\name{qpNrr} \alias{qpNrr} \alias{qpNrr,ExpressionSet-method} \alias{qpNrr,data.frame-method} \alias{qpNrr,matrix-method} \title{ Non-rejection rate estimation } \description{ Estimates non-rejection rates for every pair of variables. } \usage{ \S4method{qpNrr}{ExpressionSet}(X, q=1, I=NULL, restrict.Q=NULL, nTests=100, alpha=0.05, pairup.i=NULL, pairup.j=NULL, verbose=TRUE, identicalQs=TRUE, exact.test=TRUE, R.code.only=FALSE, clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10) \S4method{qpNrr}{data.frame}(X, q=1, I=NULL, restrict.Q=NULL, nTests=100, alpha=0.05, pairup.i=NULL, pairup.j=NULL, long.dim.are.variables=TRUE, verbose=TRUE, identicalQs=TRUE, exact.test=TRUE, R.code.only=FALSE, clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10) \S4method{qpNrr}{matrix}(X, q=1, I=NULL, restrict.Q=NULL, nTests=100, alpha=0.05, pairup.i=NULL, pairup.j=NULL, long.dim.are.variables=TRUE, verbose=TRUE, identicalQs=TRUE, exact.test=TRUE, R.code.only=FALSE, clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10) } \arguments{ \item{X}{data set from where to estimate the non-rejection rates. It can be an ExpressionSet object, a data frame or a matrix.} \item{q}{partial-correlation order to be employed.} \item{I}{indexes or names of the variables in \code{X} that are discrete. When \code{X} is an \code{ExpressionSet} then \code{I} may contain only names of the phenotypic variables in \code{X}. See details below regarding this argument.} \item{restrict.Q}{indexes or names of the variables in \code{X} that restrict the sample space of conditioning subsets Q.} \item{nTests}{number of tests to perform for each pair for variables.} \item{alpha}{significance level of each test.} \item{pairup.i}{subset of vertices to pair up with subset \code{pairup.j}} \item{pairup.j}{subset of vertices to pair up with subset \code{pairup.i}} \item{long.dim.are.variables}{logical; if \code{TRUE} it is assumed that when data are in a data frame or in a matrix, the longer dimension is the one defining the random variables (default); if \code{FALSE}, then random variables are assumed to be at the columns of the data frame or matrix.} \item{verbose}{show progress on the calculations.} \item{identicalQs}{use identical conditioning subsets for every pair of vertices (default), otherwise sample a new collection of \code{nTests} subsets for each pair of vertices.} \item{exact.test}{logical; if \code{FALSE} an asymptotic conditional independence test is employed with mixed (i.e., continuous and discrete) data; if \code{TRUE} (default) then an exact conditional independence test with mixed data is employed. See details below regarding this argument.} \item{R.code.only}{logical; if \code{FALSE} then the faster C implementation is used (default); if \code{TRUE} then only R code is executed.} \item{clusterSize}{size of the cluster of processors to employ if we wish to speed-up the calculations by performing them in parallel. A value of 1 (default) implies a single-processor execution. The use of a cluster of processors requires having previously loaded the packages \code{snow} and \code{rlecuyer}.} \item{estimateTime}{logical; if \code{TRUE} then the time for carrying out the calculations with the given parameters is estimated by calculating for a limited number of adjacencies, specified by \code{nAdj2estimateTime}, and extrapolating the elapsed time; if \code{FALSE} (default) calculations are performed normally till they finish.} \item{nAdj2estimateTime}{number of adjacencies to employ when estimating the time of calculations (\code{estimateTime=TRUE}). By default this has a default value of 10 adjacencies and larger values should provide more accurate estimates. This might be relevant when using a cluster facility.} } \details{ Note that pure continuous data the possible values of \code{q} should be in the range 1 to \code{min(p, n-3)}, where \code{p} is the number of variables and \code{n} the number of observations. The computational cost increases linearly with \code{q} and quadratically in \code{p}. When setting \code{identicalQs} to \code{FALSE} the computational cost may increase between 2 times and one order of magnitude (depending on \code{p} and \code{q}) while asymptotically the estimation of the non-rejection rate converges to the same value. Full details on the calculation of the non-rejection rate can be found in Castelo and Roverato (2006). When \code{I} is set different to \code{NULL} then mixed graphical model theory is employed and, concretely, it is assumed that the data comes from an homogeneous conditional Gaussian distribution. In this setting further restrictions to the maximum value of \code{q} apply, concretely, it cannot be smaller than \code{p} plus the number of levels of the discrete variables involved in the marginal distributions employed by the algorithm. By default, with \code{exact.test=TRUE}, an exact test for conditional independence is employed, otherwise an asymptotic one will be used. Full details on these features can be found in Tur and Castelo (2011). } \value{ A \code{\link{dspMatrix-class}} symmetric matrix of estimated non-rejection rates with the diagonal set to \code{NA} values. If arguments \code{pairup.i} and \code{pairup.j} are employed, those cells outside the constrained pairs will get also a \code{NA} value. Note, however, that when \code{estimateTime=TRUE}, then instead of the matrix of estimated non-rejection rates, a vector specifying the estimated number of days, hours, minutes and seconds for completion of the calculations is returned. } \references{ Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, \emph{J. Mach. Learn. Res.}, 7:2621-2650, 2006. Tur, I. and Castelo, R. Learning mixed grpahical models from data with p larger than n, In \emph{Proc. 27th Conference on Uncertainty in Artificial Intelligence}, Barcelona, 2011. } \author{R. Castelo, A. Roverato and I. Tur} \seealso{ \code{\link{qpAvgNrr}} \code{\link{qpEdgeNrr}} \code{\link{qpHist}} \code{\link{qpGraphDensity}} \code{\link{qpClique}} } \examples{ library(mvtnorm) nVar <- 50 ## number of variables maxCon <- 3 ## maximum connectivity per variable nObs <- 30 ## number of observations to simulate set.seed(123) A <- qpRndGraph(p=nVar, d=maxCon) Sigma <- qpG2Sigma(A, rho=0.5) X <- rmvnorm(nObs, sigma=as.matrix(Sigma)) nrr.estimates <- qpNrr(X, q=3, verbose=FALSE) ## distribution of non-rejection rates for the present edges summary(nrr.estimates[upper.tri(nrr.estimates) & A]) ## distribution of non-rejection rates for the missing edges summary(nrr.estimates[upper.tri(nrr.estimates) & !A]) ## using R code only this would take much more time qpNrr(X, q=3, R.code.only=TRUE, estimateTime=TRUE) \dontrun{ library(snow) library(rlecuyer) ## only for moderate and large numbers of variables the ## use of a cluster of processors speeds up the calculations nVar <- 500 maxCon <- 3 A <- qpRndGraph(p=nVar, d=maxCon) Sigma <- qpG2Sigma(A, rho=0.5) X <- rmvnorm(nObs, sigma=as.matrix(Sigma)) system.time(nrr.estimates <- qpNrr(X, q=10, verbose=TRUE)) system.time(nrr.estimates <- qpNrr(X, q=10, verbose=TRUE, clusterSize=4)) } } \keyword{models} \keyword{multivariate}