The RTopper package: perform run Gene Set Enrichment across
genomic platforms

Luigi Marchionni
Department of Oncology
Johns Hopkins University
email: marchion@jhu.edu

March 17, 2025

Contents
I_Overviewl 1
2 RTopper data structure| 2
2.1 Creation of Functional Gene Sets L. 4
[3 Data analysis with RTopper| 8
13.1 Integrated Gene-to-Phenotype score computation| 10
[3.2 Separate Gene-to-Phenotype score computation| 10
3.3 Gene Set Enrichment using integrated and separate score| 11
B4 INTEGRATION T GSEl s 12
13.4.1 One-sided Wilcoxon rank-sum test using absolute ranking statistics|. 12
[3.4.2 One-sided Wilcoxon rank-sum test using signed ranking statistics| 12
[3.4.3 Performing a simulation-based GSE test| 12
13.4.4 Passing alternative enrichment functions to runBatchGSE| 13
5 GSE T INTEGRATTION] o oo o e e e e e e e e e 15
[3.6 Multiple testing correction| Lo 16
[4 System Information| 17
[6__References| 19

1 Overview

Gene Set Enrichment (GSE) analysis has been widely use to assist the interpretation of gene ex-
pression data. We propose here to apply GSE for the integration of genomic data obtained from
distinct analytical platform.

In the present implementation of the RTopper GSE analysis is performed using the geneSetTest
function from the limma package [0, 5, [7]. This function enables testing the hypothesis that a
specific set of genes (a Functional Gene Set, FGS) is more highly ranked on a given statistics. In

particular this functions computes a p-value for each FGS by one or two-sided Wilcoxon rank-sum
test. Alternative user-defined functions can also be used.

Furthermore multiple hypothesis testing correction is achieved by applying the Benjamini and
Hochberg method [2] as implemented in the multtest R/Bioconductor package. Overall, this ap-
proach is conceptually analogous to Gene Set Enrichment Analysis (GSEA), as proposed by Mootha
and colleagues [4} [§].

The integration can be achieved through two distinct approaches:

1. GSE 4+ INTEGRATION: Separate GSE analysis on the individual genomic platforms
followed by GSE results integration;

2. INTEGRATION + GSE: Integration of genomic data measurement using a logistic model
followed by GSE analysis;

2 RTopper data structure

In this tutorial we demonstrate the functionality of RTopper package. To this end we will make use
of simplified data generated within The Cancer Genome Atlas (TCGA) project, using Glioblastoma
Multiforme (GBM) genomics data obtained from the same patients’ cohort using distinct platforms,
including Differential Gene Expression (DGE), Copy Number Variation (CNV), and Differential
Methylation (DM). This data is included with the RTopper package as the dataset exampleData,
which consists of genomic measurements (the list dat) for 500 genes (in rows) and 95 patients (in
columns) from 4 distinct platforms:

1. DGE obtained using Affymetrix;

2. DGE obtained using Agilent;

3. CNV data generated ad Harvard;

4. CNV data generated ad the MSKCC;

The phenotypic class for each patient is defined in the a data.frame pheno consisting of 95 rows
(patients, pheno$Sample) and 2 columns, the first being patients identifiers, and the second variable
giving the group indicator (pheno$Class).

To load the data set type data(exampleData), and to view a description of this data type
7exampleData. The structure of the data is shown below:

> library(RTopper)
> data(exampleData)
> 1s()

[1] "dat" "pheno"
> class(dat)

[1] "list"

> names (dat)

[1] "dat.affy" "dat.agilent"
[3] "dat.cnvHarvard" "dat.cnvMskcc"

> sapply(dat,class)

dat.affy dat.agilent dat.cnvHarvard
"data.frame" "data.frame" "data.frame"
dat.cnvMskcc
"data.frame"

> sapply(dat,dim)

dat.affy dat.agilent dat.cnvHarvard

[1,] 500 500 500

[2,] 95 95 95
dat.cnvMskcc

[1,] 500

[2,] 95

> dim(pheno)
[1] 95 2
> str(pheno)

'data.frame': 95 obs. of 2 variables:
$ Sample: chr "TCGA.02.0003" "TCGA.02.0007" "TCGA.02.0011" "TCGA.02.0021"
$ Class : int 0011000000 ...

In summary to perform the analysis with functions from RTopper the genomic data used as input
must be in the following format:

1. Genomic measurements: a list of data.frames, in which each list item corresponds to a
genomic platform, and comprises a data.frame with rows being genes and columns patients;

2. Phenotype data: a data.frame with 2 columns: patients and their phenotypes;

3. The number of columns of the Genomic measurements data.frames must match the number
of rows of the Phenotype data;

4. The same set of genes must be measured in each platform and gene labels must be stored as
rownames;

Below are shown the first 6 rows and 4 columns of each data.frame contained in dat, which share
the same genes (shown for some of the possible combinations). Similarly column names in the dat
data.frames correspond to rownames of pheno.

> ###data structure
> lapply(dat,function(x) head(x)[,1:3])

$dat.affy

TCGA.02.0003 TCGA.02.0007 TCGA.02.0011
AACS 7.747995 7.685409 7.535661
AARS 9.381544 9.930156 10.197194
ABT1 8.173255 8.962803 9.895811
ACHE 5.127197 4.547297 5.146552
ACTC1 6.612645 5.825879 8.067945
ACTN2 6.257383 5.330557 5.842319

$dat.agilent
TCGA.02.0003 TCGA.02.0007 TCGA.02.0011

AACS -1.0070000 -1.1164000 -0.913000
AARS -1.2665000 -0.8981250 0.263500
ABI1 -0.2765000 0.3356250 1.027250
ACHE 0.4403750 -0.0222500 0.115000
ACTC1 0.3641538 0.1234615 1.046692
ACTN2 4.3348000 2.2278000 3.330600

$dat . cnvHarvard

TCGA.02.0003 TCGA.02.0007 TCGA.02.0011
AACS -0.08273213 -0.08917331 -0.02075644
AARS -0.10233281 -0.20620608 -0.05157664
ABI1 -0.86886659 -0.01214599 0.59307754
ACHE 0.31560002 -1.00166150 -0.14519639
ACTC1 -1.17495078 -0.26698279 -0.95662761
ACTN2 -0.11319016 -0.09657971 0.02582138

$dat.cnvMskecc
TCGA.02.0003 TCGA.02.0007 TCGA.02.0011

AACS -0.0383875 -0.09140000 0.008233333
AARS 0.0075600 0.02801667 0.104850000
ABI1 -0.7006900 0.21270000 0.499472727
ACHE 0.8676000 -0.23970000 0.075000000

ACTC1 -0.9779500 -0.11625000 -0.692950000
ACTN2 -0.1258571 -0.05394444 0.010200000

> sum(rownames(dat[[1]])}in)rownames (dat[[2]]))
[1] 500
> sum(rownames (dat [[2]])in)rownames (dat[[3]]))

[1] 500

2.1 Creation of Functional Gene Sets

Functional Gene Sets (FGS) are list of genes that share a specific biological function. Examples
of FGS are genes that operate in the same signaling pathway (i.e. Notch signaling genes), or that
share the same biological function (i.e. Cell adhesion genes). FGS can be retrieved from various
database, or can be constructed ad hoc. A convenient source of FGS are the R-Bioconductor
metaData packages, and S4 classes and methods for handling FGS are provided by the GSEABase
package. Below is shown a simple way to extract FGS from the human genome metaData package
org.Hs.eg.db. As a general rule the name of the metaData package, without the .db extension,
can be used a function to see the content of the package, as shown below:

> library(org.Hs.eg.db)
> org.Hs.eg()

Quality control information for org.Hs.eg:

This package has the following mappings:

org.
org.
org.
org.
org.
org.
org.
.Hs.
Hs.
.Hs.
Hs.
.egENSEMBLTRANS has 13257 mapped keys (of 193430 keys)

org

org.

org

org.
.Hs
Hs.
.Hs.
Hs.
.egGENENAME has 193430 mapped keys (of 193430 keys)
Hs.
.egG0 has 20820 mapped keys (of 193430 keys)
Hs.
Hs.
Hs.
Hs.
Hs.
Hs.
Hs.
Hs.
.Hs.
Hs.
.egREFSEQ has 46056 mapped keys (of 193430 keys)

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

org

org.
Hs
Hs.
JHs.
Hs.
.Hs.
Hs.

org

org.

org

org.

org

org.

Hs

Hs

Hs

Hs

.egACCNUM has 47288 mapped keys (of 193430 keys)
Hs.
Hs.
Hs.
Hs.
Hs.
.egCHRLOCEND has 28281 mapped keys (of 193430 keys)

egACCNUM2EG has 1010898 mapped keys (of 1010898 keys)
egALIAS2EG has 261311 mapped keys (of 261311 keys)
egCHR has 193362 mapped keys (of 193430 keys)
egCHRLENGTHS has 711 mapped keys (of 711 keys)
egCHRLOC has 28281 mapped keys (of 193430 keys)

egENSEMBL has 39296 mapped keys (of 193430 keys)
egENSEMBL2EG has 42248 mapped keys (of 42248 keys)
egENSEMBLPROT has 7181 mapped keys (of 193430 keys)
egENSEMBLPROT2EG has 22648 mapped keys (of 22648 keys)

egENSEMBLTRANS2EG has 38660 mapped keys (of 38660 keys)
egENZYME has 2229 mapped keys (of 193430 keys)
egENZYME2EG has 975 mapped keys (of 975 keys)

egGENETYPE has 193430 mapped keys (of 193430 keys)

egGO2ALLEGS has 22286 mapped keys (of 22286 keys)
egGO2EG has 18640 mapped keys (of 18640 keys)
egMAP has 70261 mapped keys (of 193430 keys)
egMAP2EG has 1974 mapped keys (of 1974 keys)
egOMIM has 17340 mapped keys (of 193430 keys)
egOMIM2EG has 24131 mapped keys (of 24131 keys)
egPATH has 5868 mapped keys (of 193430 keys)
egPATH2EG has 229 mapped keys (of 229 keys)
egPMID has 163035 mapped keys (of 193430 keys)
egPMID2EG has 803747 mapped keys (of 803747 keys)

egREFSEQ2EG has 477882 mapped keys (of 477882 keys)
egSYMBOL has 193430 mapped keys (of 193430 keys)
egSYMBOL2EG has 193329 mapped keys (of 193329 keys)
egUCSCKG has 37487 mapped keys (of 193430 keys)
egUNIPROT has 19835 mapped keys (of 193430 keys)

Additional Information about this package:

DB schema: HUMAN_DB

DB schema version: 2.1
Organism: Homo sapiens

Date for NCBI data: 2025-Feb22
Date for GO data: 2025-02-06

Date for KEGG data: 2011-Marilb
Date for Golden Path data: UTC-Marl
Date for Ensembl data: 2024-0ctl7

For instance the org.Hs.egGO2ALLEGS environment contains the mapping of all ENTREZ Gene
identifiers to the Gene Ontology Terms [1], while org.Hs.egPATH2EG maps the identifiers to
KEGG pathways [3]. The corresponding lists of FGS can be retrieve from the corresponding
environments using the the R command as.list (), as shown below for KEGG and GO:

> kegg <- as.list(org.Hs.egPATH2EG)
> go <- as.list(org.Hs.egGO2ALLEGS)
> length(kegg)

[1] 229

> length(go)

[1] 22286

> str(keggl[1:5])

List of 5
$ 04610: chr [1:69] "2" "462" "623" "624"
$ 00232: chr [1:7] "9" "10" "1544" "1548"
$ 00983: chr [1:52] "9" "10'" "978" '"1066"
$ 01100: chr [1:1130] "o "1Q" "1b" "18"
$ 00380: chr [1:42] "i5" "26" "38" "39"

> names (kegg) [1:5]
[1] "04610" "00232" "00983" "01100" "00380"
> str(gol[1:5])

List of 5
$ GO:0000002: Named chr [1:44] "142" "291" "1763" "1890"
..- attr(x, "names")= chr [1:44] "IMP" "TAS" "IDA" "IMP"
$ G0:0000012: Named chr [1:20] "142" "142" "1161" '"2074"
..- attr(*, "names")= chr [1:20] "IBA" "IGI" "IDA" "IDA"
$ G0:0000017: Named chr [1:4] "6523" "6523" "6523" "6524"
..- attr(*, "names")= chr [1:4] "IDA" "IMP" "ISS" "IDA"
$ G0:0000018: Named chr [1:163] "25" "60" "86" "142"
..- attr(*, "names")= chr [1:163] "IDA" "IDA" "IDA" "IDA" ...
$ G0:0000019: Named chr [1:9] "2068" "4292" "4361" "7014"
..- attr(*, "names")= chr [1:9] "IBA" "IEA" "TAS" "IBA"

> names(go) [1:5]

[1] "G0O:0000002" "GO:0000012" "GO:0000017"
[4] "G0:0000018" "GO:0000019"

In the kegg list genes are identified by their ENTREZ Gene identifiers, while in the dat genes are
identified by their Gene Symbol. Below is an example of the code that can be used to perform the
identifiers conversion, using only a subset of KEGG and GO FGS:

> someKeggID <- c("00450", "04971", "00970", "04260", "05320")

> kegg <- lapply(keggl[someKeggID],function(x) unique(unlist(mget (x,org.Hs.egSYMBOL))))

> go <- lapply(gol[sample(1:length(go),5)],function(x) unique(unlist(mget (x,org.Hs.egSYMBOL))))
> str(kegg)

List of 5
$ 00450: chr [1:17] "KYAT1" "CTH" "MARS1" "MTR"
$ 04971: chr [1:74] "ACTB" "ADCY1" "ADCY2" "ADCY3"
$ 00970: chr [1:63] "AARS1" "CARS1" "DARS1" "EPRS1"
$ 04260: chr [1:77] "ACTC1i" "ATP1A1" "ATP1A2" "ATP1A3"
$ 05320: chr [1:52] "FAS" "FASLG" "CD28" "CD8O"

> str(go)

List of 5
$ G0:1990961: chr [1:24] "ATP7B" "SLC67A1" "PDZK1i" "ABCB1"
$ GO:0006573: chr [1:7] "BCAT1" "BCAT2" "ALDH6A1" "ILVBL"
$ G0:1904246: chr "ZFP36"
$ G0:1905443: chr [1:4] "GAK" "HIP1R" "DNAJC6" "CALY"
$ G0:0060184: chr [1:4] "OVOL1" "YTHDC2" "RBM46" "MEIOC"

Finally, it is also possible to annotate FGS, mapping pathways identifiers to pathway names, as
shown below for KEGG, using the KEGGREST.

> library (KEGGREST)
> names (kegg) <- sapply(keggGet(pasteO("hsa", someKeggID)), "[[", "NAME")

Similarly GO Terms can be retrieved from the GO.db (please refer to the vignettes of the corre-
sponding packages for details).

> library(GO.db)
> GOO)

Quality control information for GO:

This package has the following mappings:

GOBPANCESTOR has 26091 mapped keys (of 26091 keys)
GOBPCHILDREN has 14982 mapped keys (of 26091 keys)
GOBPOFFSPRING has 14982 mapped keys (of 26091 keys)
GOBPPARENTS has 26091 mapped keys (of 26091 keys)
GOCCANCESTOR has 4022 mapped keys (of 4022 keys)
GOCCCHILDREN has 1262 mapped keys (of 4022 keys)
GOCCOFFSPRING has 1262 mapped keys (of 4022 keys)
GOCCPARENTS has 4022 mapped keys (of 4022 keys)
GOMFANCESTOR has 10154 mapped keys (of 10154 keys)
GOMFCHILDREN has 2008 mapped keys (of 10154 keys)
GOMFOFFSPRING has 2008 mapped keys (of 10154 keys)
GOMFPARENTS has 10154 mapped keys (of 10154 keys)
GOOBSOLETE has 8044 mapped keys (of 8044 keys)
GOTERM has 40268 mapped keys (of 40268 keys)

7

Additional Information about this package:

DB schema: GO_DB
DB schema version: 2.1
Date for GO data: 2025-02-06

> names(go) <- paste(names(go),Term(names(go)),sep=".")
> names (go)

[1] "G0:1990961.xenobiotic detoxification by transmembrane export across the plasma membrane"
[2] "G0:0006573.valine metabolic process"

[3] "GO:1904246.negative regulation of polynucleotide adenylyltransferase activity"

[4] "GO:1905443.regulation of clathrin coat assembly"

[5] "GO:0060184.cell cycle switching"

Finally we can be combine the two FGS collections into a named list for further used in GSE analysis
(see below).

> fgslist <- list(go=go, kegg=kegg)
> fgsList$go

$°G0:1990961.xenobiotic detoxification by transmembrane export across the plasma membrane’
(1] "ATP7B" "SLC67A1" "“PDZK1" "ABCB1"
[5] "SLC15A2" "SLC22A5" "SLC17A3" "RALBP1"

[9] "SLC47A1" "OSCP1" "SLC47A2" "MIR1-1"
[13] "MIR129-1" "MIR133A1" "MIR185" "MIR186"
[17] "MIR34B" "MIR9-1" "MIR133B" "MIR326"
[21] "MIR451A" "MIR495" "MIR508" "MIR873"

$°G0:0006573.valine metabolic process”
[1] "BCAT1" "BCAT2" "ALDH6A1" "ILVBL"
[5] "HIBADH" "HIBCH" "ACAD8"

$°G0:1904246 .negative regulation of polynucleotide adenylyltransferase activity"
[1] "ZFp36"

$°G0:1905443.regulation of clathrin coat assembly’
[1] "GAK" "HIP1R" "DNAJC6" "CALY"

$°G0:0060184.cell cycle switching®
(1] "ovOoL1i" "“YTHDC2" "RBM46" "MEIOC"

3 Data analysis with RTopper

To compute gene-to-phenotype association scores the first step required is the conversion of the data
into a list, where each list item corresponds to a gene, and comprises a data.frame with the rows
being patients, and columns being measurements for each data type, along with the class phenotype
(the response). Importantly each element of the list with the data should have the same genes and

patients.

The convertToDr function is used to make such conversion. Below is a short description of the
arguments to this function:

e datalntersection: a list of data.frames containing the same set of patients(columns) and
genes (rows)

e response: a data.frame indicating patients’ phenotypic class;
e nPlatforms: the number of platforms;
This can be achieved as follows using our examples data:

> dataDr <- convertToDr(dat, pheno, 4)
> class(dataDr)

[1] "list"

> length(dataDr)

[1] 500

> names(dataDr) [1:5]

[1] "AACS" "AARS" "ABI1" "ACHE" "ACTC1"

> str(dataDr[1:2])

List of 2
$ AACS:'data.frame': 95 obs. of b5 variables:
..$ dat.affy : num [1:95] 7.75 7.69 7.54 7.3 7.01
..$ dat.agilent : num [1:95] -1.007 -1.116 -0.913 -1.061 -1.775

..$ dat.cnvHarvard: num [1:95] -0.0827 -0.0892 -0.0208 -0.1811 -0.0625 ...
..$ dat.cnvMskcc : num [1:95] -0.03839 -0.0914 0.00823 0.03456 0.0573 ...

..$ response : int [1:95] 0011000000 ...

$ AARS:'data.frame': 95 obs. of b variables:
..$ dat.affy : num [1:95] 9.38 9.93 10.2 9.54 9.37 ...
..$ dat.agilent : num [1:95] -1.266 -0.898 0.264 -0.599 -1.437 ...
..$ dat.cnvHarvard: num [1:95] -0.1023 -0.2062 -0.0516 -0.0923 -0.1199 ...
..$ dat.cnvMskcc : num [1:95] 0.00756 0.02802 0.10485 0.0841 0.12262 ...
..$ response : int [1:95] 0011000000 ...

It is now possible to compute gene-to-phenotype association scores, using as input the gene-
centered list produced by convertToDr. Therefore the computeDrStat function assumes that each
gene-centered data.frame contains a column (the last one) called *response’, as created by the
convertToDr. Below is a short description of the arguments to this function:

e data: a list of data.frames, one for each gene analyzed, containing the the genomic measure-
ments from all platforms (by column) for all the patients (by row), along with the phenotypic
response;

e columns: a numeric vector indicating column indexes corresponding the genomic measure-
ments to be used for computing the gene-to-phenotype association scores; the default is
columns = c(l:(ncol(data) - 1)), assuming the phenotypic response to be the last col-
umn;

e method: the method used to compute the association score;

e integrate: logical, whether an integrated gene-to-phenotype score should be computed, or
separate scores for each platform/data sets specified by columns;

In the current implementation of the RTopper there are three methods for computing gene-to-
phenotype association scores:

1. dev: this approach computes the score as the difference of deviances (as described in
Tyekucheva et al, manuscript under review [9]);

2. aic: this approach computes the score as the Akaike information criterion for model selection;

3. bic: this approach computes the score as the penalized likelihood ratio;

3.1 Integrated Gene-to-Phenotype score computation

This approach first integrates genomic data across platform, and subsequently perform GSE to iden-
tify the FGS most strongly associated with the integrated score. Below is an example of application
to compute the gene-to-phenotype association scores for 4 data type simultaneously:

> bicStatInt <- computeDrStat(dataDr, columns = c(1:4), method="bic", integrate = TRUE)
> names(bicStatInt)

[1] "integrated"
> str(bicStatInt)

List of 1
$ integrated: Named num [1:500] -11.43 -15.93 -8.85 -13.52 -7.26 ...
.- attr(*, "names")= chr [1:500] "AACS" "AARS" "ABI1" "ACHE"

3.2 Separate Gene-to-Phenotype score computation

This approach first computes computes gene-to-phenotype score separately for each platform, uses
the scores to perform separate GSE analysis in each platform for identifying the FGS most strongly
associated with the score, and finally integrates the results from GSE analysis, Below is an example
of this approach:

> bicStatSep <- computeDrStat(dataDr, columns = c(1:4), method="bic", integrate = FALSE)
> names (bicStatSep)

[1] "dat.affy" "dat.agilent"
[3] "dat.cnvHarvard" "dat.cnvMskcc"

> str(bicStatSep)

List of 4

$ dat.affy : Named num [1:500] 0.545 -4.269 -2.334 -4.471 -3.625 ...
.- attr(*, "names")= chr [1:500] "AACS" "AARS" "ABI1" "ACHE"

$ dat.agilent : Named num [1:500] -3.57 -4.5 -3.66 -4.52 -1.05 ...

.- attr(*, "names")= chr [1:500] "AACS" "AARS" "ABI1" "ACHE"
$ dat.cnvHarvard: Named num [1:500] -4.49 -3.64 3.13 -3.26 -2.57 ...
.- attr(*, "names")= chr [1:500] "AACS" "AARS" "ABI1" "ACHE"

10

$ dat.cnvMskcc : Named num [1:500] -4.53 -4.48 2.1 -2.55 -4.25 ...
.- attr(*x, "names")= chr [1:500] "AACS" "AARS" "ABI1" "ACHE"

3.3 Gene Set Enrichment using integrated and separate score

After the gene-to-phenotype scores have been obtained it is possible to perform a GSE analysis. To
this end we will use the runBatchGSE function, as shown below. This function enables to perform
GSE analysis over multiple collections of FGS, and over multiple ranking statistics. In the current
implementation of the runBatchGSE the default is performing the enrichment analysis using the
geneSetTest function from the limma package, and most of the arguments passed to runBatchGSE
are indeed passed to geneSetTest (see the relative help for the details).

As an alternative the user can also define his own function to test for FGS enrichment, passing the
selection of genes within the FGS and the ranking ranking statistics in the same way as done for
geneSetTest. In this tutorial we apply geneSetTest in order to perform a Wilcoxon rank-sum test,
using the absolute value of the gene-to-phenotype scores as the ranking statistics.

> args(runBatchGSE)

function (datalist, fgsList, ...)
NULL

Below a short description of the arguments that can be passed to this function:

e datalist: a list containing gene-to-phenotype scores to be used as ranking statistics in the
GSE analysis;

o fgsList: a list of FGS collection, in which each element is a list of character vectors, one for
each gene set;

e ...: any other argument to be passed to lower level functions, including the lower level
enrichment function to be used (like the geneSetTest function from the limma package, which
is used as the default);

e absolute: logical specifying whether the absolute values of the ranking statistics should be
used in the test (the default being TRUE);

e gseFunc: a function to perform GSE analysis, when not specified (the default) the
geneSetTest from the limma package is used. When a function is specified, the mem-
bership of the analyzed genes to a FGS, and the ranking statistics must be defined in the
same way this is done for geneSetTest, and the new function must return an integer (usually
a p-value) (see the help for geneSetTest in the limma package)

Below are few examples to perform Wilcoxon rank-sum test over multiple FGS collections, and over
multiple ranking statistics, using the runBatchGSE. To this end we will use the KEGG and GO
collections created above, and the separate and integrated gene-to-phenotype scores computed using
the computeDrStat. The output of this function is a named list of lists, containing an element for
each ranking statistics considered in the input. Each one of these elements, in turn, is another list,
containing the GSE results for each collection sets. In the examples below we will therefore obtain
a list of length one in the case of the integrated gene-to-phenotype score, and a list of length four
(on element for each genomic platform) in the case of the separate scores. For all the rankings we
will obtain GSE result for both the collections of FGS.

11

3.4 INTEGRATION + GSE

The integrated gene-to-phenotype scores we have computed can be used to perform a GSE analysis.
Below are reported few examples, using the default options, as well as passing several specific
arguments to geneSetTest (see the relative help for details).

3.4.1 One-sided Wilcoxon rank-sum test using absolute ranking statistics

This can be accomplished by calling the runBatchGSE with default values, or by specifying each
argument, as shown below:

> gseABS.int <- runBatchGSE(datalist=bicStatInt, fgsList=fgsList)
> gseABS.int <- runBatchGSE(datalist=bicStatInt, fgsList=fgsList,
+ absolute=TRUE, type="f", alternative="mixed")

3.4.2 One-sided Wilcoxon rank-sum test using signed ranking statistics

When the signed ranking statistics has a sign, it is possible to perform a one-sided test assessing both
tails separately, as well as a two-sided test. This can be accomplished by passing the corresponding
arguments to runBatchGSE, as shown below:

> gseUP.int <- runBatchGSE(datalist=bicStatInt, fgsList=fgsList,

+ absolute=FALSE, type="t", alternative="up")

> gseDW.int <- runBatchGSE(datalist=bicStatInt, fgsList=fgsList,

+ absolute=FALSE, type="t", alternative="down")
> gseBOTH.int <- runBatchGSE(datalist=bicStatlInt, fgsList=fgsList,

+ absolute=FALSE, type="t", alternative='"either")

3.4.3 Performing a simulation-based GSE test

It is also possible to perform an enrichment analysis comparing each FGS to randomly selected
gene lists of the same size of the FGS. In this case the p-value is computed by simulation as the
proportion of times the mean of the statistics in the FGS is smaller (or larger) than in the nsim
random simulated sets of genes.

> gseABSsim.int <- runBatchGSE(datalist=bicStatInt, fgsList=fgsList,

+ absolute=TRUE, type="f'", alternative='"mixed",
+ ranks.only=FALSE, nsim=1000)

> gseUPsim.int <- runBatchGSE(datalist=bicStatInt, fgsList=fgslList,

+ absolute=FALSE, type="t'", alternative="up",
+ ranks.only=FALSE, nsim=1000)

Results from this analysis are named lists of lists, as shown below:
> str(gseUP.int)

List of 1
$ integrated:List of 2
..$ go : Named logi [1:5] NA NA NA NA NA
..- attr(*, "names")= chr [1:5] "G0:1990961.xenobiotic detoxification by transmembrane expc
..$ kegg: Named num [1:5] NA 0.615 NA 0.454 0.391
..- attr(*, "names")= chr [1:5] "Selenocompound metabolism - Homo sapiens (human)" "Gastric

12

> gseABSsim.int

$integrated
$integrated$go
G0:1990961.xenobiotic detoxification by transmembrane export across the plasma membrane
NA
G0:0006573.valine metabolic process
NA
G0:1904246 .negative regulation of polynucleotide adenylyltransferase activity
NA
G0:1905443.regulation of clathrin coat assembly
NA
G0:0060184.cell cycle switching
NA
$integrated$kegg
Selenocompound metabolism - Homo sapiens (human)
NA
Gastric acid secretion - Homo sapiens (human)
0.3696304
Aminoacyl-tRNA biosynthesis - Homo sapiens (human)
NA
Cardiac muscle contraction - Homo sapiens (human)
0.6323676
Autoimmune thyroid disease - Homo sapiens (human)
0.5784216
3.4.4 Passing alternative enrichment functions to runBatchGSE
Below is show how to define and pass alternative enrichment functions to runBatchGSE. We will
first show how to use the limma wilcoxGST function, which is a synonym for geneSetTest using
ranks.only=TRUE and type="t".
> library(limma)
> gseUP.int.2 <- runBatchGSE(datalist=bicStatInt, fgsList=fgsList,
+ absolute=FALSE, gseFunc=wilcoxGST, alternative="up")

As shown below this approach will return the same results obtained with geneSetTest passing
appropriate arguments.

> str(gseUP.int.2)

List of 1
$ integrated:List of 2
..$ go : Named logi [1:5] NA NA NA NA NA
..- attr(*, "names")= chr [1:5] "GD:1990961.xenobiotic detoxification by transmembrane expc
..$ kegg: Named num [1:5] NA 0.615 NA 0.454 0.391
..- attr(*, "names")= chr [1:5] "Selenocompound metabolism - Homo sapiens (human)" "Gastric

> all(gseUP.int.2$go==gseUP.int$go)
[1] TRUE

13

We can finally also pass any new user-defined enrichment function, provided that the arguments are
passed in the same way as with geneSetTest, as shown below using the Fisher’s exact test, and a
threshold for defining the list of deferentially expressed genes.

> gseFunc <- function (selected, statistics, threshold) {
diffExpGenes <- statistics > threshold
tab <- table(diffExpGenes, selected)
pVal <- fisher.test(tab)[["p.value"]]
}
gseUP.int.3 <- runBatchGSE(datalist=bicStatInt, fgsList=fgsList,
absolute=FALSE, gseFunc=gseFunc, threshold=7.5)

+ vV + + + +

As shown below this approach will test for over-representation of the a specific gene set within the
genes defined as deferentially expressed (in our example the genes showing an integrated association
score larger than 7.5). Results are somewhat comparable to what obtained using the Wilcoxon rank-
sum test.

> str(gseUP.int.3)

List of 1
$ integrated:List of 2
..$ go : Named logi [1:5] NA NA NA NA NA
.- attr(*, "names")= chr [1:5] "G0:1990961.xenobiotic detoxification by transmembrane expo
..$ kegg: Named num [1:5] NA 1 NA 1 1
.- attr(*, "names")= chr [1:5] "Selenocompound metabolism - Homo sapiens (human)" "Gastric

> cat("Fisher:")
Fisher:
> gseUP.int.3%integrated$kegg

Selenocompound metabolism - Homo sapiens (human)
NA

Gastric acid secretion - Homo sapiens (human)

1

Aminoacyl-tRNA biosynthesis - Homo sapiens (human)
NA

Cardiac muscle contraction - Homo sapiens (human)
1

Autoimmune thyroid disease - Homo sapiens (human)
1

> cat("\n Wilcoxon:")
Wilcoxon:
> gseUP.int$integrated$kegg

Selenocompound metabolism - Homo sapiens (human)
NA

Gastric acid secretion - Homo sapiens (human)
0.6154686

Aminoacyl-tRNA biosynthesis - Homo sapiens (human)

14

NA

Cardiac muscle contraction - Homo sapiens (human)
0.4541267

Autoimmune thyroid disease - Homo sapiens (human)
0.3908406

3.5 GSE + INTEGRATION

The individual gene-to-phenotype scores computed for each platform can be similarly used to per-
form separate GSE analyses for each considered genomic platform, applying the same code and
functions used to perform GSE analysis in the INTEGRATION + GSE approach above.

> gselABS.sep <- runBatchGSE(datalist=bicStatSep, fgsList=fgsList)

This step of GSE analysis on separate platform is then followed by GSE results integration, which
is achieved using the combineGSE function, which summarizes the individual p-values from the
tests. To this end different methods are available, including the computation of the geometric or
arithmetic means, the use of the median, the selection of the minimum or the maximum p-value,
and the random selection (respectively geometricMean, mean, median, min, max, and random). Few
examples are shown below:

> gseABS.geoMean.sep <- combineGSE(gseABS.sep, method="geometricMean")
> gseABS.max.sep <- combineGSE(gseABS.sep, method="max")

Also in this case the results from the combination are named lists of lists, as shown below:
> names (gseABS.sep)

[1] "dat.affy" "dat.agilent"
[3] "dat.cnvHarvard" "dat.cnvMskcc"

> str(gseABS.sep)

List of 4
$ dat.affy :List of 2
..$ go : Named logi [1:5] NA NA NA NA NA
..- attr(*, "names")= chr [1:5] "GD:1990961.xenobiotic detoxification by transmembrane expc
..$ kegg: Named num [1:5] NA 0.844 NA 0.414 0.262
..- attr(*, "names")= chr [1:5] "Selenocompound metabolism - Homo sapiens (human)" "Gastric
$ dat.agilent :List of 2
..$ go : Named logi [1:5] NA NA NA NA NA
..- attr(*, "names")= chr [1:5] "G0:1990961.xenobiotic detoxification by transmembrane expc
..$ kegg: Named num [1:5] NA 0.432 NA 0.908 0.957
..- attr(*, "names")= chr [1:5] "Selenocompound metabolism - Homo sapiens (human)" "Gastric
$ dat.cnvHarvard:List of 2
..$ go : Named logi [1:5] NA NA NA NA NA
..- attr(*, "names")= chr [1:5] "G0:1990961.xenobiotic detoxification by transmembrane expc
..$ kegg: Named num [1:5] NA 0.855 NA 0.622 0.357
..- attr(*, "names")= chr [1:5] "Selenocompound metabolism - Homo sapiens (human)" "Gastric
$ dat.cnvMskcc :List of 2
..$ go : Named logi [1:5] NA NA NA NA NA
..- attr(*, "names")= chr [1:5] "G0:1990961.xenobiotic detoxification by transmembrane expc

15

..$ kegg: Named num [1:5] NA 0.171 NA 0.0899 0.5715
..- attr(*, "names")= chr [1:5] "Selenocompound metabolism - Homo sapiens (human)" "Gastric

> str(gseABS.geoMean.sep)

List of 1
$ combinedScore:List of 2
..$ go : Named num [1:5] NA NA NA NA NA
..- attr(*, "names")= chr [1:5] "GD0:1990961.xenobiotic detoxification by transmembrane expc
..$ kegg: Named num [1:5] NA 0.48 NA 0.381 0.475
..- attr(*, "names")= chr [1:5] "Selenocompound metabolism - Homo sapiens (human)" "Gastric

> gseABS.geolMean.sep

$combinedScore
$combinedScore$go
G0:1990961.xenobiotic detoxification by transmembrane export across the plasma membrane
NA
GO0:0006573.valine metabolic process
NA
G0:1904246 .negative regulation of polynucleotide adenylyltransferase activity
NA
G0:1905443.regulation of clathrin coat assembly
NA
G0:0060184.cell cycle switching
NA
$combinedScore$kegg
Selenocompound metabolism - Homo sapiens (human)
NA
Gastric acid secretion - Homo sapiens (human)
0.4804713
Aminoacyl-tRNA biosynthesis - Homo sapiens (human)
NA
Cardiac muscle contraction - Homo sapiens (human)
0.3807105
Autoimmune thyroid disease - Homo sapiens (human)
0.4754729

3.6 Multiple testing correction

Finally the adjustPvalGSE enables to adjust the p-values computed by the runBatchGSE. This
functions is an interface to the mt.rawp2adjp function from the multtest package.

> gseABS.int.BH <- adjustPvalGSE(gseABS.int)
> gseABS.int.holm <- adjustPvalGSE(gseABS.int, proc = "Holm")

Also in this case the results after the adjustment are named lists of lists, as shown below:
> names(gseABS.int.BH)

[1] "integrated"

16

> names(gseABS.int.holm)
[1] "integrated"
> str(gseABS.int.BH)

List of 1
$ integrated:List of 2
..$ go : num [1:5, 1:2] NA NA NA NA NA NA NA NA NA NA
..- attr(x, "dimnames")=List of 2
..$: chr [1:5] "GO0:1990961.xenobiotic detoxification by transmembrane export across the
.. ..$: chr [1:2] "rawp" "BH"
..$ kegg: num [1:5, 1:2] NA 0.389 NA 0.554 0.614 ...
..- attr(x, "dimnames")=List of 2
..$: chr [1:5] "Selenocompound metabolism - Homo sapiens (human)" "Gastric acid secreti
..$: chr [1:2] "rawp" "BH"

> str(gseABS.int.holm)

List of 1
$ integrated:List of 2
..$ go : num [1:5, 1:2] NA NA NA NA NA NA NA NA NA NA
..- attr(x, "dimnames")=List of 2
..$: chr [1:5] "GO:1990961.xenobiotic detoxification by transmembrane export across the
.. ..$: chr [1:2] "rawp" "Holm"
..$ kegg: num [1:5, 1:2] NA 0.389 NA 0.554 0.614 ...
.- attr(x, "dimnames'")=List of 2
..$: chr [1:5] "Selenocompound metabolism - Homo sapiens (human)" "Gastric acid secreti
..$: chr [1:2] "rawp" "Holm"

4 System Information

Session information:
> gsessionInfo()

R Under development (unstable) (2025-03-01 r87860 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows Server 2022 x64 (build 20348)

Matrix products: default
LAPACK version 3.12.0

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C

[6] LC_TIME=English_United States.utf8

time zone: America/New_York

17

tzcode source: internal
attached base packages:
[1] stats4 stats graphics grDevices

[5] utils datasets methods base

other attached packages:

[1] limma_3.63.9 G0.db_3.21.0

[3] KEGGREST_1.47.0 org.Hs.eg.db_3.21.0
[5] AnnotationDbi_1.69.0 IRanges_2.41.3

[7] S4Vectors_0.45.4 RTopper_1.53.0

[9] Biobase_2.67.0 BiocGenerics_0.53.6

[11] generics_0.1.3

loaded via a namespace (and not attached):
[1] Matrix_1.7-3
[2] bit_4.6.0
[3] jsonlite_1.9.1
[4] compiler_4.5.0
[5] crayon_1.5.3
[6] blob_1.2.4
[7] Biostrings_2.75.4
[8] splines_4.5.0
[9] png_0.1-8
[10] fastmap_1.2.0
[11] statmod_1.5.0
[12] lattice_0.22-6
[13] R6_2.6.1
[14] XVector_0.47.2
[15] curl_6.2.1
[16] GenomeInfoDb_1.43.4
[17] MASS_7.3-65
[18] GenomeInfoDbData_1.2.14
[19] DBI_1.2.3
[20] rlang_1.1.5
[21] cachem_1.1.0
[22] bit64_4.6.0-1
[23] multtest_2.63.0
[24] RSQLite_2.3.9
[25] memoise_2.0.1
[26] c1i_3.6.4
[27] grid_4.5.0
[28] vctrs_0.6.5
[29] survival_3.8-3
[30] httr_1.4.7
[31] tools_4.5.0
[32] pkgconfig 2.0.3
[33] UCSC.utils_1.3.1

18

5

References

References

[1]

7]

18]

19]

M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis,
K. Dolingki, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis,
S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock. Gene on-
tology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 25(1):25—
9, 2000. 1061-4036 (Print) Journal Article.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society Series B, 57:289-300, 1995.

M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori. The KEGG resource for
deciphering the genome. Nucleic Acids Res, 32(Database issue):D277-80, 2004. 1362-4962
(Electronic) Journal Article.

V. K. Mootha, C. M. Lindgren, K. F. FEriksson, A. Subramanian, S. Sihag, J. Lehar,
P. Puigserver, E. Carlsson, M. Ridderstrale, E. Laurila, N. Houstis, M. J. Daly, N. Patter-
son, J. P. Mesirov, T. R. Golub, P. Tamayo, B. Spiegelman, E. S. Lander, J. N. Hirschhorn,
D. Altshuler, and L. C. Groop. PGC-lalpha-responsive genes involved in oxidative phospho-
rylation are coordinately downregulated in human diabetes. Nat Genet, 34(3):267-273, 2003.
1061-4036 (Print) Journal Article.

G. K. Smyth. Linear models and empirical Bayes methods for assessing differential expression
in microarray experiments. Statistical Applications in Genetics and Molecular Biology, 3(Article
3), 2004.

G. K. Smyth. Limma: linear models for microarray data. In R. Gentleman, R. V. Carey, S. Du-
doit, R. Irizarry, and W. Huber, editors, Bioinformatics and Computational Biology Solutions
using R and Bioconductor, pages 397-420. Springer, New York, 2005.

G. K. Smyth, J. Michaud, and H. S. Scott. Use of within-array replicate spots for assessing differ-
ential expression in microarray experiments. Bioinformatics, 2005. 1367-4803 (Print) Evaluation
Studies Journal Article Validation Studies.

Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, Benjamin L Ebert,
Michael A Gillette, Amanda Paulovich, Scott L. Pomeroy, Todd R Golub, Eric S Lander, and
Jill P Mesirov. Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci U S A, 102(43):15545-15550, Oct 2005.

Svitlana Tyekucheva, Luigi Marchionni, Rachel Karchin, and Giovanni Parmigiani. Integrating
diverse genomic data using gene sets. Genome Biology (in press), 2011.

19

	Overview
	RTopper data structure
	Creation of Functional Gene Sets

	Data analysis with RTopper
	Integrated Gene-to-Phenotype score computation
	Separate Gene-to-Phenotype score computation
	Gene Set Enrichment using integrated and separate score
	INTEGRATION + GSE
	One-sided Wilcoxon rank-sum test using absolute ranking statistics
	One-sided Wilcoxon rank-sum test using signed ranking statistics
	Performing a simulation-based GSE test
	Passing alternative enrichment functions to runBatchGSE

	GSE + INTEGRATION
	Multiple testing correction

	System Information
	References

