\name{deregulation.p.values} \alias{deregulation.p.values} \title{ Calculating deregulation p-values using resampling method. } \description{ Deregulation p-values based on deregulation scores. They are calculated as fraction of permutations that give more extreme deregulation scores than for original data.} \usage{deregulation.p.values(data.1, beliefs.1, model.1, data.2, beliefs.2, model.2, N=100, verbose=FALSE)} \arguments{ \item{data.1, data.2}{Matrices of log expression ratios perturbation vs control, for the genes (rows), in the perturbations of the regulators (columns). See \code{\link{differential.probs}} for more details. } \item{beliefs.1, beliefs.2}{Lists of beliefs. See \code{\link{differential.probs}} for more details. } \item{model.1, model.2}{Pathway topologies. See \code{\link{differential.probs}} for more details. } \item{N}{A number of replications used to calculate p-values } \item{verbose}{When TRUE, the execution prints informative messages} } \details{The deregulation p-values are calculated as fraction of permutations that give more extreme deregulation scores than for original data. } \value{ A list with two matrices. This p-values in the slot \code{deregulation.p.values} and with the original deregulation scores in the slot \code{deregulationOrg}. } \references{ http://joda.molgen.mpg.de } \author{ Ewa Szczurek } \seealso{ \code{\link{differential.probs}}, \code{\link{regulation.scores}}, \code{\link{regulation.scores}} } \examples{ \dontrun{ # Step 1 library(joda) data(damage) deregulationObj = deregulation.p.values(data.healthy, beliefs.healthy, model.healthy, data.damage, beliefs.damage, model.damage, N=100, verbose=TRUE) boxplot(deregulationObj$deregulation.p.values) } }