--- title: "scRNAseqApp Guide" author: "Jianhong Ou" bibliography: bibliography.bib csl: nature.csl vignette: > %\VignetteIndexEntry{scRNAseqApp Vignette} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} output: BiocStyle::html_document: toc: true toc_float: true toc_depth: 4 runtime: shiny --- ```{r, echo=FALSE, results="hide", warning=FALSE, message=FALSE} suppressPackageStartupMessages({ library(scRNAseqApp) }) knitr::opts_chunk$set(warning=FALSE, message=FALSE, fig.width=5, fig.height=3.5) ``` # Introduction Single-cell RNA sequencing (scRNA-seq) is a powerful technique to study gene expression, cellular heterogeneity, and cell states within samples in single-cell level. The development of scRNA-seq shed light to address the knowledge gap about the cell types, cell interactions, and key genes involved in biological process and their dynamics. To increase the re-usability and reproducibility of scientific findings, more and more publishers require raw data and detailed descriptions of how the data were analyzed. However, difficulties arise due to the highly concise descriptions of analysis and the differences of the computing environments. Furthermore, to precisely meet the publishing requirement, the communication of the bioinformatician with researchers is a time-consuming step. Multiple interactive visualization tools were developed to provide the researchers access to the details of the data. Those tools include, but not limited to, alona[@franzen2020alona], ASAP[@gardeux2017asap], Asc-Seurat[@pereira2021asc], BingleSeq[@dimitrov2020bingleseq], CellView[@bolisetty2017cellview], cellxgene VIP[@li2022cellxgene], Cerebro[@hillje2020cerebro], CHARTS[@bernstein2021charts], ChromSCape[@prompsy2020interactive], Cirrocumulus[@li2020cumulus], CReSCENT[@mohanraj2020crescent], Cytosplore Viewer[@tasic2018shared], Granatum[@zhu2017granatum], InterCellar[@interlandi2022intercellar], iS-CellR[@patel2018cellr], iSEE[@rue2018isee], loom-viewer, Loupe Cell Browser, PIVOT[@zhu2018pivot], SC1[@moussa2021sc1], SCANNER[@cai2022scanner], scClustViz[@innes2018scclustviz], SCope[@davie2018single], scSVA[@tabaka2019scsva], scVI[@lopez2018deep], SeuratV3Wizard[@yousif2020nasqar]/NASQAR, ShinyArchRUiO[@sharma2022shinyarchr], ShinyCell[@ouyang2021shinycell], singleCellTK[@hong2022comprehensive], Single Cell Explorer (scExplorer)[@feng2019single], Single Cell Interactive Application (SCiAp)[@moreno2021user] and UCSC Cell Browser[@speir2021ucsc], SPRING[@weinreb2018spring], WASP[@hoek2021wasp], and Vitessce[@keller2021vitessce]. The basic information of the tools are list in the following tables (the table was created at 12/06/2022): | Tool | platform | plot type | |:-------------------|:---------------|:---------------------------------------| | alona | web-based | scatters, bar | | ASAP | web-based | scatters | | Asc-Seurat | shiny package | scatters, heatmap, violin, dot, trajectory | | BingleSeq | shiny package | scatters, heatmap, violin, ridge | | CellView | shiny package | scatters | | cellxgene VIP | web-based | scatters, bar, and visualization plugin| | Cerebro/cerebroApp | shiny package | scatters, 3D scatters | | CHARTS | web-based | scatters, bar | | ChromSCape | shiny package | scatters, heatmap | | Cirrocumulus | python package | | | CReSCENT | web-based | scatters, violin | | Cytosplore Viewer | Cytosplore | scatters, phylogeny | | Granatum | shiny package | scatters, bar, trajectory, ppi | | InterCellar | shiny package | dot, ppi, circos, radar, pie | | iS-CellR | shiny package | scatters, heatmap, violin, bar, dot | | iSEE | shiny package | scatters, heatmap, violin, bar | | loom-viewer | python package | | | Loupe Cell Browser | Desktop | scatters | | PIVOT | shiny package | scatters, heatmap, violin, bar, pie | | SC1 | web-based | scatters, heatmap, violin, bar | | SCANNER | web-based | scatters | | scClustViz | shiny package | scatters, heatmap, violin, bar, dot | | scExplorer | web-based | scatters, heatmap | | SCope | web-based | scatters | | scSVA | shiny package | scatters, 3D scatters | | scVI | python package | scatters, heatmap, violin, bar | | seuratv3wizard | web-based | scatters | | ShinyArchRUiO | shiny package | scatters, heatmap, track | | ShinyCell | shiny package | scatters, heatmap, violin, bar | | SCiAp[^1] | galaxy | | | singleCellTK | shiny package | scatters, heatmap, violin, dot, trajectory | | SPRING | python package | scatters | | UCSC Cell Browser | web-based | scatters | | Vitessce | python package | scatters, heatmap | | WASP | shiny package | scatters, heatmap | [^1]: short name for Single Cell Interactive Application | Tool | languages | license | starts | watching | forks | citation | |:---------------|:-----------|:--------|:-------|:---------|:------|:---------| | alona | python | GPL-3 | 12 | 3 | 5 | 24 | | ASAP | Java,R,Python | GPL-3 | 18 | 6 | 8 | 88 | | Asc-Seurat | R | GPL-3 | 12 | 2 | 6 | 10 | | BingleSeq | R | MIT | 18 | 2 | 6 | 4 | | CellView | R | MIT | 16 | 9 | 8 | 8 | | cellxgene VIP | python,R,JavaScript | MIT | 81 | 6 | 24 | 10 | | Cerebro/cerebroApp | R,JavaScript,C | MIT | 79 | 7 | 18 | 41 | | CHARTS | python | MIT | 2 | 6 | 0 | 7 | | ChromSCape | R | GPL-3 | 11 | 2 | 4 | 13 | | Cirrocumulus | JavaScript,Python | BSD-3 | 38 | 7 | 9 | 78 | | CReSCENT | R,Perl | GPL-3 | 8 | 1 | 4 | 11 | | Cytosplore Viewer | java,javascript | | | | | | | Granatum | R | Apache2 | 18 | 4 | 11 | 65 | | InterCellar | R | MIT | 7 | 1 | 3 | 4 | | iS-CellR | R | GPL-3 | 21 | 6 | 6 | 15 | | iSEE | R | MIT | 201 | 14 | 39 | 41 | | loom-viewer | python,JavaScript | BSD-2 | 32 | 9 | 6 | | | Loupe Cell Browser | | | | | | | | PIVOT | R | | 27 | 6 | 15 | 27 | | SC1 | R | | | | | 5 | | SCANNER | R | | 0 | 2 | 1 | 1 | | scClustViz | R | MIT | 41 | 12 | 10 | 36 | | scExplorer | JavaScript,Python | GPL-3 | 7 | 3 | 6 | 16 | | SCope | python,JavaScript | GPL-3 | 60 | 8 | 14 | 438[^2] | | scSVA | R | GPL-3 | 20 | 6 | 7 | 8 | | scVI | python | BSD-3 | 840 | 27 | 263 | 787 | | seuratv3wizard | R | GPL-3 | 29 | 8 | 13 | 28[^3] | | ShinyArchRUiO | R | GPL-3 | 11 | 2 | 4 | 3 | | ShinyCell | R | GPL-3 | 70 | 9 | 23 | 28 | | SCiAp | | | | | | 16 | | singleCellTK | R | MIT | 105 | 12 | 61 | 6 | | SPRING | python,matlab,JavaScript | | 59 | 10 | 29 | 250 | | UCSC Cell Browser | JavaScript,Python,R | GPL-3 | 3 | 1 | 39 | 46 | | Vitessce | JavaScript,Python,R | MIT | 92 | 6 | 23 | 2 | | WASP | R,python | | 2 | 1 | 0 | 3 | [^2]: the package contribute paritial to the citation [^3]: citation is from NASQAR | Tool | source code | |:------------------|:---------------------------------------------------------| | alona | https://github.com/oscar-franzen/adobo/ | | ASAP | https://github.com/DeplanckeLab/ASAP | | Asc-Seurat | https://github.com/KirstLab/asc_seurat/ | | BingleSeq | https://github.com/dbdimitrov/BingleSeq/ | | CellView | https://github.com/mohanbolisetty/CellView | | cellxgene VIP | https://github.com/interactivereport/cellxgene_VIP | | Cerebro/cerebroApp| https://github.com/romanhaa/Cerebro | | CHARTS | https://github.com/stewart-lab/CHARTS | | ChromSCape | https://github.com/vallotlab/ChromSCape | | Cirrocumulus | https://github.com/lilab-bcb/cirrocumulus | | CReSCENT | https://github.com/pughlab/crescent | | Cytosplore Viewer | | | Granatum | https://github.com/lanagarmire/Granatum | | InterCellar | https://github.com/martaint/InterCellar | | iS-CellR | https://github.com/immcore/iS-CellR | | iSEE | https://github.com/iSEE/iSEE | | loom-viewer | https://github.com/linnarsson-lab/loom-viewer | | Loupe Cell Browser| | | PIVOT | https://github.com/kimpenn/PIVOT | | SC1 | | | SCANNER | https://github.com/GuoshuaiCai/scanner | | scClustViz | https://github.com/BaderLab/scClustViz | | scExplorer | https://github.com/d-feng/scExplorer | | SCope | https://github.com/aertslab/Scope | | scSVA | https://github.com/klarman-cell-observatory/scSVA | | scVI | https://github.com/scverse/scvi-tools | | seuratv3wizard | https://github.com/nasqar/seuratv3wizard | | ShinyArchRUiO | https://github.com/EskelandLab/ShinyArchRUiO | | ShinyCell | https://github.com/SGDDNB/ShinyCell | | SCiAp | | | singleCellTK | https://github.com/compbiomed/singleCellTK | | SPRING | https://github.com/AllonKleinLab/SPRING_dev | | UCSC Cell Browser | https://github.com/ucscGenomeBrowser/cellBrowser | | Vitessce | https://github.com/vitessce/vitessce | | WASP | https://github.com/andreashoek/wasp | | Tool | demo | |:------------------|:---------------------------------------------------------| | alona | https://alona.panglaodb.se/ | | ASAP | https://asap.epfl.ch/ | | Asc-Seurat | | | BingleSeq | | | CellView | https://mbolisetty.shinyapps.io/CellView/ | | cellxgene VIP | https://cellxgenevip-ms.bxgenomics.com/ | | Cerebro/cerebroApp| | | CHARTS | https://charts.morgridge.org/ | | ChromSCape | https://vallotlab.shinyapps.io/ChromSCape/ | | Cirrocumulus | | | CReSCENT | https://crescent.cloud/ | | Cytosplore Viewer | | | Granatum | http://granatum.dcmb.med.umich.edu:8103/ | | InterCellar | | | iS-CellR | | | iSEE | https://marionilab.cruk.cam.ac.uk/iSEE_allen/ | | loom-viewer | | | Loupe Cell Browser| | | PIVOT | | | SC1 | https://sc1.engr.uconn.edu/ | | SCANNER | https://www.thecailab.com/scanner/ | | scClustViz | https://innesbt.shinyapps.io/scclustvizdemoapp/ | | scExplorer | http://singlecellexplorer.org | | SCope | https://scope.aertslab.org/ | | scSVA | | | scVI | | | seuratv3wizard | https://nasqar.abudhabi.nyu.edu/SeuratV3Wizard/ | | ShinyArchRUiO | https://cancell.medisin.uio.no/ShinyArchR.UiO/ | | ShinyCell | http://shinycell1.ddnetbio.com/ | | SCiAp | https://humancellatlas.usegalaxy.eu/ | | singleCellTK | https://sctk.bu.edu/ | | SPRING. | https://kleintools.hms.harvard.edu/tools/ | | | springViewer_1_6_dev.html?datasets/mouse_HPCs/ | | | basal_bone_marrow/full[^4] | | UCSC Cell Browser | https://cells.ucsc.edu/ | | Vitessce | http://vitessce.io/ | | WASP | | | Tool | visualization tutorial | |:------------------|:---------------------------------------------------------| | alona | https://alona.panglaodb.se/faq.html | | ASAP | https://asap.epfl.ch/home/tutorial?t=fca | | Asc-Seurat | https://asc-seurat.readthedocs.io/en/latest/index.html | | BingleSeq | https://github.com/dbdimitrov/BingleSeq/blob/master/README.md | | CellView | | | cellxgene VIP|https://interactivereport.github.io/cellxgene_VIP/tutorial/docs| | Cerebro/cerebroApp| https://romanhaa.github.io/cerebroApp/ | | CHARTS | https://github.com/stewart-lab/CHARTS/blob/master/README.md | | ChromSCape | https://vallotlab.github.io/ChromSCape/articles/vignette.html | | Cirrocumulus | https://cirrocumulus.readthedocs.io/en/latest/ | | CReSCENT | https://pughlab.github.io/crescent-frontend/ | | Cytosplore Viewer | https://viewer.cytosplore.org/ | | Granatum | https://github.com/lanagarmire/Granatum/blob/master/doc/ | | | Granatum_manual_0.92.pdf[^4] | | InterCellar | | | iS-CellR | | | iSEE | | | loom-viewer | https://github.com/linnarsson-lab/loom-viewer | | Loupe Cell Browser| | | PIVOT | https://rawgit.com/qinzhu/PIVOT/master/inst/app/www/manual_file.html | | SC1 | | | SCANNER | | | scClustViz | | | scExplorer | http://singlecellexplorer.org/tutorial.html | | SCope | https://github.com/aertslab/SCope/blob/master/README.md | | scSVA | https://github.com/klarman-cell-observatory/scSVA/blob/ | | | master/docs/index.md[^4] | | scVI | https://docs.scvi-tools.org/en/stable/user_guide/index.html | | seuratv3wizard|https://github.com/nasqar/seuratv3wizard/blob/master/README.md| | ShinyArchRUiO | | | ShinyCell | https://github.com/SGDDNB/ShinyCell/blob/master/README.md| | SCiAp | | | singleCellTK | | | SPRING | https://kleintools.hms.harvard.edu/tools/spring.html | | UCSC Cell Browser|https://cellbrowser.readthedocs.io/en/master/interface.html| | Vitessce | http://vitessce.io/docs/ | | WASP | https://github.com/andreashoek/wasp/blob/main/README.md | [^4]: URL shown in multiple lines # Motivation Based on [_ShinyCell_](https://github.com/SGDDNB/ShinyCell), The _scRNAseqApp_ package is developed with multiple highly interactive visualizations of how cells and subsets of cells cluster behavior. The end users can discover the expression of genes in multiple interactive manners with highly customized filter conditions by selecting metadata supplied with the publications and download the ready-to-use results for republishing. # Quick start Here is an example using _scRNAseqApp_ with a subset of scRNA-seq data. ## Installation First, install _scRNAseqApp_ and other packages required to run the examples. Please note that the example dataset used here is from a small subset of PBMC[@satija2015spatial]. Additional package are also required for enhancement functions such trajectory analysis or cell communication analysis. ```{r, eval=FALSE} library(BiocManager) BiocManager::install("scRNAseqApp") ``` ## Load library ```{r} library(scRNAseqApp) ``` ## Initial the database ```{r} publish_folder=tempdir() scInit(app_path=publish_folder) ``` ## Start shiny app ```{r} scRNAseqApp(app_path = publish_folder) ``` # Create a new data There are two ways to create a new data. - from the administrator mode - use R session ## by administrator Log in to admin by `Switch User` tab and click `administrator button` in the right-bottom corner of screen. Click `UploadData` and upload a Seurat object. ## via R session There are two steps to create a new data via R session. First, create the config file with description of the data and second create the data from a Seurat object. ```{r} library(Seurat) appconf <- createAppConfig( title="pbmc_small_test", destinationFolder = "pbmc_small_test", species = "Homo sapiens", doi="10.1038/nbt.3192", datatype = "scRNAseq") createDataSet( appconf, pbmc_small, datafolder=file.path(publish_folder, "data")) dir(file.path(publish_folder, 'data')) ``` # Distribute to a shiny server There are two steps to distribute to a shiny server. First, install the package in the server as root user. Second, in a R session run `scInit()` after load the `scRNAseqApp` library. If you initialed the app offline, copy the app folder to the shiny server. Note: the following files need to be writable for shiny: `www/database.sqlite`, `www/counter.tsv` and the app `www` folder should also be writable because the user manager is depend on SQLite, and the SQLite needs to be able to create a journal file in the same directory as the DB, before any modifications can take place. The journal is used to support transaction rollback. # SessionInfo ```{r} sessionInfo() ``` # References