Pooling RNA-seq and Assembling Models (PRAM) is an R package that utilizes multiple RNA-seq datasets to predict transcript models. The workflow of PRAM contains four steps. Figure 1 shows each step with function name and associated key parameters. In addition, we provide a function named evalModel()
to evaluate prediction accuracy by comparing transcript models with true transcripts. In the later sections of this vignette, we will describe each function in details.
Start R and enter:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("pram")
For different versions of R, please refer to the appropriate Bioconductor release.
PRAM provides a function named runPRAM()
to let you conveniently run through the whole workflow.
For a given gene annotation and RNA-seq alignments, you can predict transcript models in intergenic genomic regions:
##
## assuming the stringtie binary is in folder /usr/local/stringtie-1.3.3/
##
pram::runPRAM( in_gtf, in_bamv, out_gtf, method='plst',
stringtie='/usr/loca/stringtie-1.3.3/stringtie')
in_gtf
: an input GTF file defining genomic coordinates of existing genes. Required to have an attribute of gene_id in the ninth column.in_bamv
: a vector of input BAM file(s) containing RNA-seq alignments. Currently, PRAM only supports strand-specific paired-end RNA-seq with the first mate on the right-most of transcript coordinate, i.e., ‘fr-firststrand’ by Cufflinks definition.out_gtf
: an output GTF file of predicted transcript models.method
: prediction method. For the command above, we were using pooling RNA-seq datasets and building models by stringtie. For a list of available PRAM methods, please check Table @ref(tab:methods) below.stringtie
: location of the stringtie binary. PRAM’s model-building step depends on external software. For more information on this topic, please see Section @ref(id:required-external-software) below.PRAM has included input examples files in its extdata/demo/
folder. The table below provides a quick summary of all the example files.
input argument | file name(s) |
---|---|
in_gtf |
in.gtf |
in_bamv |
SZP.bam, TLC.bam |
You can access example files by system.file()
in R, e.g. for the argument in_gtf
, you can access its example file by
system.file('extdata/demo/in.gtf', package='pram')
#> [1] "/tmp/Rtmp6fws3p/Rinst31175651c7b1f8/pram/extdata/demo/in.gtf"
Below shows the usage of runPRAM()
with example input files:
in_gtf = system.file('extdata/demo/in.gtf', package='pram')
in_bamv = c(system.file('extdata/demo/SZP.bam', package='pram'),
system.file('extdata/demo/TLC.bam', package='pram') )
pred_out_gtf = tempfile(fileext='.gtf')
##
## assuming the stringtie binary is in folder /usr/local/stringtie-1.3.3/
##
pram::runPRAM( in_gtf, in_bamv, pred_out_gtf, method='plst',
stringtie='/usr/loca/stringtie-1.3.3/stringtie')
defIgRanges()
To predict intergenic transcripts, we must first define intergenic regions by defIgRanges()
. This function requires a GTF file containing known gene annotation supplied for its in_gtf
argument. This GTF file should contain an attribue of gene_id in its ninth column. We provided an example input GTF file in PRAM package: extdata/gtf/defIGRanges_in.gtf
.
In addition to gene annotation, defIgRanges()
also requires user to provide chromosome sizes so that it would know the maximum genomic ranges. You can provide one of the following arguments:
chromgrs
: a GRanges object, orgenome
: a genome name, currently supported ones are: hg19, hg38, mm9, and mm10, orfchromsize
: a UCSC genome browser-style size file, e.g. hg19By default, defIgRanges()
will define intergenic ranges as regions 10 kb away from any known genes. You can change it by the radius
argument.
pram::defIgRanges(system.file('extdata/gtf/defIgRanges_in.gtf', package='pram'),
genome = 'hg38')
#> GRanges object with 456 ranges and 0 metadata columns:
#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] chr1 30001-248956422 *
#> [2] chr2 1-242193529 *
#> [3] chr3 1-198295559 *
#> [4] chr4 1-190214555 *
#> [5] chr5 1-181538259 *
#> ... ... ... ...
#> [452] chrUn_KI270753v1 1-62944 *
#> [453] chrUn_KI270754v1 1-40191 *
#> [454] chrUn_KI270755v1 1-36723 *
#> [455] chrUn_KI270756v1 1-79590 *
#> [456] chrUn_KI270757v1 1-71251 *
#> -------
#> seqinfo: 455 sequences from an unspecified genome; no seqlengths
prepIgBam()
Once intergenic regions were defined, prepIgBam()
will extract corresponding RNA-seq alignments from input BAM files. In this way, transcript models predicted at later stage will solely from intergenic regions. Also, with fewer RNA-seq alignments, model prediction will run faster.
Three input arguments are required by prepIgBam()
:
finbam
: an input RNA-seq BAM file sorted by genomic coordinate. Currently, we only support strand-specific paired-end RNA-seq data with the first mate on the right-most of transcript coordinate, i.e. ‘fr-firststrand’ by Cufflinks’s definition.iggrs
: a GRanges object to define intergenic regions.foutbam
: an output BAM file.buildModel()
buildModel()
predict transcript models from RNA-seq BAM file(s). This function requires two arguments:
in_bamv
: a vector of input BAM file(s)out_gtf
: an output GTF file containing predicted transcript modelsbuildModel()
has implemented seven transcript prediction methods. You can specify it by the method
argument with one of the keywords: plcf, plst, cfmg, cftc, stmg, cf, and st. The first five denote meta-assembly methods that utilize multiple RNA-seq datasets to predict a single set of transcript models. The last two represent methods that predict transcript models from a single RNA-seq dataset.
The table below compares prediction steps for these seven methods. By default, buildModel()
uses plcf to predict transcript models.
method | meta-assembly | preparing RNA-seq input | building transcripts | assembling transcripts |
---|---|---|---|---|
plcf | yes | pooling alignments | Cufflinks | no |
plst | yes | pooling alignments | StringTie | no |
cfmg | yes | no | Cufflinks | Cuffmerge |
cftc | yes | no | Cufflinks | TACO |
stmg | yes | no | StringTie | StringTie-merge |
cf | no | no | Cufflinks | no |
st | no | no | StringTie | no |
Depending on your specified prediction method, buildModel()
requires external software: Cufflinks, StringTie and/or TACO, to build and/or assemble transcript models. You can either specify the software location using the cufflinks
, stringtie
, and taco
arguments in buildModel()
, or simply leave these three arugments undefined and let PRAM download them for you automatically. The table below summarized software versions buildModel()
would download when required software was not specified. Please note that, for macOS, pre-compiled Cufflinks binary versions 2.2.1 and 2.2.0 appear to have an issue on processing BAM files, therefore we recommend to use version 2.1.1 instead.
software | Linux binary | macOS binary | required by |
---|---|---|---|
Cufflinks, Cuffmerge | v2.2.1 | v2.1.1 | plcf, cfmg, cftc, and cf |
StringTie, StringTie-merge | v1.3.3b | v1.3.3b | plst, stmg, and st |
TACO | v0.7.0 | v0.7.0 | cftc |
fbams = c( system.file('extdata/bam/CMPRep1.sortedByCoord.clean.bam',
package='pram'),
system.file('extdata/bam/CMPRep2.sortedByCoord.clean.bam',
package='pram') )
foutgtf = tempfile(fileext='.gtf')
##
## assuming the stringtie binary is in folder /usr/local/stringtie-1.3.3/
##
pram::buildModel(fbams, foutgtf, method='plst',
stringtie='/usr/loca/stringtie-1.3.3/stringtie')
selModel()
Once transcript models were built, you may want to select a subset of them by their genomic features. selModel()
was developed for this purpose. It allows you to select transcript models by their total number of exons and total length of exons and introns.
selModel()
requires two arguments:
fin_gtf
:input GTF file containing to-be-selected transcript models. This file is required to have transcript_id attribute in the ninth column.fout_gtf
: output GTF file containing selected transcript models.By default: selModel()
will select transcript models with \(\ge\) 2 exons and \(\ge\) 200 bp total length of exons and introns. You can change the default using the min_n_exon
and min_tr_len
arguments.
evalModel()
After PRAM has predicted a number of transcript models, you may wonder how accurate these models are. To answer this question, you can compare PRAM models with real transcripts (i.e., positive controls) that you know should be predicted. PRAM’s evalModel()
function will help you to make such comparison. It will calculate precision and recall rates on three features of a transcript: exon nucleotides, individual splice junctions, and transcript structure (i.e., whether all splice junctions within a transcript were constructed in a model).
evalModel()
requires two arguments:
model_exons
: genomic coordinates of transcript model exons.target_exons
: genomic coordinates of real transcript exons.The two arguments can be in multiple formats:
GRanges
objectscharacter
objects denoting names of GTF filesdata.table
objects containing the following five columns for each exon:
model_exons
is the name of a GTF file and target_exons
is a data.table
object.The output of evalModel()
is a data.table
object, where columns are evaluation results and each row is three transcript features.
column name | representation |
---|---|
feat | transcript feature |
ntp | number of true positives (TP) |
nfn | number of false negatives (FN) |
nfp | number of false positives (FP) |
precision | precision rate: \(\frac{TP}{(TP+FP)}\) |
recall | recall rate: \(\frac{TP}{(TP+FN)}\) |
feature name | representation |
---|---|
exon_nuc | exon nucleotide |
indi_jnc | individual splice junction |
tr_jnc | transcript structure |
fmdl = system.file('extdata/benchmark/plcf.tsv', package='pram')
ftgt = system.file('extdata/benchmark/tgt.tsv', package='pram')
mdldt = data.table::fread(fmdl, header=TRUE, sep="\t")
tgtdt = data.table::fread(ftgt, header=TRUE, sep="\t")
pram::evalModel(mdldt, tgtdt)
#> feat ntp nfn nfp precision recall
#> 1: exon_nuc 1723581 109337 8424 0.9951363 0.9403481
#> 2: indi_jnc 2889 162 192 0.9376826 0.9469027
#> 3: tr_jnc 1138 118 252 0.8187050 0.9060510
Below is the output of sessionInfo()
on the system on which this document was compiled.
#> R version 4.3.1 (2023-06-16)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 22.04.3 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] GenomicAlignments_1.38.0 XVector_0.42.0 GenomicRanges_1.54.0
#> [4] S4Vectors_0.40.0 IRanges_2.36.0
#>
#> loaded via a namespace (and not attached):
#> [1] Matrix_1.6-1.1 jsonlite_1.8.7
#> [3] rjson_0.2.21 compiler_4.3.1
#> [5] crayon_1.5.2 SummarizedExperiment_1.32.0
#> [7] Biobase_2.62.0 Rsamtools_2.18.0
#> [9] Biostrings_2.70.0 bitops_1.0-7
#> [11] parallel_4.3.1 jquerylib_0.1.4
#> [13] BiocParallel_1.36.0 yaml_2.3.7
#> [15] fastmap_1.1.1 lattice_0.22-5
#> [17] R6_2.5.1 S4Arrays_1.2.0
#> [19] pram_1.18.0 GenomeInfoDb_1.38.0
#> [21] knitr_1.44 BiocGenerics_0.48.0
#> [23] XML_3.99-0.14 DelayedArray_0.28.0
#> [25] MatrixGenerics_1.14.0 GenomeInfoDbData_1.2.11
#> [27] bslib_0.5.1 rlang_1.1.1
#> [29] cachem_1.0.8 xfun_0.40
#> [31] sass_0.4.7 SparseArray_1.2.0
#> [33] cli_3.6.1 zlibbioc_1.48.0
#> [35] digest_0.6.33 grid_4.3.1
#> [37] rtracklayer_1.62.0 evaluate_0.22
#> [39] data.table_1.14.8 codetools_0.2-19
#> [41] abind_1.4-5 stats4_4.3.1
#> [43] RCurl_1.98-1.12 restfulr_0.0.15
#> [45] rmarkdown_2.25 BiocIO_1.12.0
#> [47] matrixStats_1.0.0 tools_4.3.1
#> [49] htmltools_0.5.6.1