--- title: "On Using and Extending the `MsBackendRawFileReader` Backend" author: - name: Tobias Kockmann affiliation: - &id Functional Genomics Center Zurich - Swiss Federal Institute of Technology in Zurich email: Tobias.Kockmann@fgcz.ethz.ch - name: Christian Panse affiliation: - *id - Swiss Institute of Bioinformatics email: cp@fgcz.ethz.ch package: MsBackendRawFileReader output: BiocStyle::html_document: toc_float: true abstract: | `r BiocStyle::Biocpkg("MsBackendRawFileReader")` implements an MsBackend for the `r BiocStyle::Biocpkg("Spectra")` package using Thermo Fisher Scientific's NewRawFileReader .Net libraries. The package is generalizing the functionallity provided by the `r BiocStyle::Biocpkg("rawrr")`. The vignette utilizes data provided through the `r BiocStyle::Biocpkg("tartare")` package. vignette: | %\VignetteIndexEntry{On Using and Extending the `MsBackendRawFileReader` Backend.} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} bibliography: - MsBackendRawFileReader.bib --- ```{r style, echo = FALSE, results = 'asis'} BiocStyle::markdown() knitr::opts_chunk$set(fig.wide = TRUE, fig.retina = 3) ``` The figure below depicts the idea of the `r BiocStyle::Biocpkg("Spectra")` framework. For a detailed description, read [@Spectra]. ```{r arch, echo=FALSE, out.width="80%", eval=TRUE, fig.cap="Integration of rawDiag and rawrr into the Spectra ecosystem (by courtesy of Johannes Rainer)."} knitr::include_graphics("arch.jpg") ``` # Requirements ```{r require} suppressMessages( stopifnot(require(Spectra), require(MsBackendRawFileReader), require(tartare), require(BiocParallel)) ) ``` assemblies aka Common Intermediate Language bytecode The download and install can be done on all platforms using the command: `rawrr::installRawFileReaderDLLs()` ```{r installAssemblies, echo=TRUE} if (isFALSE(file.exists(rawrr:::.rawrrAssembly()))){ rawrr::installRawrrExe() } ``` # Load data ```{r tartareEH4547, warning=FALSE, message=FALSE, eval=TRUE} # fetch via ExperimentHub library(ExperimentHub) eh <- ExperimentHub::ExperimentHub() ``` ```{r tartare} query(eh, c('tartare')) ``` The RawFileReader libraries require a file extension ending with `.raw`. ```{r EH3220, message=FALSE, warning=FALSE} EH3220 <- normalizePath(eh[["EH3220"]]) (rawfileEH3220 <- paste0(EH3220, ".raw")) if (!file.exists(rawfileEH3220)){ file.link(EH3220, rawfileEH3220) } EH3222 <- normalizePath(eh[["EH3222"]]) (rawfileEH3222 <- paste0(EH3222, ".raw")) if (!file.exists(rawfileEH3222)){ file.link(EH3222, rawfileEH3222) } EH4547 <- normalizePath(eh[["EH4547"]]) (rawfileEH4547 <- paste0(EH4547 , ".raw")) if (!file.exists(rawfileEH4547 )){ file.link(EH4547 , rawfileEH4547 ) } ``` # Usage Call the constructor using `Spectra::backendInitialize`, see also [@Spectra]. ```{r backendInitializeMsBackendRawFileReader, message=FALSE} beRaw <- Spectra::backendInitialize( MsBackendRawFileReader::MsBackendRawFileReader(), files = c(rawfileEH3220, rawfileEH3222, rawfileEH4547)) ``` Call the print method ```{r show} beRaw ``` ```{r spectraVariables} beRaw |> Spectra::spectraVariables() ``` # Application example ## Peptide Identification Here we reproduce the Figure 2 of @rawrr `r BiocStyle::Biocpkg("rawrr")`. The `r BiocStyle::Githubpkg("fgcz/MsBackendRawFileReader")` ships with a `filterScan` method using functionality provided by the C# libraries by Thermo Fisher Scientific @rawfilereader. ```{r rawrrFigure2, fig.cap = "Peptide spectrum match. The vertical grey lines indicate the *in-silico* computed y-ions of the peptide precusor LGGNEQVTR++ as calculated by the [protViz]( https://CRAN.R-project.org/package=protViz) package."} (S <- (beRaw |> filterScan("FTMS + c NSI Full ms2 487.2567@hcd27.00 [100.0000-1015.0000]") )[437]) |> plotSpectra() # supposed to be scanIndex 9594 S # add yIonSeries to the plot (yIonSeries <- protViz::fragmentIon("LGGNEQVTR")[[1]]$y[1:8]) names(yIonSeries) <- paste0("y", seq(1, length(yIonSeries))) abline(v = yIonSeries, col='#DDDDDD88', lwd=5) axis(3, yIonSeries, names(yIonSeries)) ``` ## Class extension For demonstration reasons, we extent the `MsBackend` class by a filter method. The `filterIons` function returns spectra if and only if all fragment ions, given as argument, match. We use `r BiocStyle::CRANpkg("protViz")``::findNN` binary search method for determining the nearest mZ peak for each ion. If the mass error between an ion and an mz value is less than the given mass tolerance, an ion is considered a hit. ```{r defineFilterIon} setGeneric("filterIons", function(object, ...) standardGeneric("filterIons")) setMethod("filterIons", "MsBackend", function(object, mZ=numeric(), tol=numeric(), ...) { keep <- lapply(peaksData(object, BPPARAM = bpparam()), FUN=function(x){ NN <- protViz::findNN(mZ, x[, 1]) hit <- (error <- mZ - x[NN, 1]) < tol & x[NN, 2] >= quantile(x[, 2], .9) if (sum(hit) == length(mZ)) TRUE else FALSE }) object[unlist(keep)] }) ``` The lines below implement a simple targeted peptide search engine. The R code snippet takes as input a `MsBackendRawFileReader` object containing `r length(beRaw)` spectra and y-fragment-ion mZ values determined for `LGGNEQVTR++`. ```{r applyFilterIons} start_time <- Sys.time() X <- beRaw |> MsBackendRawFileReader::filterScan("FTMS + c NSI Full ms2 487.2567@hcd27.00 [100.0000-1015.0000]") |> filterIons(yIonSeries, tol = 0.005) |> Spectra::Spectra() |> Spectra::peaksData() end_time <- Sys.time() ``` The defined `filterIons` method runs on `r length(beRaw |> MsBackendRawFileReader::filterScan("FTMS + c NSI Full ms2 487.2567@hcd27.00 [100.0000-1015.0000]"))` input spectra and returns `r length(X)` spectra. The runtime is shown below. ```{r runTime} end_time - start_time ``` Next, we define and apply a method for graphing `LGGNEQVTR` peptide spectrum matches. Also, the function returns some statistics of the match. ```{r definePlotLGGNEQVTR} ## A helper plot function to visualize a peptide spectrum match for ## the LGGNEQVTR peptide. .plot.LGGNEQVTR <- function(x){ yIonSeries <- protViz::fragmentIon("LGGNEQVTR")[[1]]$y[1:8] names(yIonSeries) <- paste0("y", seq(1, length(yIonSeries))) plot(x, type = 'h', xlim = range(yIonSeries)) abline(v = yIonSeries, col = '#DDDDDD88', lwd=5) axis(3, yIonSeries, names(yIonSeries)) # find nearest mZ value idx <- protViz::findNN(yIonSeries, x[,1]) data.frame( ion = names(yIonSeries), mZ.yIon = yIonSeries, mZ = x[idx, 1], intensity = x[idx, 2] ) } ``` ```{r filterIons2, fig.height=8, fig.cap = "Visualizing of the LGGNEQVTR spectrum matches.", echo=FALSE} op <- par(mfrow=c(4, 1), mar=c(4, 4, 4, 1)) XC <- X |> lapply(FUN = .plot.LGGNEQVTR) |> Reduce(f = rbind) ``` ```{r sanityCheck, error=FALSE} stats::aggregate(mZ ~ ion, data = XC, FUN = base::mean) stats::aggregate(intensity ~ ion, data = XC, FUN = base::max) ``` We demonstrate the `Spectra::combinePeaks` method and aggregate the four spectra into a single peak matrix. The statistics returned by `.plot.LGGNEQVTR()` should be identical to the aggregation code snippet output above. ```{r combinePeaks, fig.cap = "Combined LGGNEQVTR peptide spectrum match plot.", error = TRUE} X |> Spectra::combinePeaks(ppm=10, intensityFun=base::max) |> .plot.LGGNEQVTR() ``` ## Export Mascot Generic Format File Below we demonstrate the interaction with the `r Biocpkg('MsBackendMgf')` package while composing a Mascot Generic Format [mgf](http://www.matrixscience.com/help/data_file_help.html#GEN) file which is compatible with conducting an MS/MS Ions Search using Mascot Server (>=2.7) @Perkins1999. ```{r MsBackendMgf} if (require(MsBackendMgf)){ ## Map Spectra variables to Mascot Server compatible vocabulary. map <- c(custom = "TITLE", msLevel = "CHARGE", scanIndex = "SCANS", precursorMz = "PEPMASS", rtime = "RTINSECONDS") ## Compose custom TITLE beRaw$custom <- paste0("File: ", beRaw$dataOrigin, " ; SpectrumID: ", S$scanIndex) (mgf <- tempfile(fileext = '.mgf')) (beRaw |> filterScan("FTMS + c NSI Full ms2 487.2567@hcd27.00 [100.0000-1015.0000]") )[437] |> Spectra::Spectra() |> Spectra::selectSpectraVariables(c("rtime", "precursorMz", "precursorCharge", "msLevel", "scanIndex", "custom")) |> MsBackendMgf::export(backend = MsBackendMgf::MsBackendMgf(), file = mgf, map = map) readLines(mgf) |> head(12) readLines(mgf) |> tail() } ``` To extract all tandem spectra, you can use the code snippets below ```{r allMS2} S <- Spectra::backendInitialize( MsBackendRawFileReader::MsBackendRawFileReader(), files = c(rawfileEH4547)) |> Spectra() S ``` ```{r writeMGF, eval=FALSE} S |> MsBackendMgf::export(backend = MsBackendMgf::MsBackendMgf(), file = mgf, map = map) ``` Next, we generate an mgf file for each scan type. This is helpful, e.g., for optimizing search settings tandem mass spectrometry sequence database search tool as comet @comet2012 or mascot server @Perkins1999. ```{r defineScanTypePattern} ## Define scanType patterns scanTypePattern <- list( EThcD.lowres = "ITMS.+sa Full ms2.+@etd.+@hcd.+", ETciD.lowres = "ITMS.+sa Full ms2.+@etd.+@cid.+", CID.lowres = "ITMS[^@]+@cid[^@]+$", HCD.lowres = "ITMS[^@]+@hcd[^@]+$", EThcD.highres = "FTMS.+sa Full ms2.+@etd.+@hcd.+", HCD.highres = "FTMS[^@]+@hcd[^@]+$" ) ``` ```{r custom0} beRaw <- Spectra::backendInitialize( MsBackendRawFileReader::MsBackendRawFileReader(), files = c(rawrr::sampleFilePath())) ``` ```{r custom1} beRaw <- Spectra::backendInitialize( MsBackendRawFileReader::MsBackendRawFileReader(), files = rawrr::sampleFilePath()) beRaw$custom <- paste0("File: ", gsub("/srv/www/htdocs/Data2San/", "", beRaw$dataOrigin), " ; SpectrumID: ", beRaw$scanIndex) ``` ```{r generate_mgf} .generate_mgf <- function(ext, pattern, dir=tempdir(), ...){ mgf <- file.path(dir, paste0(sub("\\.raw", "", unique(basename(beRaw$dataOrigin))), ".", ext, ".mgf")) idx <- beRaw$scanType |> grepl(patter=pattern) if (sum(idx) == 0) return (NULL) message(paste0("Extracting ", sum(idx), " ", pattern, " scans\n\t to file ", mgf, " ...")) beRaw[which(idx)] |> Spectra::Spectra() |> Spectra::selectSpectraVariables(c("rtime", "precursorMz", "precursorCharge", "msLevel", "scanIndex", "custom")) |> MsBackendMgf::export(backend = MsBackendMgf::MsBackendMgf(), file = mgf, map = map) mgf } #mapply(ext = names(scanTypePattern), # scanTypePattern, # FUN = .generate_mgf) |> # lapply(FUN = function(f){if (file.exists(f)) {readLines(f) |> head()}}) ``` ## Procesing queue Given the task, we want to filter an MS2 of peak list recorded on an Orbitrap device to be interested only in the top peak within 100 Da mass windows. The following code snippet will demonstrate a solution. ```{r defineTopN} ## Define a function that takes a matrix as input and derives ## the top n most intense peaks within a mass window. ## Of note, here, we require centroided data. (no profile mode!) MsBackendRawFileReader:::.top_n ``` We add our custom code to the processing queue of the Spectra object. Of note, we use `n = 1` in praxis `n = 10` for a 100 Da mass window, which seems to be a practical choice. ```{r applyProcessing} S_2 <- Spectra::addProcessing(S, MsBackendRawFileReader:::.top_n, n = 1) ``` The plot below displays a visual control of the custom filter function `top_n.` On the top is the original spectrum, and the filtered one is on the bottom. A point indicates peaks that match. ```{r plotSpectraMirror9594, fig.retina=3, fig.cap = "Spectra mirror plot of the filtered (bottom) and unfiltered scan 9594.", error=TRUE} Spectra::plotSpectraMirror(S[9594], S_2[9594], ppm = 50) ``` The following snippet prints the values of the filtered peaklist and the mZ values of the y-ions. ```{r compare9594mZValues} S_2[9594] |> mz() |> unlist() yIonSeries ``` # Evaluation ## Efficiency - I/O Benchmark When reading spectra the `MsBackendRawFileReader:::.RawFileReader_read_peaks` method is calling the `rawrr::readSpectrum` method. The figure below displays the time performance for reading a single spectrum in dependency from the chunk size (how many spectra are read in one function call) for reading different numbers of overall spectra. ```{r readBenchmarkData, fig.cap="I/O Benchmark. The XY plot graphs how many spectra the backend can read in one second versus the chunk size of the rawrr::readSpectrum method for different compute architectures."} ioBm <- file.path(system.file(package = 'MsBackendRawFileReader'), 'extdata', 'specs.csv') |> read.csv2(header=TRUE) # perform and include a local IO benchmark ioBmLocal <- ioBenchmark(1000, c(32, 64, 128, 256), rawfile = rawfileEH4547) lattice::xyplot((1 / as.numeric(time)) * workers ~ size | factor(n) , group = host, data = rbind(ioBm, ioBmLocal), horizontal = FALSE, scales=list(y = list(log = 10)), auto.key = TRUE, layout = c(3, 1), ylab = 'spectra read in one second', xlab = 'number of spectra / file') ``` ## Effectiveness We compare the output of the Thermo Fischer Scientific raw files versus their corresponding mzXML files using `Spectra::MsBackendMzR` relying on the `r BiocStyle::Biocpkg("mzR")` package. ```{r mzXML} mzXMLEH3219 <- normalizePath(eh[["EH3219"]]) mzXMLEH3221 <- normalizePath(eh[["EH3221"]]) ``` ```{r backendInitialize, message=FALSE, fig.cap='Aggregated intensities mzXML versus raw of the 1st 100 spectra.', message=FALSE, warning=FALSE, fig.width=5, fig.height=5} if (require(mzR)){ beMzXML <- Spectra::backendInitialize( Spectra::MsBackendMzR(), files = c(mzXMLEH3219)) beRaw <- Spectra::backendInitialize( MsBackendRawFileReader::MsBackendRawFileReader(), files = c(rawfileEH3220)) intensity.xml <- sapply(intensity(beMzXML[1:100]), sum) intensity.raw <- sapply(intensity(beRaw[1:100]), sum) plot(intensity.xml ~ intensity.raw, log = 'xy', asp = 1, pch = 16, col = rgb(0.5, 0.5, 0.5, alpha=0.5), cex=2) abline(lm(intensity.xml ~ intensity.raw), col='red') } ``` Are all scans of the raw file in the mzXML file? ```{r} if (require(mzR)){ table(scanIndex(beRaw) %in% scanIndex(beMzXML)) } ``` # Session information {-} ```{r sessionInfo} sessionInfo() ``` # References {-}