\name{snm.fitted} \alias{snm.fitted} \alias{fitted.snm} \title{ Extract fitted values from an snm object } \description{ Computes fitted values under models used in \code{snm} normalization. } \usage{ snm.fitted(object, \dots) \method{fitted}{snm}(object, \dots) } \arguments{ \item{object}{ Output from the \code{snm} function. } \item{\dots}{ Not used. } } \details{ Returns the fitted values under the "null model" (adjustment variables only) and the "full model" (adjustment variables + biological variables). } \value{ \item{fit0}{ Linear model fits when regression each probe's normalized data on the null model, \code{~adj.var}. } \item{fit1}{ Linear model fits when regression each probe's normalized data on the full model, \code{~adj.var+bio.var}. } } \references{ Mecham BH, Nelson PS, Storey JD (2010) Supervised normalization of microarrays. Bioinformatics, 26: 1308-1315. } \author{ John D. Storey } \note{ These fits are useful for investigating the quality of the study-specific model used in the normalization. For example, the residuals can be obtained from the full model fit and examined for latent structure.} \seealso{ \code{\link{snm}}, \code{\link{sim.singleChannel}} } \examples{ \dontrun{ singleChannel <- sim.singleChannel(12345) snm.obj <- snm(singleChannel$raw.data, singleChannel$bio.var, singleChannel$adj.var[,-6], singleChannel$int.var, num.iter=10) snm.fit = fitted(snm.obj) res1 = snm.obj$norm.dat - snm.fit$fit1 snm.svd = fast.svd(res1) cor(snm.svd$v[,1], singleChannel$adj.var[,6]) plot(snm.svd$v[,1], singleChannel$adj.var[,6]) } } \keyword{misc}