\name{qpG2Sigma} \alias{qpG2Sigma} \title{ Random covariance matrix } \description{ Builds a positive definite matrix from an undirected graph G that can be used as a covariance matrix for a Gaussian graphical model with graph G. The inverse of the resulting matrix contains zeroes at the missing edges of the given undirected graph G. } \usage{ qpG2Sigma(g, rho=0, verbose=FALSE, R.code.only=FALSE) } \arguments{ \item{g}{undirected graph specified either as a \code{graphNEL} object or as an adjacency matrix.} \item{rho}{real number between -1/(n.var-1) and 1 corresponding to the mean marginal correlation} \item{verbose}{show progress on the calculations.} \item{R.code.only}{logical; if FALSE then the faster C implementation is used in the internal call to the IPF algorithm (default); if TRUE then only R code is executed.} } \details{ The random covariance matrix is built by first generating a random matrix with the function \code{\link{qpRndWishart}} from a Wishart distribution whose expected value is a matrix with unit diagonal and constant off-diagonal entries equal to \code{rho}. } \value{ A random positive definite matrix that can be used as a covariance matrix for a Gaussian graphical model with graph \code{G}. } \references{ Castelo, R. and Roverato, A. Utilities for large Gaussian graphical model inference and simulation with the R package qpgraph, submitted. } \author{A. Roverato} \seealso{ \code{\link{qpRndGraph}} \code{\link{qpGetCliques}} \code{\link{qpIPF}} \code{\link{qpRndWishart}} \code{\link[mvtnorm]{rmvnorm}} } \examples{ set.seed(123) G <- qpRndGraph(p=5, d=2) Sigma <- qpG2Sigma(G, rho=0.5) round(solve(Sigma), digits=2) as(G, "matrix") } \keyword{models} \keyword{multivariate}