\name{processData} \Rdversion{1.0} \alias{processData} \alias{processRawData} \title{Processing expression time series} \description{ \code{processData} further processes time series data preprocessed by \code{mmgmos}. \code{processData} further processes time series data preprocessed by \code{mmgmos}. Both functions return \code{\linkS4class{ExpressionTimeSeries}} objects that can be used as input for the functions \code{\link{GPLearn}} and \code{\link{GPRankTargets}}. } \usage{ processData(data, times = NULL, experiments = NULL, do.normalisation = TRUE) processRawData(rawData, times, experiments = NULL, is.logged = TRUE, do.normalisation = ifelse(is.logged, TRUE, FALSE)) } \arguments{ \item{data}{The preprocessed data (\code{\linkS4class{exprReslt}}) from mmgMOS to be used.} \item{rawData}{Raw data matrix to be used. Each row corresponds to a gene and each column to a data point.} \item{times}{Observation times of each data point. If unspecified or NULL, \code{processData} attempts to infer this from phenoData(data) field containing 'time' in the name.} \item{experiments}{The replicate structure of the data indicating which expression data points arise from which experiments. This should be an array in integers from 1 to N with length equal to the number of data points. By default all the data points are assumed to be from same replicate.} \item{is.logged}{Indicates whether the expression values are on log scale or not. Normalisation of non-logged data is unsupported.} \item{do.normalisation}{Indicates whether to perform the normalisation.} } \details{ The expression data (and percentiles, if available) are normalized by equalising the mean. In \code{processData}, a normal distribution is then fitted into the data with distfit. } \value{ An \code{\linkS4class{ExpressionTimeSeries}} object containing all provided information. } \author{Antti Honkela, Jonatan Ropponen} \seealso{ \code{\link{GPLearn}, \link{GPRankTargets}}. } \examples{ ## Load a mmgmos preprocessed fragment of the Drosophila developmental ## time series data(drosophila_mmgmos_fragment) ## Process the data (3 experiments containing 12 time points each) drosophila_gpsim_fragment <- processData(drosophila_mmgmos_fragment, experiments=rep(1:3, each=12)) } \keyword{model}