\name{compute.pairw.cor.meta} \alias{compute.pairw.cor.meta} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Function to compute pairwise correlations in a meta-analytical framework } \description{ This function computes meta-estimate of pairwise correlation coefficients for a set of genes from a list of gene expression datasets. } \usage{ compute.pairw.cor.meta(datas, method = c("pearson", "spearman")) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{datas}{ List of datasets. Each dataset is a matrix of gene expressions with samples in rows and probes in columns, dimnames being properly defined. All the datasets must have the same probes. } \item{method}{ Estimator for correlation coefficient, can be either \code{pearson} or \code{spearman}. } } %%\details{ %% ~~ If necessary, more details than the description above ~~ %%} \value{ %% ~Describe the value returned %% If it is a LIST, use \item{cor }{Matrix of meta-estimate of correlation coefficients with probes in rows and prototypes in columns.} \item{cor.n }{Number of samples used to compute meta-estimate of correlation coefficients.} } %%\references{ %% ~put references to the literature/web site here ~ %%} \author{ Benjamin Haibe-Kains } %%\note{ %% ~~further notes~~ %%} %% ~Make other sections like Warning with \section{Warning }{....} ~ \seealso{ \code{\link[genefu]{map.datasets}}, \code{\link[genefu]{compute.proto.cor.meta}} } \examples{ ## load VDX dataset data(vdx) ## load NKI dataset data(nki) ## reduce datasets ginter <- intersect(annot.vdx[ ,"EntrezGene.ID"], annot.nki[ ,"EntrezGene.ID"]) ginter <- ginter[!is.na(ginter)][1:30] myx <- unique(c(match(ginter, annot.vdx[ ,"EntrezGene.ID"]), sample(x=1:nrow(annot.vdx), size=20))) data2.vdx <- data.vdx[ ,myx] annot2.vdx <- annot.vdx[myx, ] myx <- unique(c(match(ginter, annot.nki[ ,"EntrezGene.ID"]), sample(x=1:nrow(annot.nki), size=20))) data2.nki <- data.nki[ ,myx] annot2.nki <- annot.nki[myx, ] ## mapping of datasets datas <- list("VDX"=data2.vdx,"NKI"=data2.nki) annots <- list("VDX"=annot2.vdx, "NKI"=annot2.nki) datas.mapped <- map.datasets(datas=datas, annots=annots, do.mapping=TRUE) ## compute meta-estimate of pairwise correlation coefficients pairwcor <- compute.pairw.cor.meta(datas=datas.mapped$datas, method="pearson") str(pairwcor) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ correlation }