\name{qpEdgeNrr} \alias{qpEdgeNrr} \alias{qpEdgeNrr,ExpressionSet-method} \alias{qpEdgeNrr,data.frame-method} \alias{qpEdgeNrr,matrix-method} \title{ Non-rejection rate estimation for a pair of variables } \description{ Estimates the non-rejection rate for one pair of variables. } \usage{ \S4method{qpEdgeNrr}{ExpressionSet}(X, i=1, j=2, q=1, I=NULL, restrict.Q=NULL, nTests=100, alpha=0.05, exact.test=TRUE, R.code.only=FALSE) \S4method{qpEdgeNrr}{data.frame}(X, i=1, j=2, q=1, I=NULL, restrict.Q=NULL, nTests=100, alpha=0.05, long.dim.are.variables=TRUE, exact.test=TRUE, R.code.only=FALSE) \S4method{qpEdgeNrr}{matrix}(X, i=1, j=2, q=1, I=NULL, restrict.Q=NULL, n=NULL, nTests=100, alpha=0.05, long.dim.are.variables=TRUE, exact.test=TRUE, R.code.only=FALSE) } \arguments{ \item{X}{data set from where the non-rejection rate should be estimated. It can be either an \code{ExpressionSet} object, a data frame, or a matrix. If it is a matrix and the matrix is squared then this function assumes the matrix is the sample covariance matrix of the data and the sample size parameter \code{n} should be provided.} \item{i}{index or name of one of the two variables in \code{X} to test.} \item{j}{index or name of the other variable in \code{X} to test.} \item{q}{order of the conditioning subsets employed in the calculation.} \item{I}{indexes or names of the variables in \code{X} that are discrete.} \item{restrict.Q}{indexes or names of the variables in \code{X} that restrict the sample space of conditioning subsets Q.} \item{n}{number of observations in the data set. Only necessary when the sample covariance matrix is provided through the \code{X} parameter.} \item{nTests}{number of tests to perform for each pair for variables.} \item{alpha}{significance level of each test.} \item{long.dim.are.variables}{logical; if TRUE it is assumed that when data are in a data frame or in a matrix, the longer dimension is the one defining the random variables (default); if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.} \item{exact.test}{logical; if \code{FALSE} an asymptotic conditional independence test is employed with mixed (i.e., continuous and discrete) data; if \code{TRUE} (default) then an exact conditional independence test with mixed data is employed.} \item{R.code.only}{logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.} } \details{ The estimation of the non-rejection rate for a pair of variables is calculated as the fraction of tests that accept the null hypothesis of independence given a set of randomly sampled q-order conditionals. Note that the possible values of \code{q} should be in the range 1 to \code{min(p,n-3)}, where \code{p} is the number of variables and \code{n} the number of observations. The computational cost increases linearly with \code{q}. } \value{ An estimate of the non-rejection rate for the particular given pair of variables. } \references{ Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, \emph{J. Mach. Learn. Res.}, 7:2621-2650, 2006. } \author{R. Castelo and A. Roverato} \seealso{ \code{\link{qpNrr}} \code{\link{qpAvgNrr}} \code{\link{qpHist}} \code{\link{qpGraphDensity}} \code{\link{qpClique}} } \examples{ require(mvtnorm) nObs <- 100 ## number of observations to simulate ## the following adjacency matrix describes an undirected graph ## where vertex 3 is conditionally independent of 4 given 1 AND 2 A <- matrix(c(FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE), nrow=4, ncol=4, byrow=TRUE) Sigma <- qpG2Sigma(A, rho=0.5) X <- rmvnorm(nObs, sigma=as.matrix(Sigma)) qpEdgeNrr(X, i=3, j=4, q=1, long.dim.are.variables=FALSE) qpEdgeNrr(X, i=3, j=4, q=2, long.dim.are.variables=FALSE) } \keyword{models} \keyword{multivariate}