################################################### ### chunk number 1: load.data ################################################### #line 59 "vignettes/CNVtools/inst/doc/CNVtools-vignette.Rnw" #source("../CNVtools.r"); dyn.load("../../src/CNVtools.so"); load("../../CNVtools/data/A112.RData") library(CNVtools) data(A112) head(A112) raw.signal <- as.matrix(A112[, -c(1,2)]) dimnames(raw.signal)[[1]] <- A112$subject mean.signal <- apply(raw.signal, MAR=1, FUN=mean) pca.signal <- apply.pca(raw.signal) pdf("fig/mean_pca_signal.pdf", width=10, height=5) par(mfrow=c(1,2)) hist(mean.signal, breaks=50, main='Mean signal', cex.lab=1.3) hist(pca.signal, breaks=50, main='First PCA signal', cex.lab=1.3) dev.off() ################################################### ### chunk number 2: model.select ################################################### #line 92 "vignettes/CNVtools/inst/doc/CNVtools-vignette.Rnw" batches <- factor(A112$cohort) sample <- factor(A112$subject) set.seed(0) results <- CNVtest.select.model(signal=pca.signal, batch = batches, sample = sample, n.H0 = 3, method="BIC", v.ncomp = 1:5, v.model.component = rep('gaussian',5), v.model.mean = rep("~ strata(cn)",5), v.model.var = rep("~1", 5)) ncomp <- results$selected pdf("fig/modelselect.pdf",width=5,height=5) plot(-results$BIC, xlab="n comp", ylab="-BIC", type="b", lty=2, col="red", pch = '+') dev.off() ################################################### ### chunk number 3: cluster.pca ################################################### #line 130 "vignettes/CNVtools/inst/doc/CNVtools-vignette.Rnw" ncomp <- 3 batches <- factor(A112$cohort) sample <- factor(A112$subject) fit.pca <- CNVtest.binary ( signal = pca.signal, sample = sample, batch = batches, ncomp = ncomp, n.H0=3, n.H1=0, model.var= '~ strata(cn)') print(fit.pca$status.H0) pdf("fig/pca-fit.pdf", width=10, height=5) par(mfrow=c(1,2)) cnv.plot(fit.pca$posterior.H0, batch = '58C', main = 'Cohort 58C', breaks = 50, col = 'red') cnv.plot(fit.pca$posterior.H0, batch = 'NBS', main = 'Cohort NBS', breaks = 50, col = 'red') dev.off() ################################################### ### chunk number 4: genotype.assignment ################################################### #line 157 "vignettes/CNVtools/inst/doc/CNVtools-vignette.Rnw" head(fit.pca$posterior.H0) ################################################### ### chunk number 5: ldf.improve ################################################### #line 165 "vignettes/CNVtools/inst/doc/CNVtools-vignette.Rnw" ncomp <- 3 pca.posterior <- as.matrix((fit.pca$posterior.H0)[, paste('P',seq(1:ncomp),sep='')]) dimnames(pca.posterior)[[1]] <- (fit.pca$posterior.H0)$subject ldf.signal <- apply.ldf(raw.signal, pca.posterior) pdf("fig/ldf_pca_signal.pdf", width=10, height=5) par(mfrow=c(1,2)) hist(pca.signal, breaks=50, main='First PCA signal', cex.lab=1.3) hist(ldf.signal, breaks=50, main='LDF signal', cex.lab=1.3) dev.off() ################################################### ### chunk number 6: test.association ################################################### #line 219 "vignettes/CNVtools/inst/doc/CNVtools-vignette.Rnw" ncomp <- 3 trait <- ifelse( A112$cohort == '58C', 0, 1) fit.ldf <- CNVtest.binary ( signal = ldf.signal, sample = sample, batch = batches, disease.status = trait, ncomp = ncomp, n.H0=3, n.H1=1, model.var = "~cn") print(fit.ldf$status.H0) print(fit.ldf$status.H1) pdf("fig/ldf-fit.pdf", width=10, height=5) par(mfrow=c(1,2)) cnv.plot(fit.ldf$posterior.H0, batch = '58C', main = 'Cohort 58C', breaks = 50, col = 'red') cnv.plot(fit.ldf$posterior.H0, batch = 'NBS', main = 'Cohort NBS', breaks = 50, col = 'red') dev.off() LR.statistic <- -2*(fit.ldf$model.H0$lnL - fit.ldf$model.H1$lnL) print(LR.statistic) ################################################### ### chunk number 7: test.association.allelic ################################################### #line 250 "vignettes/CNVtools/inst/doc/CNVtools-vignette.Rnw" fit.ldf <- CNVtest.binary ( signal = ldf.signal, sample = sample, batch = batches, disease.status = trait, ncomp = 3, n.H0=3, n.H1=1, model.disease = " ~ as.factor(cn)") print(fit.ldf$status.H0) print(fit.ldf$status.H1) LR.statistic <- -2*(fit.ldf$model.H0$lnL - fit.ldf$model.H1$lnL) print(LR.statistic) ################################################### ### chunk number 8: test.association.qt ################################################### #line 265 "vignettes/CNVtools/inst/doc/CNVtools-vignette.Rnw" batches <- rep("ALL",length(sample)) qt <- rnorm(length(sample), mean=9.0, sd=1.0) fit.ldf <- CNVtest.qt(signal = ldf.signal, sample = sample, batch = batches, qt = qt, ncomp = ncomp, n.H0=3, n.H1=1, model.var = "~strata(cn)") print(fit.ldf$status.H0) print(fit.ldf$status.H1) LR.statistic <- -2*(fit.ldf$model.H0$lnL - fit.ldf$model.H1$lnL) print(LR.statistic) pdf("fig/qt-fit.pdf", width=15, height=5) qt.plot(fit.ldf) dev.off()