEnr node

feature if it exists.

Details

Given a flowGraph object, fg_feat_node_specenr returns the same flowGraph object with an additional SpecEnr and expect_prop node feature and its meta data. The expected proportions feature is made using the prop node and edge features; therefore, the returned flowGraph will also contain these two features. For details on how these feature is calculated.

Value

flowGraph object containing the SpecEnr node feature.

References

Yue A, Chauve C, Libbrecht M, Brinkman R (2019). "Identifying differential cell populations in flow cytometry data accounting for marker frequency." *BioRxiv*, 837765.

fg_get_feature 21

See Also

 $flow Graph-class\ fg_feat_node_prop\ fg_add_feature\ fg_get_feature\ fg_rm_feature\ fg_get_feature_desc$

Examples

fg_get_feature

Retrieves a feature matrix.

Description

Retrieves a feature matrix from a given flowGraph object, the feature type, and feature name.

Usage

```
fg_get_feature(fg, type = "node", feature = "count")
```

Arguments

fg flowGraph object.

type A string indicating feature type 'node' or 'edge'.

feature A string indicating feature name;

Details

Returns NULL if the requested feature does not exist.

Value

A numeric matrix of the specified feature values.

See Also

flowGraph-class fg_get_feature_desc fg_add_feature fg_rm_feature fg_get_summary

22 fg_get_feature_desc

Examples

fg_get_feature_desc

Retrieves and/or recalculates a feature description table.

Description

Retrieves and/or recalculates a feature description table for a given flowGraph object.

Usage

```
fg_get_feature_desc(fg, re_calc = FALSE)
```

Arguments

fg flowGraph object.

re_calc A logical variable specifying whether or not a feature summary should be re-

calculated or directly retrieved from fg.

Value

A data frame where each row contains information on a feature from the given flowGraph object; its columns is as in the feat_desc slot of flowGraph-class.

See Also

```
flowGraph-class fg_get_feature fg_add_feature fg_rm_feature fg_get_summary_desc
```

fg_get_feature_means 23

```
fg_get_feature_means Retrieves feature summaries.
```

Description

Retrieves a feature summary (e.g. colMeans) for samples specified by sample id's id OR class label label for class given a feature specified by type and feat.

Usage

```
fg_get_feature_means(
   fg,
   type = c("node", "edge"),
   feature = "count",
   class = NULL,
   label = NULL,
   id = NULL,
   summary_fun = colMeans
)
```

Arguments

fg	flowGraph object.
type	A string indicating feature type the summary was created for 'node' or 'edge'.
feature	A string indicating feature name the summary was created for;
class	A string corresponding to a column name of the meta slot of fg whose values represent the class label of each sample on which the summary was created to compare or analyze;
label	A string indicating a class label.
id	A string vector containing the sample id's corresponding to the id column of the meta slot of fg .
summary_fun	A function that takes in a matrix and outputs a vector the same length as the number of columns this matrix has.

Value

A list containing two numeric vectors calculated using the summary_fun function on the subset of samples specified by sample id's id OR class label label for class class from a feature matrix specified by type and feat.

See Also

```
flowGraph-class fg_get_summary_desc fg_add_summary fg_rm_summary fg_get_summary
```

24 fg_get_graph

Examples

fg_get_graph

Retrieves a graph list from a given flowGraph object.

Description

Retrieves a graph list from a given flowGraph object.

Usage

```
fg_get_graph(fg)
```

Arguments

fg

flowGraph object.

Value

A list containing two data frames (v and]codee) from the graph slot of the given flowGraph object containing information on the cell populations phenotype nodes and edges representing relation between cell populations.

See Also

```
flowGraph-class fg_plot ggdf plot_gr
```

fg_get_markers 25

 $fg_get_markers$

Retrieves the markers from a given flowGraph object.

Description

Retrieves the markers from a given flowGraph object.

Usage

```
fg_get_markers(fg)
```

Arguments

fg

flowGraph object.

Value

A character vector containing the markers used in a flowGraph object.

See Also

```
flowGraph-class
```

Examples

fg_get_meta

Retrieves sample meta.

Description

Retrieves sample meta from a given flowGraph object.

Usage

```
fg_get_meta(fg)
```

Arguments

fg

flowGraph object.

26 fg_get_summary

Value

A data frame containing sample meta data.

See Also

```
flowGraph-class fg_replace_meta
```

Examples

 $fg_get_summary$

Retrieves a summary statistic.

Description

Retrieves a summary statistic from a given flowGraph object; while fg is required, the user can choose to input parameters summary_meta, index, or all of type, feat, test_name, class, label1, and label2. See fg_get_summary_desc for details.

Usage

```
fg_get_summary(
   fg,
   type = "node",
   index = NULL,
   summary_meta = NULL,
   adjust_custom = "byLayer",
   SpecEnr_filt = TRUE,
   summary_fun = colMeans,
   adjust0_lim = c(-0.1, 0.1),
   filter_adjust0 = 1,
   filter_es = 0,
   filter_btwn_tpthres = 0.05,
   default_p_thres = 1
)
```

27 fg_get_summary

Arguments

fg flowGraph object.

type A string indicating feature type the summary was created for 'node' or 'edge'. index The user must provide type and additionally, one of summary_meta or index. index is an integer indicating the row in fg_get_summary_desc(<flowGraph>)

of the corresponding type and summary the user would like to retrieve.

The user must provide type and additionally, one of summary_meta or index. summary_meta

> summary_meta is a list containing feat (feature name), test_name (summary statistic name), class (class), label1, and label2 (class labels compared). See

fg_get_summary_desc for details.

adjust_custom A function or a string indicating the test adjustment method to use. If a string is

> provided, it should be one of c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none") (see p.adjust.methods). If a function is provided, it should take as input a numeric vector and output the same vector ad-

justed.

SpecEnr_filt A logicle indicating whether or not to filter p-values for SpecEnr.

summary_fun A function that takes in a matrix and outputs a vector the same length as the number of columns this matrix has. Set to NULL to not calculate this summary

(i.e. returned list will not contain m1 and m2). See fg_get_feature_means.

A vector of two numeric values indicating a range around 0, default set to -0.1 adjust0_lim

and 0.1.

filter_adjust0 A numeric variable indicating what percentage of SpecEnr values compared

(minimum) should be not close to 0. Set to 1 to not conduct filtering. Origi-

nal p-values stored in values_original.

filter_es A numeric variable between 0 and 1 indicating what the Cohen's D value of the

nodes/edges in question must be greater or equal to, to be significant.

filter_btwn_tpthres

A numeric variable between 0 and 1 indicating the unadjusted T-test p-value threshold used to test whether the actual and expected feature values used to calculate the specified SpecEnr feature are significantly different for each sample class. Note this only needs to be specified for SpecEnr features. Combined with filter_btwn_es, we conduct three tests to understand if there is an actual large difference between actual and expected features: (1,2) T-test of significance between the actual and expected raw feature value (e.g. proportion) for samples in each of the compared classes, (3) and the T-test of significance between the differences of actual and expected feature values of the two classes. If any two of the three tests come out as insignificant, we set the p-value for the

associated node/edge to 1.

A numeric variable between 0 and 1 indicating what the Cohen's D value of filter_btwn_es the nodes/edges in question must be greater or equal to, to be significant – see

filter_btwn_tpthres.

default_p_thres

A numeric variable indicating the p-value threshold user is using. Currently, all nodes/edges not passing the filter criterion will be defaulted to 1; if this parameter is set, then all of these nodes/edges will be set to a minimum of default_p_thres.

28 fg_get_summary

Value

A list containing elements on feature summary retrieved by the user as in the summary slot of flowGraph-class. If summary_fun is not NULL, this list also includes:

- m1: a numeric vector the same length as values; this is a summary of the samples compared e.g. mean.
- m2: a numeric vector the same length as values; this is a summary of the samples compared e.g. mean.
- cohensd: a numberic vector indicating cohen's d values considering effect size.
- cohensd_size: a factor vector interpreting cohen's d values.
- adjust0: a numeric vector indicating the percentage of samples that have a SpecEnr value in the range of adjust0_lim around 0; if there are two classes of samples being compared, we output the smaller percentage between the two classes.
- btwn: a data frame containing columns:
 - tpv1: unadjusted p-value calculated between the actual and expected raw feature values of class 1.
 - tpv2: unadjusted p-value calculated between the actual and expected raw feature values of class 2.
 - cd1: Cohen's D between the actual and expected raw feature values of class 1.
 - cd2: Cohen's D between the actual and expected raw feature values of class 2.
 - btp: unadjusted p-value calculated between the difference between actual and expected raw feature of the two classes.
 - bcd: Cohen's D calculated between the difference between actual and expected raw feature of the two classes.
 - btp_: unadjusted p-value calculated between the log ratio between actual and expected raw feature of the two classes.
 - bcd_: Cohen's D calculated between the log ratio between actual and expected raw feature of the two classes.

See Also

 $flow Graph-class\ fg_get_feature_means\ fg_get_summary_desc\ fg_add_summary\ fg_rm_summary\ fg_get_feature$

fg_get_summary_desc 29

```
feat_summ <- fg_get_summary(fg, type="node", summary_meta=list(
    feature="SpecEnr", test_name="t", class="class",
    label1="control", label2="exp"))</pre>
```

fg_get_summary_desc

Retrieves a feature summary description table.

Description

Retrieves a feature summary description table for a given flowGraph object.

Usage

```
fg_get_summary_desc(fg)
```

Arguments

fg

flowGraph object.

Value

A data frame where each row contains information on a feature summary from fg:

- type: feature type (i.e. 'node' or 'edge').
- feat: feature name.
- test_name: summary name.
- class: class or the column name of fg_get_meta(fg) whose values represent the class label of each sample on which the summary was created for.
- label1: A string from the class column of the meta slot indicating the label of samples compared.
- label2: A string from the class column of the meta slot indicating the label of samples compared.

See Also

```
flowGraph-class fg_get_summary fg_add_summary fg_rm_summary fg_get_feature_desc
```

fg_get_summary_index Retrieves the index of the requested summary.

Description

Retrieves the index of the requested summary from a given flowGraph object.

Usage

```
fg_get_summary_index(fg, type = "node", index = NULL, summary_meta = NULL)
```

Arguments

fg	flowGraph object.
type	A string indicating feature type the summary was created for 'node' or 'edge'.
index	The user must provide type and additionally, one of summary_meta or index.
	index is an integer indicating the row in fg_get_summary_desc(<flowgraph>) of the corresponding type and summary the user would like to retrieve.</flowgraph>
summary_meta	The user must provide type and additionally, one of summary_meta or index.
	summary_meta is a list containing type (feature type: node or edge), feature
	(feature name), test_name (summary statistic name), class (class), lable1,
	and label2 (class labels compared). See fg_get_summary_desc for details.

Value

An integer analagous to index. If both index and summary_meta are NULL, returns 1.

See Also

```
flowGraph-class fg_get_summary_desc fg_add_summary fg_rm_summary fg_plot
```

fg_get_summary_tables Retrieves a table containing all node or edge summary statistics.

Description

Retrieves a table containing all node or edge summary statistics given a flowGraph object.

Usage

```
fg_get_summary_tables(fg, type = "node")
```

Arguments

fg flowGraph object.

type A string indicating feature type the summaries the user wants to retrieve were

created for, 'node' or 'edge'.

Value

A list; this output is the same as that of function fg_get_graph with additional columns. These columns contain summary statistics from the summary slot of the flowGraph object. These columns are named: <feature type: node/edge>.<feature>.<summary name>.<class>.<class labels>.

See Also

```
flow Graph-class\ fg\_get\_feature\_means\ fg\_get\_summary\_desc\ fg\_add\_summary\ fg\_rm\_summary\ fg\_get\_summary\ fg\_get\_feature
```

32 fg_gsub_ids

fg_gsub_ids Replace sample id's.	
----------------------------------	--

Description

Replace sample id's in a flowGraph object.

Usage

```
fg_gsub_ids(fg, ids_new, ids_old = NULL)
```

Arguments

fg	flowGraph object.
ids_new	A string vector of new sample id's; if ids_old is set to NULL, each id in ids_new should correspond to each id in fg_get_meta(fg)\$id.
ids_old	A string vector of old sample id's the user wants to replace; these marker names corresponding to those in fg_get_meta(fg)\$id with the same length as ids_new. If ids_old=NULL, ids_new should be the same length as fg_get_meta(fg)\$id.

Value

flowGraph object with sample id's replaced.

See Also

```
{\tt flowGraph-class} \ {\tt fg\_get\_feature\_desc} \ {\tt fg\_gsub\_markers}
```

fg_gsub_markers 33

fg_gsub_markers	Replace marker names.	
-----------------	-----------------------	--

Description

Replace marker names in a flowGraph object.

Usage

```
fg_gsub_markers(fg, markers_new, markers_old = NULL)
```

Arguments

fg flowGraph object.

A string vector of new marker names; if markers_old is set to NULL, each marker in markers_new should correspond to each marker in the markers slot of the flowGraph object.

A string vector of old marker names user wants to replace; these marker names corresponding to those in fg_get_markers(fg) with the same length as markers_new. If markers_old=NULL, markers_new should be the same length as fg_get_markers(fg).

Value

flowGraph object with marker names replaced.

See Also

```
flowGraph-class fg_gsub_ids
```

fg_load

fg_load

Load a flowGraph object from a specified folder path.

Description

Load a flowGraph object from a specified folder path.

Usage

```
fg_load(folder_path)
```

Arguments

folder_path

A string indicating the folder path to where a flowGraph object was saved using the fg_save function.

Details

```
see function fg_save
```

Value

flowGraph object

See Also

```
fg_save
```

fg_merge 35

fg_merge

Merges two flowGraph objects together.

Description

Merges two flowGraph objects together.

Usage

```
fg_merge(
  fg1,
  fg2,
  method_sample = c("union", "intersect", "setdiff", "none"),
  method_phenotype = c("intersect", "setdiff", "none")
)
```

Arguments

fg1 flowGraph object.

fg2 flowGraph object.

method_sample

A string indicating how samples from flowGraph objects should be merged:

- union: keep all samples from both flowGraph objects; in this case method_phenotype must be intersect.
- intersect: keep only samples that exist in both fg1 and fg2.
- setdiff: keep only samples that exist in fg1 and not in fg2.
- none: keep all samples in fg1.

method_phenotype

A string indicating how phenotypes from flowGraph objects should be merged:

- intersect: keep only phenotypes that exist in both fg1 and fg2.
- setdiff: keep only phenotypes that exist in fg1 and not in fg2.
- none: keep all phenotypes in fg1.

Details

fg_merge is a generic function that merges the samples and phenotypes of two flowGraph objects. Note that if method_sample="union" then method_phenotype must be set to "intersect".

Value

flowGraph object.

See Also

flowGraph-class fg_extract_samples fg_extract_phenotypes fg_merge_samples

36 fg_merge_samples

Examples

fg_merge_samples

Merges the samples from two flowGraph objects.

Description

Merges the samples from two flowGraph objects together; we recommend removing all summary statistics from the new flowGraph object as those won't be adjusted: fg_clear_summary.

Usage

```
fg_merge_samples(fg1, fg2)
```

Arguments

fg1 flowGraph object. fg2 flowGraph object.

Details

Appends the samples from fg2 onto those in fg1. This function requires that the two flowGraph objects must have the same phenotypes. Therefore, we recommend users to use, instead, fg_merge.

Value

flowGraph object.

See Also

flowGraph-class fg_get_feature_desc fg_merge fg_extract_samples

fg_plot

Examples

fg_plot

Creates a cell hierarchy plot.

Description

Creates a cell hierarchy plot given a flowGraph object. If a path is not provided for fg_plot to save the plot, please use plot_gr to view plot given the output of fg_plot.

Usage

```
fg_plot(
  fg,
  type = "node",
  index = 1,
  summary_meta = NULL,
  adjust_custom = "byLayer",
  show_nodes_edges = NULL,
  label_max = 30,
  p_{thres} = 0.05,
  filter_adjust0 = 1,
  filter_es = 0,
  filter_btwn_tpthres = 1,
  filter_btwn_es = 0,
  node_labels = c("prop", "expect_prop"),
  summary_fun = colMeans,
  layout_fun = NULL,
  show_bgedges = TRUE,
 main = NULL,
  interactive = FALSE,
  visNet_plot = TRUE,
  path = NULL,
 width = 9,
 height = 9
)
```

38 fg_plot

Arguments

fg flowGraph object.

type A string indicating feature type the summary was created for 'node' or 'edge'.

The user must provide type and additionally, one of summary_meta or index.

index is an integer indicating the row in fg_get_summary_desc(<flowGraph>)

of the corresponding type and summary the user would like to retrieve.

summary_meta The user must provide type and additionally, one of summary_meta or index.

summary_meta is a list containing feature (feature name), test_name (summary statistic name), class (class), label1, and label2 (class labels com-

pared). See fg_get_summary_desc for details.

adjust_custom A function or a string indicating the test adjustment method to use. If a string is

provided, it should be one of c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none") (see p.adjust.methods). If a function is provided, it should take as input a numeric vector and output the same vector ad-

justed.

show_nodes_edges

A logical vector indicating which nodes/edges (type) to show in the plot; if this is not specified, only nodes/edges with significant summary statistics will be

shown.

label_max An integer specifying the maximum number of nodes to label.

p_thres A double indicating a summary statistic threshold e.g. if we are plotting a T test

summary statistic, we can set the threshold to .05; nodes with a p-value greater

than .05 will not be plotted.

filter_adjust0 A numeric variable indicating what percentage of SpecEnr values compared

(minimum) should be not close to 0. Set to 1 to not conduct filtering.

filter_es A numeric variable between 0 and 1 indicating what the Cohen's D value of the

nodes/edges in question must be greater or equal to, to be significant.

filter_btwn_tpthres

A numeric variable between 0 and 1 indicating the unadjusted T-test p-value threshold used to test whether the actual and expected feature values used to calculate the specified SpecEnr feature are significantly different for each sample class. Note this only needs to be specified for SpecEnr features. Combined with filter_btwn_es, we conduct three tests to understand if there is an actual large difference between actual and expected features: (1,2) T-test of significance between the actual and expected raw feature value (e.g. proportion) for samples in each of the compared classes, (3) and the T-test of significance between the differences of actual and expected feature values of the two classes. If any two of the three tests come out as insignificant, we set the p-value for the

associated node/edge to 1.

filter_btwn_es A numeric variable between 0 and 1 indicating what the Cohen's D value of

the nodes/edges in question must be greater or equal to, to be significant – see

filter_btwn_tpthres.

node_labels A string vector indicating which node feature(s) should be used to label a node. We recommend keeping the length of this vector to below 2. Set to "NONE" if

no p-value labels are needed.

39 fg_plot

summary_fun	A function that takes in a matrix and outputs a vector the same length as the number of columns this matrix has; see fg_summary.
layout_fun	A string representing a function from the igraph package that indicates what layout should be used if a cell hierarchy is to be ploted; all such functions have prefix layout Only specify if different from the default one already calculated in the fg flowGraph object given.
show_bgedges	A logical variable indicating whether or not edges not specified for plotting should be plotted as light grey in the background.
main	A string or the title of the plot; if left as NULL, a default title will be applied.
interactive	A logical variable indicating whether the plot should be an interactive plot; see package ggiraph.
visNet_plot	A logical variable indicating if an interactive plot is chosen, if function should output a visNetwork plot; if set to FALSE, ggplot's girafe will be used instead.
path	A string indicating the path to where the function should save the plot; leave as NULL to not save the plot. Static plots are saved as PNG, interactive plots are saved as HTML.
width	A numeric variable specifying, in inches, what the plot width should be.
height	A numeric variable specifying, in inches, what the plot height should be.
S	

Details

fg_plot takes a flowGraph object as input and returns the graph slot of the given object with additional columns to serve as input into plot_gr for plotting using functions in the ggplot2 package. Users can choose to save a PNG version of the plot by filling out the path parameter with a full path to the PNG plot. In addition to specifying columns added from ggdf, fg_plot also adds label column(s) whose values serve as labels in the interactive version of the plot.

Value

A list of nodes and edges for plotting with the plot_gr function. Other elements in this list include show_bgedges, which has the same value as parameter show_bgedges, and main, the title of the plot.

See Also

flowGraph-class get_phen_meta ggdf plot_gr fg_get_feature fg_get_summary

Examples

```
no_cores <- 1
data(fg_data_pos2)
fg <- flowGraph(fg_data_pos2$count, class=fg_data_pos2$meta$class,</pre>
                no_cores=no_cores)
gr <- fg_plot(fg, type="node", index=1, label_max=30,</pre>
  show_nodes_edges=NULL, p_thres=.01, node_labels=c("prop", "expect_prop"),
  path=NULL) # set path to a full path to save plot as a PNG
# plot_gr(gr)
```

40 fg_plot_box

fg_plot_box

Creates a boxplot of the values of one node/edge

Description

Creates a boxplot comparing the features of samples belonging to different classes corresponding to an existing summary statistic using ggplot2.

Usage

```
fg_plot_box(
  fg,
  type = "node",
  index = 1,
  summary_meta = NULL,
 node\_edge = 1,
 adjust_custom = "byLayer",
 p_{thres} = 0.05,
 filter_adjust0 = 0.5,
 filter_es = 0.5,
  filter_btwn_tpthres = 0.05,
  filter_btwn_es = 0.5,
  paired = FALSE,
 dotplot = TRUE,
 outlier = TRUE,
 all_labels = FALSE,
  show_mean = TRUE,
 main = NULL,
 path = NULL
)
```

Arguments

fg	flowGraph object.
type	A string indicating feature type the summary was created for 'node' or 'edge'.
index	The user must provide type and additionally, one of summary_meta or index.
	index is an integer indicating the row in fg_get_summary_desc(<flowgraph>) of the corresponding type and summary the user would like to retrieve.</flowgraph>
summary_meta	The user must provide type and additionally, one of summary_meta or index.
	summary_meta is a list containing feature (feature name), test_name (summary statistic name), class (class), label1, and label2 (class labels compared). See fg_get_summary_desc for details.
node_edge	An integer/index of or a string of the cell population (node) / edge name (edge) the user wants to plot.

fg_plot_box 41

adjust_custom A function or a string indicating the test adjustment method to use. If a string is

> provided, it should be one of c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none") (see p.adjust.methods). If a function is provided, it should take as input a numeric vector and output the same vector ad-

justed.

p_thres A numeric variable indicating a p-value threshold

filter_adjust0 A numeric variable indicating what percentage of SpecEnr values compared

(minimum) should be not close to 0. Set to 1 to not conduct filtering.

filter_es A numeric variable between 0 and 1 indicating what the Cohen's D value of the

nodes/edges in question must be greater or equal to, to be significant.

filter_btwn_tpthres

A numeric variable between 0 and 1 indicating the unadjusted T-test p-value threshold used to test whether the actual and expected feature values used to calculate the specified SpecEnr feature are significantly different for each sample class. Note this only needs to be specified for SpecEnr features. Combined with filter_btwn_es, we conduct three tests to understand if there is an actual large difference between actual and expected features: (1,2) T-test of significance between the actual and expected raw feature value (e.g. proportion) for samples in each of the compared classes, (3) and the T-test of significance between the differences of actual and expected feature values of the two classes. If any two of the three tests come out as insignificant, we set the p-value for the

associated node/edge to 1.

filter_btwn_es A numeric variable between 0 and 1 indicating what the Cohen's D value of

the nodes/edges in question must be greater or equal to, to be significant – see

filter_btwn_tpthres.

paired A logical indicating whether the summary is paired. dotplot A logical indicating whether or not to plot sample points.

A logical indicating whether or not outliers should be plotted. all_labels A logical indicating whether or not to plot samples of all classes outside of just

those used in the summary statistic test.

show_mean A logical indicating whether or not to label the mean.

main A string or the title of the plot; if left as NULL, a default title will be applied.

A string indicating the path to where the function should save the plot; leave as path

NULL to not save the plot. Static plots are saved as PNG.

Details

outlier

The plot is made using the ggplot2 package. The interactive version is the same as the static version, it is only here to support the shiny app.

Value

A static boxplot.

See Also

flowGraph-class fg_plot plot_gr fg_get_feature fg_get_summary fg_plot_qq

42 fg_plot_pVSdiff

Examples

fg_plot_pVSdiff

Creates a p value vs feature difference plot

Description

Creates a p value vs feature difference plot where the difference is that of the features of samples belonging to different classes corresponding to an existing summary statistic.

Usage

```
fg_plot_pVSdiff(
  fg,
  type = "node",
  index = 1,
  summary_meta = NULL,
  adjust_custom = "byLayer",
  logged = TRUE,
  label_max = 5,
  p_{thres} = 0.05,
  filter_adjust0 = 1,
  filter_es = 0,
  filter_btwn_tpthres = 1,
  filter_btwn_es = 0,
  shiny_plot = FALSE,
  nodes_max = 30,
 main = NULL,
  interactive = FALSE,
  path = NULL
)
```

Arguments

fg flowGraph object.

type A string indicating feature type the summary was created for 'node' or 'edge'.

index The user must provide type and additionally, one of summary_meta or index. index is an integer indicating the row in fg_get_summary_desc(<flowGraph>)

of the corresponding type and summary the user would like to retrieve.

fg_plot_pVSdiff 43

summary_meta The user must provide type and additionally, one of summary_meta or index.

summary_meta is a list containing feature (feature name), test_name (summary statistic name), class (class), label1, and label2 (class labels com-

pared). See fg_get_summary_desc for details.

adjust_custom A function or a string indicating the test adjustment method to use. If a string is

provided, it should be one of c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none") (see p.adjust.methods). If a function is provided, it should take as input a numeric vector and output the same vector ad-

justed.

logged A logical indicating whether or not to log the summary statistic p value.

label_max An integer indicating the maximum number of max difference and/or min p

value nodes/edges that should be labelled.

p_thres A numeric variable indicating a p-value threshold; a line will be plotted at this

threshold.

filter_adjust0 A numeric variable indicating what percentage of SpecEnr values compared

(minimum) should be not close to 0. Set to 1 to not conduct filtering.

filter_es A numeric variable between 0 and 1 indicating what the Cohen's D value of the

nodes/edges in question must be greater or equal to, to be significant.

filter_btwn_tpthres

A numeric variable between 0 and 1 indicating the unadjusted T-test p-value threshold used to test whether the actual and expected feature values used to calculate the specified SpecEnr feature are significantly different for each sample class. Note this only needs to be specified for SpecEnr features. Combined with filter_btwn_es, we conduct three tests to understand if there is an actual large difference between actual and expected features: (1,2) T-test of significance between the actual and expected raw feature value (e.g. proportion) for samples in each of the compared classes, (3) and the T-test of significance between the differences of actual and expected feature values of the two classes. If any two of the three tests come out as insignificant, we set the p-value for the

associated node/edge to 1.

filter_btwn_es A numeric variable between 0 and 1 indicating what the Cohen's D value of

the nodes/edges in question must be greater or equal to, to be significant – see

filter_btwn_tpthres.

shiny_plot A logical indicating whether this plot is made for shiny; users don't need to

change this.

nodes_max An integer indicating maximum number of nodes to plot; this limit is set for

interactive plots only.

main A string or the title of the plot; if left as NULL, a default title will be applied.

interactive A logical variable indicating whether the plot should be an interactive plot; see

package ggiraph.

path A string indicating the path to where the function should save the plot; leave as

NULL to not save the plot. Static plots are saved as PNG.

Details

The interactive plot is made using the ggiraph package.

fg_plot_qq

Value

A static or interactive p value vs difference plot.

See Also

```
flowGraph-class fg_plot plot_gr fg_get_feature fg_get_summary fg_plot_qq
```

Examples

fg_plot_qq

Creates a QQ plot of a summary statistic.

Description

Creates a QQ plot of a summary statistic.

Usage

```
fg_plot_qq(
  fg,
  type = "node",
  index = 1,
  summary_meta = NULL,
  adjust_custom = "byLayer",
  logged = TRUE,
  p_{thres} = 0.05,
  filter_adjust0 = 1,
  filter_es = 0,
  filter_btwn_tpthres = 1,
  filter_btwn_es = 0,
  shiny_plot = FALSE,
 main = NULL,
 interactive = FALSE,
  path = NULL
)
```

fg_plot_qq 45

Arguments

fg flowGraph object.

type A string indicating feature type the summary was created for 'node' or 'edge'.

index The user must provide type and additionally, one of summary_meta or index.

index is an integer indicating the row in fg_get_summary_desc(<flowGraph>)

of the corresponding type and summary the user would like to retrieve.

summary_meta The user must provide type and additionally, one of summary_meta or index.

summary_meta is a list containing feature (feature name), test_name (summary statistic name), class (class), label1, and label2 (class labels com-

pared). See fg_get_summary_desc for details.

adjust_custom A function or a string indicating the test adjustment method to use. If a string is

provided, it should be one of c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none") (see p.adjust.methods). If a function is provided, it should take as input a numeric vector and output the same vector ad-

justed.

logged A logical indicating whether or not to log the summary statistic p value.

p_thres A double indicating a summary statistic threshold e.g. if we are plotting a T-test

summary statistic, we can set the threshold to .05; nodes with a p-value greater

than .05 will not be plotted.

filter_adjust0 A numeric variable indicating what percentage of SpecEnr values compared

(minimum) should be not close to 0. Set to 1 to not conduct filtering.

filter_es A numeric variable between 0 and 1 indicating what the Cohen's D value of the

nodes/edges in question must be greater or equal to, to be significant.

filter_btwn_tpthres

A numeric variable between 0 and 1 indicating the unadjusted T-test p-value threshold used to test whether the actual and expected feature values used to calculate the specified SpecEnr feature are significantly different for each sample class. Note this only needs to be specified for SpecEnr features. Combined with filter_btwn_es, we conduct three tests to understand if there is an actual large difference between actual and expected features: (1,2) T-test of significance between the actual and expected raw feature value (e.g. proportion) for samples in each of the compared classes, (3) and the T-test of significance between the differences of actual and expected feature values of the two classes. If any two of the three tests come out as insignificant, we set the p-value for the

associated node/edge to 1.

filter_btwn_es A numeric variable between 0 and 1 indicating what the Cohen's D value of

the nodes/edges in question must be greater or equal to, to be significant - see

filter_btwn_tpthres.

shiny_plot A logical indicating whether this plot is made for shiny; users don't need to

change this.

main A string or the title of the plot; if left as NULL, a default title will be applied.

interactive A logical indicating whether or not plot should be an interactive ggiraph plot as

opposed to a static plot.

46 fg_replace_meta

path

A string indicating the path to where the function should save the plot; leave as NULL to not save the plot. Static plots are saved as PNG, interactive plots are saved as HTML.

Details

The interactive plot is made using the ggiraph package.

Value

A static or interactive qq plot.

See Also

```
flowGraph-class fg_plot plot_gr fg_get_feature fg_get_summary
```

Examples

fg_replace_meta

Replaces sample meta.

Description

Replaces sample meta in a given flowGraph object.

Usage

```
fg_replace_meta(fg, meta)
```

Arguments

fg flowGraph object.

meta A data frame containing meta data; see details in flowGraph-class.

Value

A flowGraph object with an updated sample meta.

fg_rm_feature 47

See Also

```
flowGraph-class fg_get_meta
```

Examples

fg_rm_feature

Removes a feature.

Description

Removes a feature from a given flowGraph object.

Usage

```
fg_rm_feature(fg, type = "node", feature = NULL)
```

Arguments

fg flowGraph object.

type A string specifying the type of the feature being removed i.e. 'node' or 'edge'.

feature A string indicating the unique name of the feature removed; note we cannot

remove the 'node' 'count' feature type.

Details

fg_rm_feature removes a specified feature matrix from the given flowGraph object fg updating slots feat and feat_desc. See flowGraph-class slot feat and feat_desc for what should be in these slots.

Value

flowGraph object with specified feature removed.

48 fg_rm_summary

See Also

flowGraph-class fg_add_feature fg_get_feature fg_get_feature_desc fg_rm_summary

Examples

fg_rm_summary

Removes a feature summary.

Description

Removes a feature summary from a given flowGraph object; while fg is required, the user can choose to input parameters summary_meta, index, or all of type, feat, test_name, class, label1, and label2. See fg_get_summary_desc for details.

Usage

```
fg_rm_summary(fg, type = "node", index = NULL, summary_meta = NULL)
```

Arguments

fg flowGraph object.

type A string indicating feature type the summary was created for; 'node' or 'edge'.

The user must provide type and additionally, one of summary_meta or index.

index is an integer indicating the row in fg_get_summary_desc(<flowGraph>)

of the corresponding type and summary the user would like to retrieve.

The user must provide type and additionally, one of summary_meta or index.

summary_meta is a list containing feat (feature name), test_name (summary statistic name), class (class), label1, and label2 (class labels compared). See fg_get_summary_desc for details.

Value

flowGraph object.

See Also

flowGraph-class fg_get_summary fg_add_summary fg_get_summary_desc fg_rm_feature

fg_save 49

Examples

fg_save

Saves flowGraph object to a specified path.

Description

Saves flowGraph object to a specified path.

Usage

```
fg_save(fg, folder_path = NULL, save_plots = TRUE, paired = FALSE, ...)
```

Arguments

folder_path

A string indicating the folder path to where the flowGraph object should save its elements; if this is the first time the object is being saved, this folder should be empty or if it is not yet created, the function will create it. If the object has previously been saved before and this parameter is set to NULL, the function will save the object into the save folder it was previously saved in.

save_plots A logical indicating whether or not to save plots.

paired A logical indicating whether the summary is paired; used in function fg_plot_box.

... Other parameters for the fg_save_plots function.

Details

See generated README.md file.

Value

TRUE if flowGraph object successfully saved.

fg_save_plots

See Also

```
length,c("nrow", "nrow"),NULL map
```

Examples

fg_save_plots

Saves numerous plots for all summary statistics to a folder.

Description

Saves numerous plots for all summary statistics in a given flowGraph object to a user specified folder.

Usage

```
fg_save_plots(
  fg,
 plot_path,
 plot_types = "node",
  interactive = FALSE,
  adjust_custom = "byLayer",
  label_max = 10,
 box_no = 20,
  paired = FALSE,
  logged = FALSE,
  filter_adjust0 = 1,
  filter_es = 0,
  filter_btwn_tpthres = 1,
  filter_btwn_es = 0,
  overwrite = TRUE,
 node_labels = "NONE",
)
```

Arguments

fg flowGraph object.

plot_path A string indicating the folder path to where the function should save the plots.

fg_save_plots 51

plot_types A string or a vector of strings indicating what feature types and their summaries

the function should plot for: 'node' or 'edge'.

interactive A logical indicating whether the QQ plot, p-value vs difference plot, and the cell

hierarchy plots should be interactive; see functions fg_plot and fg_plot_qq.

adjust_custom A function or a string indicating the test adjustment method to use. If a string is

provided, it should be one of c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none") (see p.adjust.methods). If a function is provided, it should take as input a numeric vector and output the same vector ad-

justed.

label_max An integer indicating how many labels should be shown in the functions fg_plot_pVSdiff

and fg_plot.

box_no An integer indicating the maximum number of boxplots to save; used in function

fg_plot_box.

paired A logical indicating whether the summary is paired; used in function fg_plot_box.

logged A logical indicating whether or not to log the summary statistic p value in the

qq plots.

filter_adjust0 A numeric variable indicating what percentage of SpecEnr values compared

(minimum) should be not close to 0. Set to 1 to not conduct filtering. This

parameter is used for the QQ and the pVSdifference plots.

filter_es A numeric variable between 0 and 1 indicating what the Cohen's D value of the

nodes/edges in question must be greater or equal to, to be significant.

filter_btwn_tpthres

A numeric variable between 0 and 1 indicating the unadjusted T-test p-value threshold used to test whether the actual and expected feature values used to calculate the specified SpecEnr feature are significantly different for each sample class. Note this only needs to be specified for SpecEnr features. Combined with filter_btwn_es, we conduct three tests to understand if there is an actual large difference between actual and expected features: (1,2) T-test of significance between the actual and expected raw feature value (e.g. proportion) for samples in each of the compared classes, (3) and the T-test of significance between the differences of actual and expected feature values of the two classes. If any two of the three tests come out as insignificant, we set the p-value for the

associated node/edge to 1.

filter_btwn_es A numeric variable between 0 and 1 indicating what the Cohen's D value of

the nodes/edges in question must be greater or equal to, to be significant – see

filter_btwn_tpthres.

overwrite A logical variable indicating whether or not to replace old plots if they exist

under the same folder name.

node_labels Parameter for the fg_plot function.

... Other parameters for the fg_plot function.

Details

The interactive plots are made using the ggiraph package.

52 fg_set_layout

Value

No return; plots are saved to file.

See Also

```
\label{lem:class} fg\_plot\_plot\_gr\ fg\_get\_feature\ fg\_get\_summary\ fg\_plot\_qq\ fg\_plot\_pVSdiff\ fg\_plot\_box
```

Examples

fg_set_layout

Determines cell hierarchy layout.

Description

Determines cell hierarchy layout and returns the X, Y coordinate of each cell population. This function is a wrapper for set_layout_graph .

Usage

```
fg_set_layout(fg, layout_fun = "layout.reingold.tilford")
```

Arguments

fg flowGraph object.

layout_fun A string version of a function name from the igraph package that indicates what

layout should be used if a cell hierarchy is to be ploted; all such functions have

prefix layout_e.g. layout_fun="layout.reingold.tilford".

Details

Given a flowGraph object, modifies the graph slot such that it contains X, Y axes for each node in accordance to a user specified layout.

Value

flowGraph object with coordinate meta data on cell populations and edges for plotting use.

fg_summary 53

Examples

fg_summary

Calculates feature summary statistics.

Description

Calculates feature summary statistics for flowGraph features; users can choose from a list of statistical significance tests/adjustments or define custom summary functions. For special cases, see example in function fg_add_summary on how to manually calculate summary statistics without using this function.

Usage

```
fg_summary(
  fg,
  no\_cores = 1,
  class = "class",
  label1 = NULL,
  label2 = NULL,
  class_labels = NULL,
  node_features = "SpecEnr",
  edge_features = "NONE",
  test_name = "t_diminish",
  diminish = TRUE,
  p_{thres} = 0.05,
  p_rate = 2,
  test_custom = "t",
  effect_size = TRUE,
  adjust0 = TRUE,
  adjust0_lim = c(-0.1, 0.1),
  btwn = TRUE,
  btwn_test_custom = "t",
  save_functions = FALSE,
  overwrite = FALSE
)
```

54 fg_summary

Arguments

fg flowGraph object.

no_cores An integer indicating how many cores to parallelize on.

class A string corresponding to the column name or index of fg_get_meta(fg) whose

values represent the class label of each sample.

label1 A string from the class column of the meta slot indicating one of the labels

compared to create the summary statistic. If you would like to compare all other class labels against one label, set label2 to NULL. If you would like to compare

all labels against all labels, set label1 and label2 to NULL.

label2 A string from the class column of the meta slot indicating one of the labels

compared to create the summary statistic.

class_labels A list of vectors, each containing two strings represeting labels to compare;

this parameter is an alternative to parameters label1 and label2 that supports

multiple label pairings.

node_features A string vector indicating which node feature(s) to perform summary statistics

on; set to NULL or "NONE" and the function will perform summary statistics on

all or no node features.

edge_features A string vector indicating which edge feature(s) to perform summary statistics

on; set to NULL or "NONE" and the function will perform summary statistics on

all or no edge features.

test_name A string with the name of the test you are performing.

diminish A logical variable indicating whether to use diminishing summary statistics; if

TRUE, a summary statistic for a node or edge will only be done if at least one of its parent node or edge is significant. Otherwise, the test will be performed on

all nodes or edges.

p_thres A double indicating the summary statistic threshold; if the result of a statistical

test is greater than p_thres, then it is insignificant.

p_rate A double; if diminish=TRUE, then p_rate needs to be specified. to determine

whether or not a node or edge's parent is significant, we use p_thres. However, the higher the layer on which a node resides or to which an edge points to, the less stringent this p_thres should be. Therefore, we set p_thres as the threshold for the parent node or edge of the last layer and multiply p_thres by p_rate for each increasing layer e.g. given default values and 4 layers, the

thresholds for layers 1 through 4 would be .4, .2, .1, and .05.

test_custom A function or a string indicating the statistical test to use. If a string is pro-

vided, it should be one of c("t", "wilcox", "ks", "var", "chisq"); these correspond to statistical tests stats::t.test, stats::wilcox.test, and so on. If a function is provided, it should take as input two numeric vectors and output a

numeric variable.

effect_size A logical variable indicating whether or not to calculate effect size statistic (co-

hen's d) for this set of class labels; later used for plotting.

adjust0 A logical variable indicating whether or not to calculate the minimum percent-

age of values from samples of each class label that falls within the range of adjust0_lim. This is only done for SpecEnr values as p-values become unsta-

ble when comparing near 0 values.

flowGraph 55

adjust0_lim A vector of two numeric values indicating a range around 0, default set to -0.1

and 0.1.

btwn A logical variable indicating whether or not to calculate the btwn data frame

given in the fg_get_summary function.

btwn_test_custom

Same as test_custom but for btwn.

save_functions A logical variable indicating whether to save test and adjust functions.

overwrite A logical variable indicating whether to overwrite the existing summary statis-

tics if it exists.

Details

fg_summary calculates a summary statistic as specified by the user in parameters test_name, diminish (p_thres, p_rate), and test_custom. The test is done for a node or edge feature of interest within a given flowGraph object as specified by parameters node_features, edge_features. It then returns information on the summary statistic inside the same flowGraph object and returns it to the user. See flowGraph-class slot summary for details on the contents.

Value

flowGraph object containing claculated summary statistics.

See Also

```
flowGraph-class fg_clear_summary
```

Examples

56 flowGraph

Description

Initializes a flowGraph object given the cell counts for one or more flow cytometry sample(s). The flowGraph object returned holds meta data for each sample, each cell population node, edges representing how each cell population node relate to one another, and features for these nodes and edges.

Usage

```
flowGraph(
  input_,
 meta = NULL,
  class = "class",
  no\_cores = 1,
 markers = NULL,
  layout_fun = "layout.reingold.tilford",
 max_layer = NULL,
  cumsumpos = FALSE,
  prop = TRUE,
  specenr = TRUE,
  path = NULL,
  calculate_summary = TRUE,
  node_features = "SpecEnr",
  edge_features = "NONE",
  test_name = "t_diminish",
  test_custom = "t",
  diminish = TRUE,
  label1 = NULL,
 label2 = NULL,
  save_plots = FALSE
)
```

Arguments

Any of the following: input_

> • a numeric matrix or vector of the cell counts; its column/names must be the phenotype names and its rownames must be sample ID's.

All input samples should have the same markers and partitionsPerMarker.

A data frame with meta data for each Phenotypes or sample; One of its column names should be "id" whose values correspond to the name of each Phenotypes

> object. We also recommend for it to have a column named "class" where one of its unique values is "control".

class A string corresponding to the column name or index of meta whose values rep-

resent the class label of each sample; OR a vector the same length as the the number of samples in input_ specifiying the class of each given sample — this

vector will be appended to meta under column name class.

An integer indicating how many cores to parallelize on. no_cores

markers A string vector of marker names used in input_.

meta

flowGraph 57

layout_fun A string of a function from the igraph package that indicates what layout should be used if a cell hierarchy is to be ploted; all such functions have prefix layout_. This is defaulted to e.g. layout_fun="layout.reingold.tilford". And integer indicating the maximum layer in the cell hierarchy to analyze; set max_layer to 'NULL' to analyze all layers. A logical variable indicating whether or not to cumulate cell counts; this applies cumsumpos only when partitionsPerMarker > 3 and will convert e.g. the count of A+ or A++ into the sum of the counts of A+, A++, A+++, ..., or A++, A+++, ... A logical variable indicating whether or not to calculate the proportion feature; prop this can be done later on with flowGraph_prop. logical variable: whether or not to calculate the SpecEnr feature, Default: T specenr path A string indicating the folder path to where the flowGraph object should save its elements, Default = NULL (don't save). calculate summary A logical variable indicating whether or not to calculate the summary statistics for SpecEnr based on default parameters using the fg_summary summary function on class specified in parameter class. A string vector indicating which node feature(s) to perform summary statistics node_features on; set to NULL or "NONE" and the function will perform summary statistics on all or no node features. edge_features A string vector indicating which edge feature(s) to perform summary statistics on; set to NULL or "NONE" and the function will perform summary statistics on all or no edge features. test_name A string with the name of the test you are performing. test_custom See fg_summary. diminish A logical variable; applicable if calculate_summary is TRUE; see fg_summary. label1 A string indicating a class label in fg_get_meta(fg)[,class]; set to NULL if you would like to compare all classes aganst all classes; applicable if calculate_summary is TRUE. label2 A string indicating a class label in fg_get_meta(fg)[,class]; applicable if calculate_summary is TRUE. save_plots A logical indicating whether or not to save plots.

Details

flowGraph is the constructor for the flowGraph object. The user can choose to input as input_a vector, a Phenotypes object (meaning there is only one sample), a matrix, or a Phenotypes object list. If the user is also inputting a sample meta data frame, it must contain a id column corresponding to sample names.

Value

flowGraph object

58 flowGraph-class

See Also

 $flow Graph-class\ fg_get_feature\ fg_get_feature_desc\ fg_get_summary\ fg_get_summary_desc\ fg_add_feature\ fg_rm_feature\ fg_add_summary\ fg_rm_summary\ fg_gsub_markers\ fg_gsub_ids\ fg_merge_samples\ fg_extract_samples\ fg_extract_phenotypes\ fg_merge\ registerDoParallel\ Matrix$

Examples

```
no_cores <- 1
samplen <- 10
meta_file <- data.frame(</pre>
    id=1:samplen,
   class=append(rep("control", samplen/2), rep("exp", samplen/2)),
   stringsAsFactors=FALSE
)
## using the constructor -----
data(fg_data_pos30)
# input: vector of load-able Phenotypes paths
fg <- flowGraph(fg_data_pos30$count[1,], no_cores=no_cores)</pre>
# input: matrix + vector of class corresponding to samples
fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos30$meta$class,</pre>
                no_cores=no_cores)
# - save to file directly
# fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos30$meta$class,</pre>
                 no_cores=no_cores, path="path_to_folder)
# input: matrix + meta data frame
# fg <- flowGraph(fg_data_pos30$count, meta=fg_data_pos30$meta,</pre>
                  no_cores=no_cores)
```

flowGraph-class

'flowGraph': A class for storing cell count feature values for the Phenotype class.

Description

'flowGraph': A class for storing cell count feature values for the Phenotype class.

Usage

```
## S4 method for signature 'flowGraph'
show(object)
```

flowGraph-class 59

Arguments

object A flowGraph object.

Value

a flowGraph object.

Methods (by generic)

· show: show method

Slots

feat A list containing elements node and edge, each containing a list with feature values; each element in this list is named by the feature name and contains a numeric matrix with the sample id's as row names and cell populations phenotype labels or edge labels as column names. Column names for edge features are labelled as <from>_<to> e.g. A+_A+B+.

feat_desc A list containing elements node and edge, each containing a data frame describing the features in the feat slot with columns:

- feat: feature name.
- nrow: number of samples.
- ncol: number of nodes or edges.
- inf: number of infinite values in the matrix.
- neginf: number of negative infinite values in the matrix.
- na: number of NA values in the matrix.
- nan: number of NaN values in the matrix.
- neg: number of negative values in the matrix.
- pos: number of positive values in the matrix.
- zero: number of 0's in the matrix.
- max: The maximum value in the matrix.
- min: The minimum value in the matrix.

summary A list containing elements node and edge, each containing a list with a feature summary list; each feature summary in this list contains elements:

- values: a numeric vector the same length as the number of nodes or edges.
- test_custom: a function or a string name of the summary test method used.

summary_desc A list containing elements node and edge, each containing a data frame describing the features in feat with columns:

- feat: A string indicating feature name the summary was created for.
- test_name: A string containing the name of the summary.
- class: A string corresponding to the column name of the meta slot whose values represent the class label of each sample on which the summary was created to compare or analyze.
- label1: A string from the class column of the meta slot indicating one of the labels compared to create the summary statistic.

60 flowGraph-class

• label2: A string from the class column of the meta slot indicating one of the labels compared to create the summary statistic.

meta A data frame containing the column(s) id (sample id's corresponding to row names of features in the feat slot) and any other meta data pertaining to samples being analyzed.

markers A character vector containing markers used.

edge_list A list containing elements child and parent. These elements contain an edge list from child to parent and vice versa.

graph A list containing data frames v and e with information on cell population nodes and edges. v contains columns:

- phenotype: The cell population node label names e.g. A+B+C+.
- phenocode: A string of "0", "1", "2", ... indicating the whether each marker is expressed on a cell population.
- phenolayer: The layer on which a cell population resides i.e. the numer of markers in its phenotype label.
- phenogroup: The markers used the make up the phenotype.

plot_layout A string indicating the name of the igraph layout function used to layout the cell population nodes for plotting.

etc A list containing other information (see fg_get_summary for other things stored in this slot):

- cumsumpos: A logical indicating whether cell counts in flowGraph object contains cumulated cell counts; this is optional and can be done only for there is more than one threshold for one or more markers. This should also only be ran when initializing a flowGraph object as converting back and forth is computationally expensive. If the user is interested in seeing non- and cumulated counts, we recommend keeping two flowGraph objects, one for each version. This function simply converts e.g. the count of A+ or A++ into the sum of count of A+, A++, and A+++ or A++, and A+++.
- class_mean_normalized: A logical indicating whether the features in the flowGraph object has been normalized according to some sample meta e.g. subject.
- save: A list containing a string indicating the save ID of the object and a string indicating path where the object is saved used in function save_fg to identify whether or not to save to the same folder.

Creating Objects

Objects can be created using new("flowFrame") or the constructor flowGraph, with mandatory argument input_. Creating objects using new is discouraged.

Methods

'object' represents a flowGraph object.

- show(fg): Shows a description of the flowGraph object.
- fg_get_meta: Retrieves the sample meta data from a given flowGraph object. See fg_get_meta.
- fg_get_graph: Retrieves the cell population (v) and edge (e) meta data from a given flowGraph object. See fg_get_graph.
- fg_get_feature: Retrieves the numeric feature matrix requested by the user from a given flowGraph object. See fg_get_feature.

flowGraphSubset 61

• fg_get_summary: Retrieves the feature summary list requested by the user from a given flowGraph object. See fg_get_summary.

- fg_get_feature_desc: Retrieves the data frame from the feat_desc slot of a given flowGraph object. See fg_get_feature_desc.
- fg_get_summary_desc: Retrieves the data frame from the summary_desc slot of a given flowGraph object. See fg_get_summary_desc.
- fg_add_feature: Adds a feature to a given flowGraph object; we do not recommend users directly use this method, instead please use wrapper functions e.g. fg_feat_node_prop, fg_feat_node_specenr, See fg_add_feature.
- fg_rm_feature: Removes a user specified feature from a given flowGraph object. See fg_rm_feature.
- fg_add_summary: Adds a feature to a given flowGraph object; we do not recommend users directly use this method, instead please use wrapper function fg_summary.
- fg_clear_summary: Removes all feature summaries from a given flowGraph object. See fg_clear_summary.
- fg_rm_summary: Removes a user specified feature summaries from a given flowGraph object. See fg_rm_summary.
- fg_gsub_markers: Substitutes marker names in a given flowGraph object. See fg_gsub_markers.
- fg_gsub_ids: substitutes sample id's in a flowGraph object See fg_gsub_ids.
- fg_merge_samples: Merges the samples of two flowGraph objects; we recomment users use the wrapper function fg_merge instead. See fg_merge_samples.
- fg_extract_samples: Extract data for specific samples from a flowGraph object. See fg_extract_samples.
- fg_extract_phenotypes: Extract data for specific cell population nodes from a flowGraph object. See fg_extract_phenotypes.
- fg_merge: Merges two given flowGraph objects. See fg_merge.
- fg_set_layout: Sets layout for cell population nodes for the purpose of plotting. See fg_set_layout.
- fg_plot: Plots cell hierarchies in the flowGraph object. See fg_plot.

Examples

showClass("flowGraph")

flowGraphSubset

flowGraph object constructor.

Description

Initializes a flowGraph object given the cell counts for one or more flow cytometry sample(s). The flowGraph object returned holds meta data for each sample, each cell population node, edges representing how each cell population node relate to one another, and features for these nodes and edges.

62 flowGraphSubset

Usage

```
flowGraphSubset(
  input_,
  meta = NULL,
  class = "class",
  no_cores = 1,
  markers = NULL,
  layout_fun = "layout.reingold.tilford",
  max_layer = NULL,
  cumsumpos = FALSE,
  path = NULL,
  summary_pars = flowGraphSubset_summary_pars(),
  summary_adjust = flowGraphSubset_summary_adjust(),
  save_plots = TRUE
)
```

Arguments

input_ a numeric matrix of the cell counts; its column/names must be the phenotype

names and its rownames must be sample ID's.

meta A data frame with meta data for each Phenotypes or sample; One of its column

names should be "id" whose values correspond to the name of each Phenotypes object. We also recommend for it to have a column named "class" where one of

its unique values is "control".

class A string corresponding to the column name or index of meta whose values rep-

resent the class label of each sample, Default: 'class'

no_cores An integer indicating how many cores to parallelize on, Default: 1

markers A string vector of marker names used in input_, Default: NULL

layout_fun A string of a function from the igraph package that indicates what layout should

be used if a cell hierarchy is to be ploted; all such functions have prefix layout_.

This is defaulted to e.g. layout_fun="layout.reingold.tilford".

max_layer And integer indicating the maximum layer in the cell hierarchy to analyze; set

to 'NULL' to analyze all layers.

cumsumpos A logical variable indicating whether or not to cumulate cell counts; this applies

only when partitionsPerMarker > 3 and will convert e.g. the count of A+ or A++ into the sum of the counts of A+, A+++, A+++, ..., or A++, A+++, ...

Default: FALSE

path A string indicating the folder path to where the flowGraph object should save its

elements, Default = NULL (don't save).

summary_pars A list containing parameters for calculating the statistical significance summary significance that will determine whether to trim out phenotypes for this fast ver-

sion of flowGraph. The lists' elements are:

• node_feature: "SpecEnr"; this is the feature we will be testing, don't change this.

• edge_feature: "NONE"; this unneeded for now.

flowGraphSubset 63

- test_name: "t_diminish"; this unneeded for now.
- test_custom: "t"; a string or a function indicating the statistical test desires. These tests can be c("t", "wilcox", "ks", "var", "chisq") corresponding to functions t.test, wilcox.test, ks.test, var.test, chisq.test
- diminish: TRUE; whether or not to continue testing phenotypes whos parent phenotypes are all insignificant.
- class: "class"; the column name in meta that contains class labels you want to test.
- labels: c("aml", "control") for the flowcap data set; SET THIS!! to the class labels you want to test using test_custom.

summary_adjust A list of parameters on how to adjust the p-values; this also affects which phenotypes are tested. The elements in the list are:

- adjust_custom: "byLayer"; this is a string (corresponding to an option in p.adjust) or a function used to adjust p-values.
- btwn_test_custom: "t"; see test_custom in summary_pars; this statistical significance test is used in the filters.
- adjust0_lim: see fg_get_summary.
- filter_adjust0: see fg_get_summary.
- filter_es: see fg_get_summary.
- filter_btwn_tpthres: see fg_get_summary.
- filter_btwn_es: see fg_get_summary.

save_plots

A logical indicating whether or not to save plots.

Details

All node and edge features are trimmed such that only the significant phenotypes are left; the original input is stored in the slot etc\$original_count of the returned flowGraph object.

Value

flowGraph object

Examples

```
## Not run:
if(interactive()){
  data(fg_data_pos2)
  fg <- flowGraph(fg_data_pos2$count, meta=fg_data_pos2$meta, no_cores=1)
}
## End(Not run)</pre>
```

flowGraphSubset_summary_adjust

Default for flowGraphSubset's summary_adjust

Description

Default input for flowGraphSubset's summary_adjust parameter. ONLY USE THIS OVER flow-Graph IF: 1) your data set has more than 10,000 cell populations and you want to speed up your calculation time AND 2) you only have one set of classes you want to test on the SAME SET OF SAMPLES (e.g. control vs experiment). As flowGraphSubset does not calculate the SpecEnr for all cell populations, so if you want to test other sets of classes on the same samples, you will not be able to test all possible cell populations on the new set of classes.

Usage

```
flowGraphSubset_summary_adjust()
```

Value

Default list parameter flowGraphSubset's summary_adjust parameter.

Examples

```
flowGraphSubset_summary_adjust()
```

flowGraphSubset_summary_pars

Default for flowGraphSubset's summary_pars

Description

Default input for flowGraphSubset's summary_pars parameter.

Usage

```
flowGraphSubset_summary_pars()
```

Value

Default list parameter flowGraphSubset's summary_pars parameter.

Examples

```
flowGraphSubset_summary_pars()
```

fpurrr_map 65

Wrapper for map	
-----------------	--

Description

Wrapper for purrr::map and furrr::future_map to handle parallel-ization

Usage

```
fpurrr_map(x, f, no_cores = 1, prll = TRUE, ...)
```

Arguments

X	Variable to recurse over; must be indices!
f	Function to recurse over.
no_cores	Number of cores to use; future must have been ran already.
prll	If set to FALSE, forces use of purrr::map instead of furrr::future_map, Default: TRUE
	Other parameters used by f.

Details

Wrapper for purrr::map and furrr::future_map to handle parallel-ization easily; note that future must have been ran already outside of the function and outputs will always be a list.

Value

Unnested named list.

See Also

```
map future_map
```

get_child	Gets child populations of given cell populations	

Description

Gets the child populations of a vector of given cell populations parens and updates pchild the edge list if edge list doesn't contain the requested information.

Usage

```
get_child(parens, pchild, pc_i, ac__, meta_cell__)
```

get_eprop

Arguments

parens	Character vector of cell population phenotypes.
pchild	Edge list where the name of the list is the cell population and the vector in each element contains the child cell populations of the named cell population.
pc_i	A cell population x marker matrix where the values are $0/1/2/$ corresponding to marker conditions $/-/+/$ for possible PARENT populations.
ac	A list where the elements are marker index > "0"/"1"/"2"/ > a logical vector the same length as the number of cell population phenotypes indicating whether or not the marker condition exists in them; this is for the possible CHILD cell populations
meta_cell	data frame with meta data for cell population phenotypes from the flowGraph object; this is for the possible CHILD cell populations.

Value

A list containing child populations of parens; also globally updates pchild.

See Also

map,keep

get_eprop	Gets edge proportions of a given edge matrix	
ger_chi op	Gets eage proportions of a given eage mains	

Description

Gets the edge proportions of the edges in edge matrix edf_ and updates ep edge proportion matrix if it didn't contain the requested information.

Usage

```
get_eprop(edf_, ep, mp_, no_cores = 1)
```

Arguments

edf_	edge x from&to data frame containing edges and their from and to cell population phenotypes.
ер	sample x edge (parent_child) matrix with edge proportions.
mp_	sample x phenotype matrix with proportions.
no_cores	Number of cores to use, Default: 1

Value

ep with only the specific columns (edges) requested; also updates ep globally.

get_paren 67

get_paren	Gets parent populations of given cell populations

Description

Gets the parent populations of a vector of given cell childs and updates pparen the edge list if edge list doesn't contain the requested information.

Usage

```
get_paren(childs, pparen, pc__i, ac_, meta_cell_)
```

Arguments

childs	Character vector of cell population phenotypes.
pparen	Edge list where the name of the list is the cell population and the vector in each element contains the parent cell populations of the named cell population.
pci	A cell population x marker matrix where the values are $0/1/2/$ corresponding to marker conditions /-/+/; this is for the possible CHILD cell populations.
ac_	A list where the elements are marker index > "0"/"1"/"2"/ > a logical vector the same length as the number of cell population phenotypes indicating whether or not the marker condition exists in them; this is for the possible PARENT cell populations.
meta_cell_	data frame with meta data for cell population phenotypes from the flowGraph object; this is for the possible PARENT cell populations.

Value

A list containing parent populations of childs; also globally updates pparen.

Creates edge lists.	
Creates eage usis.	

Description

Creates edge lists indicating relationships between cell populations given meta data on these cell populations produced by the get_phen_meta function.

Usage

```
get_phen_list(meta_cell = NULL, phen = NULL, no_cores = 1)
```

68 get_phen_meta

Arguments

meta_cell A data frame containing meta data on cell populations as produced by the get_phen_meta

function.

phen A string vector of phenotype or cell population name labels. Cannot be set to

NULL if meta_cell is set to NULL.

no_cores An integer indicating how many cores to parallelize on.

Value

A list containing 'pchild', an edge list indicating where edges point to, 'pparen', an edge list indicating where edges point from, and 'edf', a data frame where each row contains the nodes an edge points 'from' and 'to'.

See Also

```
get_phen_meta cell_type_layers
```

Examples

```
phen <- c('A+B-C+', 'A+B-', 'A+')
get_phen_list(phen=phen)</pre>
```

get_phen_meta

Genrates phenotype meta data.

Description

Generates phenotype meta data given a vector of phenotypes and optionally phenocodes.

Usage

```
get_phen_meta(phen, phenocode = NULL)
```

Arguments

phen A string vector of phenotype or cell population name labels.

phenocode A string vector of phenocodes corresponding to the phenotypes in phen.

Value

A data frame with columns containing meta data on cell poulation nodes with columns:

- phenotype: cell population node label e.g. "A+B+".
- phenocode: a string penocode containing a numeric corresponding to the phenotype column e.g. "2200".
- phenolayer: a numeric layer on which a cell population resides in e.g. 2.

ggdf 69

See Also

```
get_phen_list cell_type_layers
```

Examples

```
phen <- c('A+B+C-D++', 'A+B-', '', 'B++D-E+')
phenc <- c('22130','21000','00000','03012')
get_phen_meta(phen, phenc)</pre>
```

ggdf

Prepares a given node and edge graph list for plotting.

Description

Prepares a given node and edge graph list for plotting by function plot_gr; do not use this function on its own.

Usage

ggdf(gr0)

Arguments

gr0

A list containing data frames e and v.

Details

codeggdf adds to the data frames v and e in slot graph from a flowGraph object specifying plotting options as required by plot_gr:

• v

- size: a numeric indicating node size.
- colour: a numeric or string indicating node colour.
- label: a string indicating the label of a node.
- label_long: a string indicating teh long label of a node; used in interactive plots in plot_gr.
- label_ind: a vector of logical variables indicating which nodes to add a label to in a static plot.
- v_ind: a vector of logical variables indicating which nodes to plot.

• e

- colour: a numeric or string indicating edge colour.
- e_ind: a vector of logical variables indicating which edges to plot.

Value

A list containing data frames e and v, each with additional meta data column.

70 loop_ind_f

See Also

flowGraph-class get_phen_meta plot_gr

Examples

loop_ind_f

Prepares parallel loop indices.

Description

loop_ind_f is a helper function that splits a vector of loop indices into a list of multiple loop indices for use in parallel processes within the flowGraph package.

Usage

```
loop_ind_f(x, n)
```

Arguments

x A vector of loop indices.

n An integer, or the number of vectors to split x into.

Value

list of n vectors with elements from x.

Examples

```
old_loop_inds <- 1:10
no_cores <- 5

new_loop_inds <- flowGraph:::loop_ind_f(old_loop_inds, no_cores)
# future::plan(future::multisession)
# example_indices <- furrr::future_map(new_loop_inds, function(ii) {
# purrr::map(ii, function(i) i )
# s})</pre>
```

mean_diff 71

mean_diff

Normalizes matrix values by class.

Description

Used only in the fg_feat_mean_class function; for each class in the classes vector, meandiff takes the column mean of the rows in the given matrix associated with that class; it then takes the difference point by point between these means and the original rows for that class.

Usage

```
mean_diff(m0, classes)
```

Arguments

m0 A numeric matrix.

classes A vector whose length is equal to the number of rows in the given matrix.

Value

A numeric matrix whose dimensions equate to that of the input and whose values are normalized per class.

See Also

```
fg_feat_mean_class
```

Examples

```
classes <- append(rep('apples',4), rep('oranges',3))
m0 <- matrix(rnorm(35), nrow=7)
m <- flowGraph:::mean_diff(m0, classes)</pre>
```

ms_create

Calcuate SpecEnr from proportion and expected proportion

Description

FUNCTION_DESCRIPTION

Usage

```
ms_create(mp_, me_)
```

72 ms_psig

Arguments

mp_ Numerical sample x cell population matrix w/ proportions.

me_ Numerical sample x cell population matrix w/ expected proportions.

Value

Numerical sample x cell population matrix w/ SpecEnr.

ms_psig

Determines which phenotypes are statistically significant

Description

Determines which phenotypes are statistically significant based on SpecEnr.

Usage

```
ms_psig(
   ms_,
   summary_pars,
   summary_adjust,
   test_cust,
   test_custom,
   lyrno,
   mp_,
   me_
)
```

Arguments

ms_ sample x phenotype SpecEnr matrix

summary_pars See flowGraphSubset.
summary_adjust See flowGraphSubset.

test_cust Final significance test function.
test_custom Raw significance test function.

lyrno An integer indicating total number of layers in the cell hierarchy including layer

0.

mp_ sample x phenotype proportion matrix.

me_ sample x phenotype expected proportion matrix.

Value

A logical vector the same length as the number of columns in ms_ indicating whether or not each phenotype is significant; used only for the fast version of flowGraph to determine whether or not to keep testing the phenotypes' children.

plot_gr 73

plot_gr

Plots a cell hierarchy.

Description

Plots a cell hierarchy given the output from fg_plot, a list of nodes and edges.

Usage

```
plot_gr(
   gr,
   main = NULL,
   show_bgedges = TRUE,
   colour_palette = NULL,
   label_coloured = TRUE,
   shiny_plot = FALSE,
   interactive = FALSE,
   visNet_plot = TRUE,
   colour_edges = FALSE,
   ...
)
```

summary.

for plot_ly if interactive is set to TRUE.

Arguments

9	
gr	A list containing data frames e and v.
main	A string containing the plot title. If this is set to NULL, the function will look for a plot title in the main slot of gr; otherwise, this defaults to "".
show_bgedges	A logical variable indicating whether or not edges not specified for plotting should be plotted as light grey in the background. If this is NULL, the function will look for a show_bgedges in the show_bgedges slot of gr; otherwise, this defaults to TRUE.
colour_palette	A colour palette e.g. the default palette if the user sets this to NULL is c('blue', 'cyan', 'yellow', 'red'
label_coloured	A logical indicating whether to colour the node labels using the same colours as the nodes in the non-interactive plot.
shiny_plot	A logical indicating whether this plot is made for shiny; users don't need to change this.
interactive	A logical variable indicating whether the plot should be an interactive plot; see package ggiraph.
visNet_plot	A logical variable indicating if an interactive plot is chosen, if function should output a visNetwork plot; if set to FALSE, ggplot's girafe will be used instead.
colour_edges	A logical variable indicating whether to colour edges if plotting a node feature

Other parameters for ggplot if interactive is set to FALSE; other parameters

74 set_layout_graph

Value

A ggplot object if interactive is set to FALSE; a ggiraph object if interactive is set to TRUE.

See Also

```
flowGraph-class fg_plot get_phen_meta ggdf fg_get_feature fg_get_summary
```

Examples

set_layout_graph

Determines cell hierarchy layout.

Description

Determines cell hierarchy layout and returns the X, Y coordinate of each cell population.

Usage

```
set_layout_graph(gr, layout_fun = "layout.reingold.tilford")
```

Arguments

gr A list containing data frames e and v.

layout_fun A string of a function from the igraph package that indicates what layout should

be used if a cell hierarchy is to be ploted; all such functions have prefix layout_

e.g. layout_fun="layout.reingold.tilford".

Value

A list containing data frames e and v; each data frame contains an X, Y column or coordinate for each node and edge.

summary_table 75

Examples

summary_table

Summarizes a numeric matrix.

Description

Summarizes a numeric matrix.

Usage

```
summary_table(m, feat_type = "")
```

Arguments

m A numeric matrix. feat_type Name of the matrix m.

Value

A data frame containing one row summarizing m; see fg_get_feature_desc.

Examples

```
summary_table(matrix(rnorm(12),nrow=3), feat_type='random')
```

test_c

Converts input into a significance test function

Description

Converts input into a significance test function

Usage

```
test_c(test_custom)
```

76 time_output

Arguments

```
test_custom a string c("t", "wilcox", "ks", "var", "chisq") or a function.
```

Value

a statistical significance test function.

See Also

```
t.test,wilcox.test, ks.test,var.test, chisq.test
```

time_output

Outputs elapsed time.

Description

Given a time, prints the time elapsed from that time until now.

Usage

```
time_output(start, msg = "")
```

Arguments

start A time variable of class POSIXct, POSIXt.

msg A string with a message to print out after the elapsed time.

Value

Prints to console, the time from which process started start - ended, and > time elapsed from start until now.

Examples

```
start <- Sys.time()
flowGraph:::time_output(start,'start - now > time elapsed')
```

tstr 77

tstr

Formats time into string.

Description

Formats time into a string HH:MM:SS given time zone.

Usage

```
tstr(time)
```

Arguments

time

A time variable of class POSIXct, POSIXt.

Value

Time formatted as a string; used in time_output function.

Examples

```
# NOT EXPORTED
flowGraph:::tstr(Sys.time())
```

Index

```
* datasets
                                                    fg_get_summary_index, 30
    fg_data_fca, 10
                                                    fg_get_summary_tables, 31
    fg_data_pos2, 11
                                                    fg_gsub_ids, 32, 33, 58, 61
    fg_data_pos30, 11
                                                    fg_gsub_markers, 32, 33, 58, 61
                                                    fg_load, 34
cell_type_layers, 3, 68, 69
                                                    fg_merge, 12, 14, 35, 36, 58, 61
chisq.test, 63, 76
                                                    fg_merge_samples, 12, 35, 36, 58, 61
                                                    fg_plot, 7, 24, 30, 37, 41, 44, 46, 52, 61, 74
extract_markers, 4
                                                    fg_plot_box, 40, 52
                                                    fg_plot_pVSdiff, 42, 52
fg_add_feature, 5, 7, 16, 17, 19, 21, 22, 48,
                                                    fg_plot_qq, 41, 44, 44, 52
         58.61
                                                    fg_replace_meta, 26, 46
fg_add_summary, 6, 23, 28–31, 48, 53, 58
                                                    fg_rm_feature, 6, 16, 17, 19, 21, 22, 47, 48,
fg_clean_phen, 8
                                                             58, 61
fg_clear_features, 9
                                                    fg_rm_summary, 7, 23, 28-31, 48, 48, 58, 61
fg_clear_summary, 9, 36, 55, 61
                                                    fg_save, 34, 49
fg_data_fca, 10
                                                    fg_save_plots, 50
fg_data_pos2, 11
                                                    fg_set_layout, 52, 61
fg_data_pos30, 11
                                                    fg_summary, 6, 7, 10, 39, 53, 57, 61
fg_extract_phenotypes, 12, 14, 35, 58, 61
                                                    flowGraph, 55
fg_extract_raw, 13
                                                    flowGraph-class, 58
fg_extract_samples, 12, 14, 35, 36, 58, 61
                                                    flowGraphSubset, 61
fg_feat_cumsum, 15
                                                    flowGraphSubset_summary_adjust, 64
fg_feat_edge_prop, 16
                                                    flowGraphSubset_summary_pars, 64
fg_feat_edge_specenr, 17
                                                    fpurrr_map, 65
fg_feat_mean_class, 18, 71
                                                    future_map, 65
fg_feat_node_prop, 6, 16, 17, 19, 21, 61
fg_feat_node_specenr, 6, 16, 17, 19, 20, 61
                                                    get_child, 65
fg_get_feature, 6, 16, 17, 19, 21, 21, 22, 28,
                                                    get_eprop, 66
         31, 39, 41, 44, 46, 48, 52, 58, 60, 74
                                                    get_paren, 67
fg_get_feature_desc, 6, 12, 14, 16, 17, 19,
                                                    get_phen_list, 4, 67, 69
         21, 22, 29, 32, 36, 48, 58, 61, 75
                                                    get_phen_meta, 4, 39, 68, 68, 70, 74
fg_get_feature_means, 23, 27, 28, 31
                                                    ggdf, 24, 39, 69, 74
fg_get_graph, 24, 60
fg_get_markers, 25
                                                    keep, 66
fg_get_meta, 25, 47, 60
                                                    ks. test, 63, 76
fg_get_summary, 7, 21, 23, 26, 29, 31, 39, 41,
         44, 46, 48, 52, 58, 60, 61, 74
                                                    loop_ind_f, 70
fg_get_summary_desc, 7, 22, 23, 26-28, 29,
         30, 31, 38, 40, 43, 45, 48, 58, 61
                                                    map, 50, 65, 66
```

INDEX 79

```
Matrix, 15, 58
mean_diff, 71
ms_create, 71
\texttt{ms\_psig}, \textcolor{red}{72}
p.adjust, 63
plot_gr, 24, 39, 41, 44, 46, 52, 69, 70, 73
{\tt registerDoParallel}, {\tt 58}
set_layout_graph, 52, 74
show,flowGraph-method
          (flowGraph-class), 58
str_extract, 8
str_split, 4, 8
summary_table, 75
t.test, 63, 76
test_c, 75
\texttt{time\_output}, \textcolor{red}{76}
tstr, 77
var.test, 63, 76
wilcox.test, 63, 76
```