\name{CNSet-class} \Rdversion{1.1} \docType{class} \alias{CNSet-class} \alias{[,CNSet-method} \alias{A,CNSet-method} \alias{A<-,CNSet-method} \alias{allele,CNSet-method} \alias{B,CNSet-method} \alias{B<-,CNSet-method} \alias{batch,CNSet-method} \alias{batchNames,CNSet-method} \alias{batchNames<-,CNSet-method} \alias{batchStatistics,CNSet-method} \alias{batchStatistics<-,CNSet,AssayData-method} \alias{close,CNSet-method} \alias{coerce,CNSetLM,CNSet-method} \alias{coerce,CNSet,CopyNumberSet-method} \alias{coerce,CNSet,oligoSnpSet} \alias{coerce,CNSet,oligoSnpSet-method} \alias{corr,CNSet,character-method} \alias{flags,CNSet-method} \alias{initialize,CNSet-method} \alias{initialize,CNSetLM-method} %\alias{lM,CNSet-method} \alias{nu,CNSet,character-method} \alias{open,CNSet-method} \alias{phi,CNSet,character-method} \alias{sigma2,CNSet,character-method} \alias{tau2,CNSet,character-method} \alias{updateObject,CNSet-method} \title{Class "CNSet"} \description{ CNSet is a container for intermediate data and parameters pertaining to allele-specific copy number estimation. Methods for CNSet objects, including accessors for linear model parameters and allele-specific copy number are included here. } \section{Objects from the Class}{ An object from the class is not generally intended to be initialized by the user, but returned by the \code{genotype} function in the \code{crlmm} package. The following creates a very basic \code{CNSet} with \code{assayData} containing the required elements. \code{new(CNSet, alleleA=new("matrix"), alleleB=new("matrix"), call=new("matrix"), callProbability=new("matrix"), batch=new("factor"))} } \section{Slots}{ \describe{ \item{\code{batch}:}{Object of class \code{"factor"} ~~ } \item{\code{batchStatistics}:}{Object of class \code{"AssayData"} ~~ } \item{\code{assayData}:}{Object of class \code{"AssayData"} ~~ } \item{\code{phenoData}:}{Object of class \code{"AnnotatedDataFrame"} ~~ } \item{\code{featureData}:}{Object of class \code{"AnnotatedDataFrame"} ~~ } \item{\code{experimentData}:}{Object of class \code{"MIAME"} ~~ } \item{\code{annotation}:}{Object of class \code{"character"} ~~ } \item{\code{protocolData}:}{Object of class \code{"AnnotatedDataFrame"} ~~ } \item{\code{.__classVersion__}:}{Object of class \code{"Versions"} ~~ } } } \section{Extends}{ Class \code{"\linkS4class{SnpSet}"}, directly. Class \code{"\linkS4class{eSet}"}, by class "SnpSet", distance 2. Class \code{"\linkS4class{VersionedBiobase}"}, by class "SnpSet", distance 3. Class \code{"\linkS4class{Versioned}"}, by class "SnpSet", distance 4. } \section{Methods}{ \describe{ \item{[}{\code{signature(x = "CNSet")}: ... } \item{A}{\code{signature(object = "CNSet")}: ... } \item{A<-}{\code{signature(object = "CNSet")}: ... } \item{allele}{\code{signature(object = "CNSet")}: ... } \item{B}{\code{signature(object = "CNSet")}: ... } \item{B<-}{\code{signature(object = "CNSet")}: ... } \item{batch}{\code{signature(object = "CNSet")}: ... } \item{batchNames}{\code{signature(object = "CNSet")}: ... } \item{batchNames<-}{\code{signature(object = "CNSet")}: ... } \item{close}{\code{signature(con = "CNSet")}: ... } \item{coerce}{\code{signature(from="CNSetLM")}: ... } \item{coerce}{\code{signature(from="CNSet")}: ... } \item{corr}{\code{signature(object = "CNSet", allele = "character")}: ... } \item{flags}{\code{signature(object="CNSet")}: SNP flags } \item{initialize}{\code{signature(.Object = "CNSet")}: ... } % \item{lM}{\code{signature(object = "CNSet")}: ... } % \item{lM<-}{\code{signature(object = "CNSet", value = "LinearModelParameter")}: ... } \item{nu}{\code{signature(object = "CNSet", allele = "character")}: ... } \item{open}{\code{signature(con = "CNSet")}: ... } \item{phi}{\code{signature(object = "CNSet", allele = "character")}: ... } \item{sigma2}{\code{signature(object = "CNSet", allele = "character")}: ... } \item{tau2}{\code{signature(object = "CNSet", allele = "character")}: ... } } } \author{ R. Scharpf } \seealso{ \code{\link{relocateObject}} } \examples{ if(require("genomewidesnp6Crlmm")){ require("genomewidesnp6Crlmm") fns <- c("SNP_A-2131660", "SNP_A-1967418", "SNP_A-1969580", "SNP_A-4263484", "SNP_A-1978185", "SNP_A-4264431", "SNP_A-1980898", "SNP_A-1983139", "SNP_A-4265735", "SNP_A-1995832") theCalls <- matrix(2, nc=2, nrow=10) A <- matrix(sample(1:1000, 20), 10,2) B <- matrix(sample(1:1000, 20), 10,2) p <- matrix(runif(20), nc=2) theConfs <- round(-1000*log2(1-p)) ## Batch can be defined by the scan date of the array ##or the 96 well chemistry plate from which the ##samples were derived. Here we indicate that the two ##samples were from the same batch. batch <- rep(factor(1), ncol(A)) ## each parameter is a R x C matrix, where the number ## of rows (R) corresponds to the number of features ## and the number of columns (C) corresponds to the ## number of batches. In this toy example, the ## samples were assumed to be from the same batch. ## Ordinarily, one would have 50+ samples in a given ## batch. dns <- list(fns, batch="1") obj <- new("CNSet", alleleA=A, alleleB=B, call=theCalls, callProbability=theConfs, batch=as.character(rep(1, ncol(A))), annotation="genomewidesnp6") assayDataElementNames(batchStatistics(obj)) featureNames(obj) <- fns ## Accessors calls(obj) confs(obj) A(obj) B(obj) featureData(obj) <- addFeatureAnnotation(obj) isSnp(obj) chromosome(obj) position(obj) } } \keyword{classes}