\name{qpgraph-package} \alias{qpgraph-package} \alias{qpgraph} \docType{package} \title{ The q-order partial correlation graph learning software, qpgraph. } \description{ %%\Sexpr{packageDescription("qpgraph")[["Description"]]} q-order partial correlation graphs, or qp-graphs for short, are undirected Gaussian graphical Markov models built from q-order partial correlations. They are useful for learning undirected graphical Gaussian Markov models from data sets where the number of random variables p exceeds the available sample size n as, for instance, in the case of microarray data where they can be employed to reverse engineer a molecular regulatory network. } \details{ \tabular{ll}{ Package: \tab qpgraph\cr Version: \tab 1.8.2\cr %%\Sexpr{packageDescription("qpgraph")[["Version"]]}\cr Built: \tab R 2.13.0\cr %%\Sexpr{packageDescription("qpgraph")[["Built"]]}\cr Depends: \tab methods\cr %%\Sexpr{packageDescription("qpgraph")[["Depends"]]}\cr Imports: \tab methods, annotate, Matrix, graph, Biobase, AnnotationDbi\cr %%\Sexpr{packageDescription("qpgraph")[["Imports"]]}\cr Enhances: \tab rlecuyer, snow, Rgraphviz\cr %%\Sexpr{packageDescription("qpgraph")[["Enhances"]]\cr Suggests: \tab Matrix, mvtnorm, graph, genefilter, Category, org.EcK12.eg.db, GOstats\cr %%\Sexpr{packageDescription("qpgraph")[["Suggests"]]}\cr biocViews: \tab Microarray, GeneExpression, Transcription, Pathways, Bioinformatics, GraphsAndNetworks\cr %%\Sexpr{packageDescription("qpgraph")[["biocViews"]]}\cr License: \tab GPL (>= 2)\cr %%\Sexpr{packageDescription("qpgraph")[["License"]]}\cr URL: \tab http://functionalgenomics.upf.edu/qpgraph\cr %%\Sexpr{packageDescription("qpgraph")[["URL"]]}\cr } } \section{Functions}{ \itemize{ \item \code{\link{qpNrr}} estimates non-rejection rates for every pair of variables. \item \code{\link{qpAvgNrr}} estimates average non-rejection rates for every pair of variables. \item \code{\link{qpGenNrr}} estimates generalized average non-rejection rates for every pair of variables. \item \code{\link{qpEdgeNrr}} estimate the non-rejection rate of one pair of variables. \item \code{\link{qpCItest}} performs a conditional independence test between two variables given a conditioning set. \item \code{\link{qpHist}} plots the distribution of non-rejection rates. \item \code{\link{qpGraph}} obtains a qp-graph from a matrix of non-rejection rates. \item \code{\link{qpAnyGraph}} obtains an undirected graph from a matrix of pairwise measurements. \item \code{\link{qpGraphDensity}} calculates and plots the graph density as function of the non-rejection rate. \item \code{\link{qpCliqueNumber}} calculates the size of the largest maximal clique (the so-called clique number or maximum clique size) in a given undirected graph. \item \code{\link{qpClique}} calculates and plots the size of the largest maximal clique (the so-called clique number or maximum clique size) as function of the non-rejection rate. \item \code{\link{qpGetCliques}} finds the set of (maximal) cliques of a given undirected graph. \item \code{\link{qpRndWishart}} random generation for the Wishart distribution. \item \code{\link{qpCov}} calculates the sample covariance matrix, just as the function \code{cov()} but returning a \code{\link{dspMatrix-class}} object which efficiently stores such a dense symmetric matrix. \item \code{\link{qpG2Sigma}} builds a random covariance matrix from an undrected graph. The inverse of the resulting matrix contains zeroes at the missing edges of the given undirected graph. \item \code{\link{qpUnifRndAssociation}} builds a matrix of uniformly random association values between -1 and +1 for all pairs of variables that follow from the number of variables given as input argument. \item \code{\link{qpK2ParCor}} obtains the partial correlation coefficients from a given concentration matrix. \item \code{\link{qpIPF}} performs maximum likelihood estimation of a sample covariance matrix given the independence constraints from an input list of (maximal) cliques. \item \code{\link{qpPAC}} estimates partial correlation coefficients and corresponding P-values for each edge in a given undirected graph, from an input data set. \item \code{\link{qpPCC}} estimates pairwise Pearson correlation coefficients and their corresponding P-values between all pairs of variables from an input data set. \item \code{\link{qpRndGraph}} builds a random undirected graph with a bounded maximum connectivity degree on every vertex. \item \code{\link{qpPrecisionRecall}} calculates the precision-recall curve for a given measure of association between all pairs of variables in a matrix. \item \code{\link{qpPRscoreThreshold}} calculates the score threshold at a given precision or recall level from a given precision-recall curve. \item \code{\link{qpImportNrr}} imports non-rejection rates. \item \code{\link{qpFunctionalCoherence}} estimates functional coherence of a given transcriptional regulatory network using Gene Ontology annotations. \item \code{\link{qpTopPairs}} reports a top number of pairs of variables according to either an association measure and/or occurring in a given reference graph. \item \code{\link{qpPlotNetwork}} plots a network using the \code{Rgraphviz} library. } This package provides an implementation of the procedures described in (Castelo and Roverato, 2006, 2009). An example of its use for reverse-engineering of transcriptional regulatory networks from microarray data is available in the vignette \code{qpTxRegNet}. This package is a contribution to the Bioconductor (Gentleman et al., 2004) and gR (Lauritzen, 2002) projects. } \author{ %\Sexpr{packageDescription("qpgraph")$Author} R. Castelo and A. Roverato %\Sexpr{packageDescription("qpgraph")$Maintainer} } \references{ Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. \emph{J. Mach. Learn. Res.}, 7:2621-2650, 2006. Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray data with qp-graphs. \emph{J. Comput. Biol.} 16(2):213-227, 2009. Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K. Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M. Rosinni, A.J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, T.Y.H. and Zhang, J. Bioconductor: open software development for computational biology and bioinformatics. \emph{Genome Biol.}, 5:R80, 2004. Lauritzen, S.L. (2002). gRaphical Models in R. \emph{R News}, 3(2)39. } \keyword{package} \keyword{multivariate} \keyword{models} \keyword{graphs}