\name{ps.cluster} \alias{ps.cluster} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Function to compute the prediction strength of a clustering model } \description{ This function computes the prediction strength of a clustering model as published in R. Tibshirani and G. Walther 2005. } \usage{ ps.cluster(cl.tr, cl.ts, na.rm = FALSE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{cl.tr}{ Clusters membership as defined by the original clustering model, i.e. the one that was not fitted on the dataset of interest. } \item{cl.ts}{ Clusters membership as defined by the clustering model fitted on the dataset of interest. } \item{na.rm}{ \code{TRUE} if missing values should be removed, \code{FALSE} otherwise. } } %%\details{ %% ~~ If necessary, more details than the description above ~~ %%} \value{ %% ~Describe the value returned %% If it is a LIST, use \item{ps }{the overall prediction strength (minimum of the prediction strengths at cluster level).} \item{ps.cluster }{Prediction strength for each cluster} \item{ps.individual }{Prediction strength for each sample.} } \references{ R. Tibshirani and G. Walther (2005) "Cluster Validation by Prediction Strength", \emph{Journal of Computational and Graphical Statistics}, \bold{14}(3):511--528. } \author{ Benjamin Haibe-Kains } %%\note{ %% ~~further notes~~ %%} %% ~Make other sections like Warning with \section{Warning }{....} ~ %%\seealso{ %% ~~objects to See Also as \code{\link{help}}, ~~~ %%} \examples{ ## load SSP signature published in Sorlie et al. 2003 data(ssp2003) ## load NKI data data(nki) ## SP2003 fitted on NKI ssp2003.2nki <- intrinsic.cluster(data=data.nki, annot=annot.nki, do.mapping=TRUE, std="robust", intrinsicg=ssp2003$centroids.map[ ,c("probe", "EntrezGene.ID")], number.cluster=5, mins=5, method.cor="spearman", method.centroids="mean", verbose=TRUE) ## SP2003 published in Sorlie et al 2003 and applied in VDX ssp2003.nki <- intrinsic.cluster.predict(sbt.model=ssp2003, data=data.nki, annot=annot.nki, do.mapping=TRUE, verbose=TRUE) ## prediction strength of sp2003 clustering model ps.cluster(cl.tr=ssp2003.2nki$subtype, cl.ts=ssp2003.nki$subtype, na.rm = FALSE) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ clustering }