################################################### ### chunk number 1: libraries ################################################### #line 50 "vignettes/lumi/inst/doc/lumi_VST_evaluation.Rnw" library("lumi") library("vsn") library("genefilter") library("RColorBrewer") library("limma") library("lumiBarnes") set.seed(0xbadbeef) ## Load the Barnes data set data("lumiBarnes") ################################################### ### chunk number 2: figFittingLinear ################################################### #line 69 "vignettes/lumi/inst/doc/lumi_VST_evaluation.Rnw" temp <- lumiT(lumiBarnes[,1], fitMethod='linear', ifPlot=TRUE) ################################################### ### chunk number 3: figFittingQuad ################################################### #line 78 "vignettes/lumi/inst/doc/lumi_VST_evaluation.Rnw" temp <- lumiT(lumiBarnes[,1], fitMethod='quadratic', ifPlot=TRUE) ################################################### ### chunk number 4: load ################################################### #line 86 "vignettes/lumi/inst/doc/lumi_VST_evaluation.Rnw" ## Select the blood and placenta samples selChip = !is.na(lumiBarnes$pctBlood) x.lumi <- lumiBarnes[, selChip] presentCount <- detectionCall(x.lumi) ## Since the Barnes data was not background removed, we will do background adjustment first. ## The background estimation will be based on the control probe information. ## As the old version lumiBarnes library does not include controlData slot, we will check it first. if (nrow(x.lumi@controlData) == 0) { ## We will use the control probe information in the example.lumi in the updated lumi package data(example.lumi) x.lumi@controlData <- example.lumi@controlData } x.lumi <- lumiB(x.lumi, method='bgAdjust') repl1 <- which(x.lumi$replicate=="A") repl2 <- which(x.lumi$replicate=="B") stopifnot(sum(selChip)==12L, length(repl1)==6L, length(repl2)==6L) ################################################### ### chunk number 5: preprocess ################################################### #line 109 "vignettes/lumi/inst/doc/lumi_VST_evaluation.Rnw" ## VST transform and Quantile normalization x.lumi.vst <- lumiT(x.lumi) x.lumi.vst.quantile <- lumiN(x.lumi.vst, method='quantile') ## log2 transform and Quantile normalization x.lumi.log <- lumiT(x.lumi, method='log2') x.lumi.log.quantile <- lumiN(x.lumi.log, method='quantile') ## VSN normalization: use lts.quantile=0.5 since in the blood/placenta ## comparison more genes are differentially expressed than what is ## expected by the default of 0.9. x.lumi.vsn <- lumiN(x.lumi, method='vsn', lts.quantile=0.5) ## Add the vsn based on technical replicates vsn.pair <- exprs(x.lumi) cor.i <- NULL for(i in 1:length(repl1)) { vsn.pair[, c(i, i+length(repl1))] <- exprs(vsn2(vsn.pair[, c(repl1[i], repl2[i])], verbose=FALSE)) } # vsn.quantile <- normalize.quantiles(vsn.pair) # rownames(vsn.quantile) <- rownames(vsn.pair) # colnames(vsn.quantile) <- colnames(vsn.pair) normDataList <- list('VST-Quantile'=exprs(x.lumi.vst.quantile), 'Log2-Quantile'=exprs(x.lumi.log.quantile), 'VSN'=exprs(x.lumi.vsn)) # , 'VSN-Quantile'=vsn.quantile) ## scatter plots: ## pairs(exprs(x.lumi.vsn), panel=function(...){par(new=TRUE);smoothScatter(..., nrpoints=0)}) ################################################### ### chunk number 6: chipCorList ################################################### #line 151 "vignettes/lumi/inst/doc/lumi_VST_evaluation.Rnw" ## Check the correlation between technique replicates tempDataList <- c(normDataList, list(vsn.pair)) names(tempDataList) <- c(names(normDataList), 'VSN-techReplicate') chipCorList <- matrix(as.numeric(NA), nrow=length(repl1), ncol=length(tempDataList)) colnames(chipCorList) <- names(tempDataList) for (i in seq(along= tempDataList)) for (j in seq(along=repl1)) chipCorList[j,i] = cor(tempDataList[[i]][, c(repl1[j], repl2[j])])[1,2] ################################################### ### chunk number 7: figboxplot ################################################### #line 164 "vignettes/lumi/inst/doc/lumi_VST_evaluation.Rnw" labels <- colnames(chipCorList) ## set the margin of the plot mar <- c(max(nchar(labels))/2 + 4.5, 5, 5, 3) oldpar = par(xaxt='n', mar=mar) boxplot(chipCorList ~ col(chipCorList), xlab='', ylab='Correlation between technique replicate chips', col='skyblue') par(xaxt='s') axis(1, at=1:ncol(chipCorList), labels=labels, tick=TRUE, las=2) par(oldpar) ################################################### ### chunk number 8: figmeanSdPlot ################################################### #line 186 "vignettes/lumi/inst/doc/lumi_VST_evaluation.Rnw" ## select the technique replicates selChip <- c(repl1[1],repl2[1]) oldpar <- par(mfrow=c(length(normDataList) + 1,1)) for (i in 1:length(normDataList)) { meanSdPlot(normDataList[[i]][, selChip], ylab='Standard deviation', main=names(normDataList)[i], ylim=c(0,1)) } meanSdPlot(vsn.pair[, selChip], ylab='Standard deviation', main='VSN-techReplicate ', ylim=c(0,1)) par(oldpar) ################################################### ### chunk number 9: fstatistic ################################################### #line 214 "vignettes/lumi/inst/doc/lumi_VST_evaluation.Rnw" fac <- factor(paste(x.lumi$pctBlood, x.lumi$pctPlacenta, sep=":")) rf <- lapply(normDataList, function(x) { filtered.x = x[presentCount > 0,] ftest.x = rowFtests(filtered.x, fac=fac) ftest.x$IDs <- rownames(filtered.x) return(ftest.x) }) ef <- sapply( rf, function(x) ecdf(x$p.value)) ################################################### ### chunk number 10: figfstat ################################################### #line 229 "vignettes/lumi/inst/doc/lumi_VST_evaluation.Rnw" pcol <- seq(along= normDataList) plty <- (1:(1 + length(normDataList))) [-3] plwd <- 1.5 x <- seq(0, 0.05, by=0.0001); x = x[-1] plot(x, ef[[1]](x), type='l', lwd=plwd, lty=plty[1], col=pcol[1], main="Cumulative distribution of F-test p-value", xlab="F-test p-value", ylab="Empirical probability", log='x') for (i in 2:length(ef)) { lines(x, ef[[i]](x), lwd=plwd, lty=plty[i], col=pcol[i]) } legend(0.01, 0.25, names(normDataList), lwd=plwd, lty=plty, col=pcol) ################################################### ### chunk number 11: Expression and dilution profile correlation ################################################### #line 252 "vignettes/lumi/inst/doc/lumi_VST_evaluation.Rnw" modelProfile1 <- c(100, 95, 75, 50, 25, 0, 100, 95, 75, 50, 25, 0) corrList <- lapply(normDataList, function(x) { x <- x[presentCount > 0, ] corr1 <- apply(x, 1, cor, y=modelProfile1) return(corr1) } ) ################################################### ### chunk number 12: histCorrelation ################################################### #line 263 "vignettes/lumi/inst/doc/lumi_VST_evaluation.Rnw" freqMatrix <- NULL breaks <- NULL for (i in 1:length(corrList)) { hist.i <- hist(abs(corrList[[i]]), 30, plot=FALSE) breaks <- cbind(breaks, hist.i$breaks) freqMatrix <- cbind(freqMatrix, hist.i$counts) } freqMatrix <- rbind(freqMatrix, freqMatrix[nrow(freqMatrix),]) matplot(breaks, freqMatrix, type='s', lty=plty, col=pcol, lwd=plwd, ylab='Frequency', xlab='Absolute values of correlation coefficients') legend(x=0.1, y=2800, legend=names(normDataList), lty=plty, col=pcol, lwd=plwd) ################################################### ### chunk number 13: fstatistic concordance percentage ################################################### #line 282 "vignettes/lumi/inst/doc/lumi_VST_evaluation.Rnw" topNumList <- seq(50, 3000, by=100) corTh <- 0.8 highCorrNumMatrix <- NULL for (i in 1:length(rf)) { probeList <- rf[[i]]$IDs ordProbe.i <- probeList[order(abs(rf[[i]]$p.value), decreasing=FALSE)] corr1 <- corrList[[i]] matchNum.j <- NULL for (topNum.j in topNumList) { topProbe.j <- ordProbe.i[1:topNum.j] matchNum.j <- c(matchNum.j, length(which(abs(corr1[topProbe.j]) > corTh))) } highCorrNumMatrix <- cbind(highCorrNumMatrix, matchNum.j) } rownames(highCorrNumMatrix) <- topNumList colnames(highCorrNumMatrix) <- names(rf) ################################################### ### chunk number 14: figfstatCor ################################################### #line 305 "vignettes/lumi/inst/doc/lumi_VST_evaluation.Rnw" matplot(topNumList, (100 * highCorrNumMatrix/(topNumList %*% t(rep(1,ncol(highCorrNumMatrix))))), type='l', xlab='Number of most significant probes by ranking their p-values (F-test)', ylab='Percentage of concordant probes (%)', lty=plty, col=pcol, lwd=plwd, ylim=c(50,100)) legend(x=2000, y=70, legend=colnames(highCorrNumMatrix), lty=plty, col=pcol, lwd=plwd) ################################################### ### chunk number 15: fitList.limma ################################################### #line 324 "vignettes/lumi/inst/doc/lumi_VST_evaluation.Rnw" ## Select the comparing chip index sampleInfo <- pData(phenoData(x.lumi)) sampleType <- paste(sampleInfo[,'pctBlood'], sampleInfo[,'pctPlacenta'], sep=':') sampleType <- paste('c', sampleType, sep='') ## Comparing index ## used in the paper (the most challenging comparison): compareInd <- c(repl1[1:2], repl2[1:2]) compareType <- sampleType[compareInd] fitList.limma <- NULL for (i in 1:length(normDataList)) { selDataMatrix <- normDataList[[i]] selDataMatrix <- selDataMatrix[presentCount > 0, ] selProbe <- rownames(selDataMatrix) compareMatrix <- selDataMatrix[, compareInd] design <- model.matrix(~ 0 + as.factor(compareType)) colnames(design) <- c('A', 'B') fit1 <- lmFit(compareMatrix, design) contMatrix <- makeContrasts('A-B'=A - B, levels=design) fit2 <- contrasts.fit(fit1, contMatrix) fit <- eBayes(fit2) fitList.limma <- c(fitList.limma, list(fit)) } names(fitList.limma) <- names(normDataList) ################################################### ### chunk number 16: highCorrNumMatrix ################################################### #line 353 "vignettes/lumi/inst/doc/lumi_VST_evaluation.Rnw" ## Check the correlation of the top differentiated probes based on the limma results ## rank the probes based on the p-values of limma result fitList <- fitList.limma topNumList <- c(30, seq(35, 1000, by=30)) corTh <- 0.8 highCorrNumMatrix <- NULL for (i in 1:length(fitList)) { probeList <- rownames(fitList[[i]]$p.value) ordProbe.i <- probeList[order(abs(fitList[[i]]$p.value[,1]), decreasing=FALSE)] profileMatrix <- normDataList[[i]][ordProbe.i, ] modelProfile1 <- c(100, 95, 75, 50, 25, 0, 100, 95, 75, 50, 25, 0) corr1 <- apply(profileMatrix, 1, cor, y=modelProfile1) names(corr1) <- ordProbe.i matchNum.j <- NULL for (topNum.j in topNumList) { topProbe.j <- ordProbe.i[1:topNum.j] matchNum.j <- c(matchNum.j, length(which(abs(corr1[topProbe.j]) > corTh))) } highCorrNumMatrix <- cbind(highCorrNumMatrix, matchNum.j) } rownames(highCorrNumMatrix) <- topNumList colnames(highCorrNumMatrix) <- names(fitList) ################################################### ### chunk number 17: figLimmaConcordance ################################################### #line 381 "vignettes/lumi/inst/doc/lumi_VST_evaluation.Rnw" matplot(topNumList, (100 * highCorrNumMatrix/(topNumList %*% t(rep(1,ncol(highCorrNumMatrix))))), type='l', xlab='Number of most significant probes by ranking their p-values', ylab='Percentage of concordant probes (%)', lty=plty, col=pcol, lwd=plwd, ylim=c(0,100)) legend(x=700, y=50, legend=colnames(highCorrNumMatrix), lty=plty, col=pcol, lwd=plwd) ################################################### ### chunk number 18: sessionInfo ################################################### #line 402 "vignettes/lumi/inst/doc/lumi_VST_evaluation.Rnw" toLatex(sessionInfo())