## ----style, echo = FALSE, results = 'asis'------------------------------------
BiocStyle::markdown()

## ----global_options, include=FALSE--------------------------------------------------------------------------
knitr::opts_chunk$set(fig.width=10, fig.height=7, warning=FALSE, message=FALSE)
options(width=110)

## ----eval=FALSE---------------------------------------------------------------------------------------------
#  # 'MSstatsInput.csv' is the MSstats report from Skyline.
#  input <- read.csv(file="MSstatsInput.csv")
#  
#  raw <- SkylinetoMSstatsFormat(input)

## ----eval=FALSE---------------------------------------------------------------------------------------------
#  # Read in MaxQuant files
#  proteinGroups <- read.table("proteinGroups.txt", sep="\t", header=TRUE)
#  
#  infile <- read.table("evidence.txt", sep="\t", header=TRUE)
#  
#  # Read in annotation including condition and biological replicates per run.
#  # Users should make this annotation file. It is not the output from MaxQuant.
#  annot <- read.csv("annotation.csv", header=TRUE)
#  
#  raw <- MaxQtoMSstatsFormat(evidence=infile,
#                             annotation=annot,
#                             proteinGroups=proteinGroups)

## ----eval=FALSE---------------------------------------------------------------------------------------------
#  input <- read.csv("output_progenesis.csv", stringsAsFactors=FALSE)
#  
#  # Read in annotation including condition and biological replicates per run.
#  # Users should make this annotation file. It is not the output from Progenesis.
#  annot <- read.csv('annotation.csv')
#  
#  raw <- ProgenesistoMSstatsFormat(input, annotation=annot)

## ----eval=FALSE---------------------------------------------------------------------------------------------
#  input <- read.csv("output_spectronaut.csv", stringsAsFactors=FALSE)
#  
#  quant <- SpectronauttoMSstatsFormat(input)

## ----eval=FALSE---------------------------------------------------------------------------------------------
#  QuantData <- dataProcess(SRMRawData)

## ----eval=FALSE---------------------------------------------------------------------------------------------
#  # QuantData <- dataProcess(SRMRawData)
#  #
#  # # Profile plot
#  # dataProcessPlots(data=QuantData, type="ProfilePlot")
#  #
#  # # Quality control plot
#  # dataProcessPlots(data=QuantData, type="QCPlot")	
#  #
#  # # Quantification plot for conditions
#  # dataProcessPlots(data=QuantData, type="ConditionPlot")

## ----eval=FALSE---------------------------------------------------------------------------------------------
#  # QuantData <- dataProcess(SRMRawData)
#  #
#  # levels(QuantData$ProcessedData$GROUP_ORIGINAL)
#  # comparison <- matrix(c(-1,0,0,0,0,0,1,0,0,0), nrow=1)
#  # row.names(comparison) <- "T7-T1"
#  #
#  # # Tests for differentially abundant proteins with models:
#  # testResultOneComparison <- groupComparison(contrast.matrix=comparison, data=QuantData)

## ----eval=FALSE---------------------------------------------------------------------------------------------
#  # QuantData <- dataProcess(SRMRawData)
#  #
#  # # based on multiple comparisons  (T1 vs T3; T1 vs T7; T1 vs T9)
#  # comparison1<-matrix(c(-1,0,1,0,0,0,0,0,0,0),nrow=1)
#  # comparison2<-matrix(c(-1,0,0,0,0,0,1,0,0,0),nrow=1)
#  # comparison3<-matrix(c(-1,0,0,0,0,0,0,0,1,0),nrow=1)
#  # comparison<-rbind(comparison1,comparison2, comparison3)
#  # row.names(comparison)<-c("T3-T1","T7-T1","T9-T1")
#  #
#  # testResultMultiComparisons <- groupComparison(contrast.matrix=comparison, data=QuantData)
#  #
#  # # Volcano plot
#  # groupComparisonPlots(data=testResultMultiComparisons$ComparisonResult, type="VolcanoPlot")
#  #
#  # # Heatmap
#  # groupComparisonPlots(data=testResultMultiComparisons$ComparisonResult, type="Heatmap")
#  #
#  # # Comparison Plot
#  # groupComparisonPlots(data=testResultMultiComparisons$ComparisonResult, type="ComparisonPlot")

## ----eval=FALSE---------------------------------------------------------------------------------------------
#  # testResultOneComparison <- groupComparison(contrast.matrix=comparison, data=QuantData)
#  #
#  # # normal quantile-quantile plots
#  # modelBasedQCPlots(data=testResultOneComparison, type="QQPlots")
#  #
#  # # residual plots
#  # modelBasedQCPlots(data=testResultOneComparison, type="ResidualPlots")

## ----eval=FALSE---------------------------------------------------------------------------------------------
#  # QuantData <- dataProcess(SRMRawData)
#  # head(QuantData$ProcessedData)
#  #
#  # ## based on multiple comparisons  (T1 vs T3; T1 vs T7; T1 vs T9)
#  # comparison1 <- matrix(c(-1,0,1,0,0,0,0,0,0,0),nrow=1)
#  # comparison2 <- matrix(c(-1,0,0,0,0,0,1,0,0,0),nrow=1)
#  # comparison3 <- matrix(c(-1,0,0,0,0,0,0,0,1,0),nrow=1)
#  # comparison <- rbind(comparison1,comparison2, comparison3)
#  # row.names(comparison) <- c("T3-T1","T7-T1","T9-T1")
#  #
#  # testResultMultiComparisons <- groupComparison(contrast.matrix=comparison,data=QuantData)
#  #
#  # #(1) Minimal number of biological replicates per condition
#  # designSampleSize(data=testResultMultiComparisons$fittedmodel, numSample=TRUE,
#  #   desiredFC=c(1.25,1.75), FDR=0.05, power=0.8)
#  #
#  # #(2) Power calculation
#  # designSampleSize(data=testResultMultiComparisons$fittedmodel, numSample=2,
#  #   desiredFC=c(1.25,1.75), FDR=0.05, power=TRUE)

## ----eval=FALSE---------------------------------------------------------------------------------------------
#  # # (1) Minimal number of biological replicates per condition
#  # result.sample <- designSampleSize(data=testResultMultiComparisons$fittedmodel, numSample=TRUE,
#  #                                 desiredFC=c(1.25,1.75), FDR=0.05, power=0.8)
#  # designSampleSizePlots(data=result.sample)
#  #
#  # # (2) Power
#  # result.power <- designSampleSize(data=testResultMultiComparisons$fittedmodel, numSample=2,
#  #                                desiredFC=c(1.25,1.75), FDR=0.05, power=TRUE)
#  # designSampleSizePlots(data=result.power)

## ----eval=FALSE---------------------------------------------------------------------------------------------
#  # QuantData <- dataProcess(SRMRawData)
#  #
#  # # Sample quantification
#  # sampleQuant <- quantification(QuantData)
#  #
#  # # Group quantification
#  # groupQuant <- quantification(QuantData, type="Group")