\name{qpPAC} \alias{qpPAC} \alias{qpPAC,ExpressionSet-method} \alias{qpPAC,data.frame-method} \alias{qpPAC,matrix-method} \title{ Estimation of partial correlation coefficients } \description{ Estimates partial correlation coefficients (PACs) for a Gaussian graphical model with undirected graph G and their corresponding P-values for the hypothesis of zero partial correlations. } \usage{ \S4method{qpPAC}{ExpressionSet}(X, g, return.K=FALSE, tol=0.001, verbose=TRUE, R.code.only=FALSE) \S4method{qpPAC}{data.frame}(X, g, return.K=FALSE, long.dim.are.variables=TRUE, tol=0.001, verbose=TRUE, R.code.only=FALSE) \S4method{qpPAC}{matrix}(X, g, return.K=FALSE, long.dim.are.variables=TRUE, tol=0.001, verbose=TRUE, R.code.only=FALSE) } \arguments{ \item{X}{data set from where to estimate the partial correlation coefficients. It can be an ExpressionSet object, a data frame or a matrix.} \item{g}{either a \code{graphNEL} object or an adjacency matrix of the given undirected graph.} \item{return.K}{logical; if TRUE this function also returns the concentration matrix \code{K}; if FALSE it does not return it (default).} \item{long.dim.are.variables}{logical; if TRUE it is assumed that when \code{X} is a data frame or a matrix, the longer dimension is the one defining the random variables (default); if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.} \item{tol}{maximum tolerance in the application of the IPF algorithm.} \item{verbose}{show progress on the calculations.} \item{R.code.only}{logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.} } \details{ In the context of maximum likelihood estimation (MLE) of PACs it is a necessary condition for the existence of MLEs that the sample size \code{n} is larger than the clique number \code{w(G)} of the graph \code{G}. The PAC estimation is done by first obtaining a MLE of the covariance matrix using the \code{\link{qpIPF}} function and the P-values are calculated based on the estimation of the standard errors (see Roverato and Whittaker, 1996). } \value{ A list with two matrices, one with the estimates of the PACs and the other with their P-values. } \references{ Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. \emph{J. Mach. Learn. Res.}, 7:2621-2650, 2006. Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray data with qp-graphs. \emph{J. Comp. Biol.}, 16(2):213-227, 2009. Roverato, A. and Whittaker, J. Standard errors for the parameters of graphical Gaussian models. \emph{Stat. Comput.}, 6:297-302, 1996. } \author{R. Castelo and A. Roverato} \seealso{ \code{\link{qpGraph}} \code{\link{qpCliqueNumber}} \code{\link{qpClique}} \code{\link{qpGetCliques}} \code{\link{qpIPF}} } \examples{ require(mvtnorm) nVar <- 50 ## number of variables maxCon <- 5 ## maximum connectivity per variable nObs <- 30 ## number of observations to simulate set.seed(123) A <- qpRndGraph(p=nVar, d=maxCon) Sigma <- qpG2Sigma(A, rho=0.5) X <- rmvnorm(nObs, sigma=as.matrix(Sigma)) nrr.estimates <- qpNrr(X, verbose=FALSE) g <- qpGraph(nrr.estimates, 0.5) pac.estimates <- qpPAC(X, g=g, verbose=FALSE) ## distribution absolute values of the estimated ## partial correlation coefficients of the present edges summary(abs(pac.estimates$R[upper.tri(pac.estimates$R) & A])) ## distribution absolute values of the estimated ## partial correlation coefficients of the missing edges summary(abs(pac.estimates$R[upper.tri(pac.estimates$R) & !A])) } \keyword{models} \keyword{multivariate}