\name{minet} \alias{minet} \title{Mutual Information Network} \usage{ minet(dataset, method="mrnet", estimator="spearman", disc="none", nbins=sqrt(NROW(dataset))) } \arguments{ \item{dataset}{ data.frame where columns contain variables/features and rows contain outcomes/samples.} \item{method}{The name of the inference algorithm : "clr", "aracne", "mrnet" or "mrnetb" (default: "mrnet") - see references.} \item{estimator}{ The name of an entropy estimator (or correlation) to be used for mutual information computation ("mi.empirical", "mi.mm", "mi.shrink", "mi.sg", "pearson","spearman","kendall"), (default: "spearman") . - see \code{\link{build.mim}}.} \item{disc}{ The name of the discretization method to be used, if required by the estimator :"none" ,"equalfreq", "equalwidth" or "globalequalwidth" (default : "none") - see infotheo package.} \item{nbins}{ Integer specifying the number of bins to be used for the discretization if disc is set properly. By default the number of bins is set to \eqn{\sqrt{N}}{sqrt(N)} where N is the number of samples.} } \value{ \code{minet} returns a matrix which is the weighted adjacency matrix of the network. The weights range from 0 to 1 and can be seen as a confidence measure on the presence of the arcs. In order to display the network, load the package Rgraphviz and use the following command: \cr plot( as(returned.matrix ,"graphNEL") ) } \description{ For a given dataset, \code{minet} infers the network in two steps. First, the mutual information between all pairs of variables in \code{dataset} is computed according to the \code{estimator} argument. Then the algorithm given by \code{method} considers the estimated mutual informations in order to build the network. This package is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. } \author{ Patrick E. Meyer, Frederic Lafitte, Gianluca Bontempi } \seealso{ \code{\link{build.mim}}, \code{\link{clr}}, \code{\link{mrnet}}, \code{\link{mrnetb}}, \code{\link{aracne}} } \references{ Patrick E. Meyer, Frederic Lafitte, and Gianluca Bontempi. minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information. BMC Bioinformatics, Vol 9, 2008. } \examples{ data(syn.data) net1 <- minet( syn.data ) net2 <- minet( syn.data, estimator="pearson" ) net3 <- minet( syn.data, method="clr") } \keyword{misc}