--- title: Using scrapper to analyze single-cell data author: - name: Aaron Lun email: infinite.monkeys.with.keyboards@gmail.com date: "Revised: January 4, 2025" output: BiocStyle::html_document package: scrapper vignette: > %\VignetteIndexEntry{Using scrapper to analyze single-cell data} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, echo=FALSE, results="hide", message=FALSE} require(knitr) opts_chunk$set(error=FALSE, message=FALSE, warning=FALSE) library(BiocStyle) self <- Biocpkg("scrapper") ``` # Overview `r self` implements bindings to C++ code for analyzing single-cell data, mostly from the [**libscran**](https://github.com/libscran) libraries. Each function performs an individual analysis step ranging from quality control to clustering and marker detection. `r self` is mostly intended for other Bioconductor package developers to build more user-friendly end-to-end workflows. # Quick start Let's fetch a small single-cell RNA-seq dataset for demonstration purposes: ```{r} library(scRNAseq) sce.z <- ZeiselBrainData() sce.z ``` We run it through the `r self` analysis pipeline: ```{r} # Finding the mitochondrial genes for QC purposes. is.mito <- grepl("^mt-", rownames(sce.z)) # We can set the number of threads higher in real applications, but # we want to avoid stressing out Bioconductor's build system. nthreads <- 2 library(scrapper) res <- analyze( sce.z, rna.subsets=list(mito=is.mito), num.threads=nthreads ) ``` Now we can have a look at some of the results. For example, we can make a t-SNE plot: ```{r} tabulate(res$clusters) plot(res$tsne[,1], res$tsne[,2], pch=res$clusters) ``` We can have a look at the markers defining each cluster: ```{r} # Top markers for each cluster, say, based on the median AUC: top.markers <- lapply(res$rna.markers$auc, function(x) { head(rownames(x)[order(x$median, decreasing=TRUE)], 10) }) head(top.markers) # Aggregating all marker statistics for the first cluster # (delta.mean is the same as the log-fold change in this case). df1 <- reportGroupMarkerStatistics(res$rna.markers, 1) df1 <- df1[order(df1$auc.median, decreasing=TRUE),] head(df1[,c("mean", "detected", "auc.median", "delta.mean.median")]) ``` Finally, we can convert the results into a `SingleCellExperiment` for interoperability with other Bioconductor packages like `r Biocpkg("scater")`: ```{r} sce <- convertAnalyzeResults(res) sce ``` # Step-by-step The `analyze()` function just calls a series of lower-level functions in `r self`. First, some quality control: ```{r} counts <- assay(sce.z) rna.qc.metrics <- computeRnaQcMetrics(counts, subsets=list(mt=is.mito), num.threads=nthreads) rna.qc.thresholds <- suggestRnaQcThresholds(rna.qc.metrics) rna.qc.filter <- filterRnaQcMetrics(rna.qc.thresholds, rna.qc.metrics) filtered <- counts[,rna.qc.filter,drop=FALSE] ``` Then normalization: ```{r} size.factors <- centerSizeFactors(rna.qc.metrics$sum[rna.qc.filter]) normalized <- normalizeCounts(filtered, size.factors) ``` Feature selection and PCA: ```{r} gene.var <- modelGeneVariances(normalized, num.threads=nthreads) top.hvgs <- chooseHighlyVariableGenes(gene.var$statistics$residuals) pca <- runPca(normalized[top.hvgs,], num.threads=nthreads) ``` Some visualization and clustering: ```{r} umap.out <- runUmap(pca$components, num.threads=nthreads) tsne.out <- runTsne(pca$components, num.threads=nthreads) snn.graph <- buildSnnGraph(pca$components, num.threads=nthreads) clust.out <- clusterGraph(snn.graph) ``` And finally marker detection: ```{r} markers <- scoreMarkers(normalized, groups=clust.out$membership, num.threads=nthreads) ``` Readers are referred to the [OSCA book](https://bioconductor.org/books/release/OSCA/) for more details on the theory behind each step. # Dealing with multiple batches Let's fetch another brain dataset and combine it with the previous one. ```{r} sce.t <- TasicBrainData() common <- intersect(rownames(sce.z), rownames(sce.t)) combined <- cbind(assay(sce.t)[common,], assay(sce.z)[common,]) block <- rep(c("tasic", "zeisel"), c(ncol(sce.t), ncol(sce.z))) ``` We call `analyze()` with `block=` to account for the batch structure. This ensures that the various calculations are not affected by inter-block differences. It also uses MNN correction to batch effects in the low-dimensional space prior to further analyses. ```{r} # No mitochondrial genes in the combined set, so we'll just skip it. blocked_res <- analyze(combined, block=block, num.threads=nthreads) # Visually check whether the datasets were suitably merged together. # Note that these two datasets don't have the same cell types, so # complete overlap should not be expected. plot(blocked_res$tsne[,1], blocked_res$tsne[,2], pch=16, col=factor(blocked_res$block)) ``` Again, we can see how to do this step by step. ```{r} library(scrapper) rna.qc.metrics <- computeRnaQcMetrics(combined, subsets=list(), num.threads=nthreads) rna.qc.thresholds <- suggestRnaQcThresholds(rna.qc.metrics, block=block) rna.qc.filter <- filterRnaQcMetrics(rna.qc.thresholds, rna.qc.metrics, block=block) filtered <- combined[,rna.qc.filter,drop=FALSE] filtered.block <- block[rna.qc.filter] size.factors <- centerSizeFactors(rna.qc.metrics$sum[rna.qc.filter], block=filtered.block) normalized <- normalizeCounts(filtered, size.factors) gene.var <- modelGeneVariances(normalized, num.threads=nthreads, block=filtered.block) top.hvgs <- chooseHighlyVariableGenes(gene.var$statistics$residuals) pca <- runPca(normalized[top.hvgs,], num.threads=nthreads, block=filtered.block) # Now we do a MNN correction to get rid of the batch effect. corrected <- correctMnn(pca$components, block=filtered.block, num.threads=nthreads) umap.out <- runUmap(corrected$corrected, num.threads=nthreads) tsne.out <- runTsne(corrected$corrected, num.threads=nthreads) snn.graph <- buildSnnGraph(corrected$corrected, num.threads=nthreads) clust.out <- clusterGraph(snn.graph) markers <- scoreMarkers(normalized, groups=clust.out$membership, block=filtered.block, num.threads=nthreads) ``` We can also compute pseudo-bulk profiles for each cluster-dataset combination, e.g., for differential expression analyses. ```{r} aggregates <- aggregateAcrossCells(filtered, list(cluster=clust.out$membership, dataset=filtered.block)) ``` # Handling multi-modal data Let's fetch a single-cell dataset with both RNA-seq and CITE-seq data. To keep the run-time short, we'll only consider the first 5000 cells. ```{r} sce.s <- StoeckiusHashingData(mode=c("human", "adt1", "adt2")) sce.s <- sce.s[,1:5000] sce.s ``` We extract the counts for both the RNA and the ADTs. ```{r} rna.counts <- assay(sce.s) adt.counts <- rbind(assay(altExp(sce.s, "adt1")), assay(altExp(sce.s, "adt2"))) ``` We pass both matrices to `analyze()`, which will proceess each modality separately before combining them for steps like clustering and visualization. ```{r} is.mito <- grepl("^MT-", rownames(rna.counts)) is.igg <- grepl("^IgG", rownames(adt.counts)) multi_res <- analyze( rna.counts, adt.x=adt.counts, rna.subsets=list(mito=is.mito), adt.subsets=list(igg=is.igg), num.threads=nthreads ) ``` Under the hood, the analysis looks like this: ```{r} # QC in both modalities, only keeping the cells that pass in both. library(scrapper) rna.qc.metrics <- computeRnaQcMetrics(rna.counts, subsets=list(MT=is.mito), num.threads=nthreads) rna.qc.thresholds <- suggestRnaQcThresholds(rna.qc.metrics) rna.qc.filter <- filterRnaQcMetrics(rna.qc.thresholds, rna.qc.metrics) adt.qc.metrics <- computeAdtQcMetrics(adt.counts, subsets=list(IgG=is.igg), num.threads=nthreads) adt.qc.thresholds <- suggestAdtQcThresholds(adt.qc.metrics) adt.qc.filter <- filterAdtQcMetrics(adt.qc.thresholds, adt.qc.metrics) keep <- rna.qc.filter & adt.qc.filter rna.filtered <- rna.counts[,keep,drop=FALSE] adt.filtered <- adt.counts[,keep,drop=FALSE] rna.size.factors <- centerSizeFactors(rna.qc.metrics$sum[keep]) rna.normalized <- normalizeCounts(rna.filtered, rna.size.factors) adt.size.factors <- computeClrm1Factors(adt.filtered, num.threads=nthreads) adt.size.factors <- centerSizeFactors(adt.size.factors) adt.normalized <- normalizeCounts(adt.filtered, adt.size.factors) gene.var <- modelGeneVariances(rna.normalized, num.threads=nthreads) top.hvgs <- chooseHighlyVariableGenes(gene.var$statistics$residuals) rna.pca <- runPca(rna.normalized[top.hvgs,], num.threads=nthreads) # Combining the RNA-derived PCs with ADT expression. Here, there's very few ADT # tags so there's no need for further dimensionality reduction. combined <- scaleByNeighbors(list(rna.pca$components, as.matrix(adt.normalized)), num.threads=nthreads) umap.out <- runUmap(combined$combined, num.threads=nthreads) tsne.out <- runTsne(combined$combined, num.threads=nthreads) snn.graph <- buildSnnGraph(combined$combined, num.threads=nthreads) clust.out <- clusterGraph(snn.graph) rna.markers <- scoreMarkers(rna.normalized, groups=clust.out$membership, num.threads=nthreads) adt.markers <- scoreMarkers(adt.normalized, groups=clust.out$membership, num.threads=nthreads) ``` # Other useful functions The `runAllNeighborSteps()` will run `runUmap()`, `runTsne()`, `buildSnnGraph()` and `clusterGraph()` in a single call. This runs the UMAP/t-SNE iterations and the clustering in parallel to maximize use of multiple threads. The `scoreGeneSet()` function will compute a gene set score based on the input expression matrix. This can be used to summarize the activity of pathways into a single per-cell score for visualization. The `subsampleByNeighbors()` function will deterministically select a representative subset of cells based on their local neighborhood. This can be used to reduce the compute time of the various steps downstream of the PCA. For CRISPR data, quality control can be performed using `computeCrisprQcMetrics()`, `suggestCrisprQcThresholds()` and `filterCrisprQcMetrics()`. To normalize, we use size factors defined by centering the total sum of guide counts for each cell. The resulting matrix can then be directly used in `scaleByNeighbors()`. # Session information {-} ```{r} sessionInfo() ```