\name{BinData-class} \Rdversion{1.1} \docType{class} \alias{BinData-class} \alias{coord,BinData-method} \alias{gcContent,BinData-method} \alias{input,BinData-method} \alias{mappability,BinData-method} %\alias{mosaicsFit,BinData-method} \alias{plot,BinData,missing-method} \alias{print,BinData-method} \alias{show,BinData-method} \alias{tagCount,BinData-method} \title{Class "BinData" } \description{ This class represents bin-level ChIP-seq data. } \section{Objects from the Class}{ Objects can be created by calls of the form \code{new("BinData", ...)}. } \section{Slots}{ \describe{ \item{\code{coord}:}{Object of class \code{"numeric"}, a vector of coordinates. } \item{\code{tagCount}:}{Object of class \code{"numeric"}, a vector of tag counts of ChIP sample. } \item{\code{mappability}:}{Object of class \code{"numeric"}, a vector of mappability score. } \item{\code{gcContent}:}{Object of class \code{"numeric"}, a vector of GC content score. } \item{\code{input}:}{Object of class \code{"numeric"}, a vector of tag counts of control sample. } \item{\code{dataType}:}{Object of class \code{"character"}, indicating how reads were processed. Possible values are "unique" (only uniquely aligned reads were retained) and "multi" (reads aligned to multiple locations were also retained). } } } \section{Methods}{ \describe{ \item{mosaicsFit}{\code{signature(object = "BinData")}: fit MOSAiCS model from a bin-level ChIP-seq data. } \item{plot}{\code{signature(x = "BinData", y = "missing", plotType = NULL )}: provide exploratory plots of mean ChIP tag counts. This method plots mean ChIP tag counts versus mappability score, GC content score, and input tag counts, with 95\% confidence intervals, for \code{plotType="M"}, \code{plotType="GC"}, and \code{plotType="input"}, respectively. \code{plotType="M|input"} and \code{plotType="GC|input"} provide plots of mean ChIP tag counts versus mappability and GC content score, respectively, conditional on input tag counts. If \code{plotType} is not specified, this method plots histogram of ChIP tag counts. } \item{print}{\code{signature(x = "BinData")}: return bin-level data in data frame format. } \item{show}{\code{signature(object = "BinData")}: provide brief summary of the object. } } } \references{ Kuan, PF, D Chung, JA Thomson, R Stewart, and S Keles (2010), "A Statistical Framework for the Analysis of ChIP-Seq Data", submitted (\url{http://works.bepress.com/sunduz_keles/19/}). } \author{ Dongjun Chung, Pei Fen Kuan, Sunduz Keles } \seealso{ \code{\link{readBins}}, \code{\link{mosaicsFit}}. } \examples{ showClass("BinData") \dontrun{ library(mosaicsExample) data(exampleBinData) exampleBinData print(exampleBinData)[1:10,] plot(exampleBinData) plot( exampleBinData, plotType="M" ) plot( exampleBinData, plotType="GC" ) plot( exampleBinData, plotType="input" ) plot( exampleBinData, plotType="M|input" ) plot( exampleBinData, plotType="GC|input" ) exampleFit <- mosaicsFit( exampleBinData, analysisType="TS" ) } } \keyword{classes}