--- title: "Example Workflow For Processing a CRISPR-based Pooled Screen" author: "Russell Bainer" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Example_Workflow_gCrisprTools} %\VignetteEngine{rmarkdown} %\VignetteEncoding{UTF-8} --- ### Example Workflow This is an example workflow for processing a pooled CRISPR-based screen using the provided sample data. See the various manpages for additional visualization options and algorithmic details. Load dependencies and data ```{r, eval = FALSE} library(Biobase) library(limma) library(gCrisprTools) data("es", package = "gCrisprTools") data("ann", package = "gCrisprTools") data("aln", package = "gCrisprTools") ``` Make a sample key, structured as a factor with control samples in the first level ```{r, eval = FALSE} sk <- relevel(as.factor(pData(es)$TREATMENT_NAME), "ControlReference") names(sk) <- row.names(pData(es)) ``` Generate a contrast of interest using voom/limma; pairing replicates is a good idea if that information is available. ```{r, eval = FALSE} design <- model.matrix(~ 0 + REPLICATE_POOL + TREATMENT_NAME, pData(es)) colnames(design) <- gsub('TREATMENT_NAME', '', colnames(design)) contrasts <-makeContrasts(DeathExpansion - ControlExpansion, levels = design) ``` Optionally, trim of trace reads from the unnormalized object (see man page for details) ```{r, eval = FALSE} es <- ct.filterReads(es, trim = 1000, sampleKey = sk) ``` Normalize, convert to a voom object, and generate a contrast ```{r, eval = FALSE} es <- ct.normalizeGuides(es, method = "scale", plot.it = TRUE) #See man page for other options vm <- voom(exprs(es), design) fit <- lmFit(vm, design) fit <- contrasts.fit(fit, contrasts) fit <- eBayes(fit) ``` Edit the annotation file if you used `ct.filterReads` above ```{r, eval = FALSE} ann <- ct.prepareAnnotation(ann, fit, controls = "NoTarget") ``` Summarize gRNA signals to identify target genes of interest ```{r, eval = FALSE} resultsDF <- ct.generateResults( fit, annotation = ann, RRAalphaCutoff = 0.1, permutations = 1000, scoring = "combined", permutation.seed = 2 ) ``` Optionally, just load an example results object for testing purposes (trimming out reads as necessary) ```{r, eval = FALSE} data("fit", package = "gCrisprTools") data("resultsDF", package = "gCrisprTools") fit <- fit[(row.names(fit) %in% row.names(ann)),] resultsDF <- resultsDF[(row.names(resultsDF) %in% row.names(ann)),] ``` Crispr-specific quality control and visualization tools (see man pages for details): ```{r, eval = FALSE} ct.alignmentChart(aln, sk) ct.rawCountDensities(es, sk) ``` Visualize gRNA abundance distributions ```{r, eval = FALSE} ct.gRNARankByReplicate(es, sk) ct.gRNARankByReplicate(es, sk, annotation = ann, geneSymb = "NoTarget") #Show locations of NTC gRNAs ``` Visualize control guide behavior across conditions ```{r, eval = FALSE} ct.viewControls(es, ann, sk, normalize = FALSE) ct.viewControls(es, ann, sk, normalize = TRUE) ``` Visualize GC bias across samples, or within an experimental contrast ```{r, eval = FALSE} ct.GCbias(es, ann, sk) ct.GCbias(fit, ann, sk) ``` View most variable gRNAs/Genes (as % of sequencing library) ```{r, eval = FALSE} ct.stackGuides(es, sk, plotType = "gRNA", annotation = ann, nguides = 40) ``` ```{r, eval = FALSE} ct.stackGuides(es, sk, plotType = "Target", annotation = ann) ``` ```{r, eval = FALSE} ct.stackGuides(es, sk, plotType = "Target", annotation = ann, subset = names(sk)[grep('Expansion', sk)]) ``` View a CDF of genes/guides ```{r, eval = FALSE} ct.guideCDF(es, sk, plotType = "gRNA") ct.guideCDF(es, sk, plotType = "Target", annotation = ann) ``` View top enriched/depleted candidates ```{r, eval = FALSE} ct.topTargets(fit, resultsDF, ann, targets = 10, enrich = TRUE) ct.topTargets(fit, resultsDF, ann, targets = 10, enrich = FALSE) ``` View the gRNA behavior of gRNAs targeting a particular gene of interest ```{r, eval = FALSE} ct.viewGuides("Target1633", fit, ann) ct.gRNARankByReplicate(es, sk, annotation = ann, geneSymb = "Target1633") ``` View ontological enrichment within the depleted/enriched targets ```{r, eval = FALSE} enrichmentResults <- ct.PantherPathwayEnrichment( resultsDF, pvalue.cutoff = 0.01, enrich = TRUE, organism = 'mouse' ) ``` Test a gene set for enrichment within target candidates ```{r, eval = FALSE} data("essential.genes", package = "gCrisprTools") ROCs <- ct.ROC(resultsDF, essential.genes, stat = "deplete.p") PRCs <- ct.PRC(resultsDF, essential.genes, stat = "deplete.p") ``` Make reports in a directory of interest ```{r, eval = FALSE} path2report <- #Make a report of the whole experiment ct.makeReport(fit = fit, eset = es, sampleKey = sk, annotation = ann, results = resultsDF, aln = aln, outdir = ".") path2QC <- #Or one focusing only on experiment QC ct.makeQCReport(es, trim = 1000, log2.ratio = 0.05, sampleKey = sk, annotation = ann, aln = aln, identifier = 'Crispr_QC_Report', lib.size = NULL ) path2Contrast <- #Or Contrast-specific one ct.makeContrastReport(eset = es, fit = fit, sampleKey = sk, results = resultsDF, annotation = ann, comparison.id = NULL, identifier = 'Crispr_Contrast_Report') ```