## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval = FALSE------------------------------------------------------------- # if (!requireNamespace("BiocManager", quietly = TRUE)) # install.packages("BiocManager") # # BiocManager::install("fobitools") ## ----warning = FALSE, message = FALSE, comment = FALSE------------------------ library(fobitools) ## ----warning = FALSE, message = FALSE, comment = FALSE------------------------ # CRAN library(tidyverse) library(rvest) library(ggrepel) library(kableExtra) # Bioconductor library(POMA) library(metabolomicsWorkbenchR) library(SummarizedExperiment) ## ----warning = FALSE, message = FALSE, comment = FALSE------------------------ data_negative_mode <- do_query( context = "study", input_item = "analysis_id", input_value = "AN000465", output_item = "SummarizedExperiment") data_positive_mode <- do_query( context = "study", input_item = "analysis_id", input_value = "AN000464", output_item = "SummarizedExperiment") ## ----metabolitenames, message = FALSE, warning = FALSE, comment = FALSE, echo = FALSE, fig.align = "center", out.width = "100%", fig.cap = 'Metabolite identifiers of the ST000291 Metabolomics Workbench study.'---- knitr::include_graphics("figure/ST000291_names.png") ## ----warning = FALSE, message = FALSE, comment = FALSE------------------------ metaboliteNamesURL <- "https://www.metabolomicsworkbench.org/data/show_metabolites_by_study.php?STUDY_ID=ST000291&SEARCH_TYPE=KNOWN&STUDY_TYPE=MS&RESULT_TYPE=1" metaboliteNames <- metaboliteNamesURL %>% read_html() %>% html_nodes(".datatable") metaboliteNames_negative <- metaboliteNames %>% .[[1]] %>% html_table() %>% dplyr::select(`Metabolite Name`, PubChemCompound_ID, `Kegg Id`) metaboliteNames_positive <- metaboliteNames %>% .[[2]] %>% html_table() %>% dplyr::select(`Metabolite Name`, PubChemCompound_ID, `Kegg Id`) metaboliteNames <- bind_rows(metaboliteNames_negative, metaboliteNames_positive) %>% dplyr::rename(names = 1, PubChem = 2, KEGG = 3) %>% mutate(KEGG = ifelse(KEGG == "-", "UNKNOWN", KEGG), PubChem = ifelse(PubChem == "-", "UNKNOWN", PubChem)) %>% filter(!duplicated(PubChem)) ## ----warning = FALSE, message = FALSE, comment = FALSE------------------------ ## negative mode features features_negative <- assay(data_negative_mode) %>% dplyr::slice(-n()) rownames(features_negative) <- rowData(data_negative_mode)$metabolite[1:(length(rowData(data_negative_mode)$metabolite)-1)] ## positive mode features features_positive <- assay(data_positive_mode) %>% dplyr::slice(-n()) rownames(features_positive) <- rowData(data_positive_mode)$metabolite[1:(length(rowData(data_positive_mode)$metabolite)-1)] ## combine positive and negative mode and set PubChem IDs as feature names features <- bind_rows(features_negative, features_positive) %>% tibble::rownames_to_column("names") %>% right_join(metaboliteNames, by = "names") %>% select(-names, -KEGG) %>% tibble::column_to_rownames("PubChem") ## metadata pdata <- colData(data_negative_mode) %>% # or "data_positive_mode". They are equal as.data.frame() %>% tibble::rownames_to_column("ID") %>% mutate(Treatment = case_when(Treatment == "Baseline urine" ~ "Baseline", Treatment == "Urine after drinking apple juice" ~ "Apple", Treatment == "Urine after drinking cranberry juice" ~ "Cranberry")) ## ----warning = FALSE, message = FALSE, comment = FALSE------------------------ data_sumexp <- PomaCreateObject(metadata = pdata, features = t(features)) ## ----warning = FALSE, message = FALSE, comment = FALSE------------------------ data_preprocessed <- data_sumexp %>% PomaImpute(group_by = "Treatment") %>% PomaNorm() ## ----warning = FALSE, message = FALSE, comment = FALSE------------------------ limma_res <- data_preprocessed %>% PomaLimma(contrast = "Baseline-Cranberry", adjust = "fdr") %>% dplyr::rename(PubChemCID = feature) %>% dplyr::mutate(PubChemCID = gsub("X", "", PubChemCID)) # show the first 10 features limma_res %>% dplyr::slice(1L:10L) %>% kbl(row.names = FALSE, booktabs = TRUE) %>% kable_styling(latex_options = c("striped")) ## ----warning = FALSE, message = FALSE, comment = FALSE------------------------ limma_FOBI_names <- limma_res %>% dplyr::pull("PubChemCID") %>% fobitools::id_convert() # show the ID conversion results limma_FOBI_names %>% head() %>% kbl(row.names = FALSE, booktabs = TRUE) %>% kable_styling(latex_options = c("striped")) ## ----warning = FALSE, message = FALSE, comment = FALSE------------------------ limma_FOBI_names <- limma_FOBI_names %>% dplyr::right_join(limma_res, by = "PubChemCID") %>% dplyr::arrange(-dplyr::desc(pvalue)) ## ----warning = FALSE, message = FALSE, comment = FALSE------------------------ metaboliteList <- limma_FOBI_names$FOBI[limma_FOBI_names$pvalue < 0.01] metaboliteUniverse <- limma_FOBI_names$FOBI fobitools::ora(metaboliteList = metaboliteList, metaboliteUniverse = metaboliteUniverse, pvalCutoff = 0.5) %>% kbl(row.names = FALSE, booktabs = TRUE) %>% kable_styling(latex_options = c("striped")) ## ----warning = FALSE, message = FALSE, comment = FALSE------------------------ limma_FOBI_msea <- limma_FOBI_names %>% dplyr::select(FOBI, pvalue) %>% dplyr::filter(!is.na(FOBI)) %>% dplyr::arrange(-dplyr::desc(abs(pvalue))) FOBI_msea <- as.vector(limma_FOBI_msea$pvalue) names(FOBI_msea) <- limma_FOBI_msea$FOBI msea_res <- fobitools::msea(FOBI_msea, pvalCutoff = 0.06) msea_res %>% kbl(row.names = FALSE, booktabs = TRUE) %>% kable_styling(latex_options = c("striped")) ## ----warning = FALSE, message = FALSE, comment = FALSE------------------------ fobi_graph(terms = c("FOODON:03301123", "FOODON:03301702"), get = "anc", labels = TRUE, labelsize = 6) ## ----warning = FALSE, message = FALSE, comment = FALSE, fig.width = 12, fig.height = 8---- ggplot(msea_res, aes(x = -log10(pval), y = NES, color = NES, size = classSize, label = className)) + xlab("-log10(P-value)") + ylab("NES (Normalized Enrichment Score)") + geom_point() + ggrepel::geom_label_repel(color = "black", size = 7) + theme_bw() + theme(legend.position = "top", text = element_text(size = 22)) + scale_color_viridis_c() + scale_size(guide = "none") ## ----warning = FALSE, message = FALSE, comment = FALSE, fig.width = 12, fig.height = 10---- FOBI_terms <- msea_res %>% unnest(cols = leadingEdge) fobitools::fobi %>% filter(FOBI %in% FOBI_terms$leadingEdge) %>% pull(id_code) %>% fobi_graph(get = "anc", labels = TRUE, legend = TRUE, labelsize = 6, legendSize = 20) ## ----------------------------------------------------------------------------- sessionInfo()