\name{exponential-class} \docType{class} \alias{exponential-class} \alias{exponential} \alias{eval,exponential,missing,missing-method} \title{Class "exponential" } \description{ Exponential transform class defines a transformation given by the function \deqn{f(parameter,a,b)=e^{parameter/b}*\frac{1}{a}} } \section{Objects from the Class}{ Objects can be created by calls to the constructor\code{exponential(parameters,a,b)}. } \section{Slots}{ \describe{ \item{\code{.Data}:}{Object of class \code{"function"} ~~ } \item{\code{a}:}{Object of class \code{"numeric"}- non zero constant } \item{\code{b}:}{Object of class \code{"numeric"}- non zero constant } \item{\code{parameters}:}{Object of class \code{"transformation"}- flow parameter to be transformed } \item{\code{transformationId}:}{Object of class \code{"character"} -unique ID to reference the transformation } } } \section{Extends}{ Class \code{"\linkS4class{singleParameterTransform}"}, directly. Class \code{"\linkS4class{transform}"}, by class "singleParameterTransform", distance 2. Class \code{"\linkS4class{transformation}"}, by class "singleParameterTransform", distance 3. Class \code{"\linkS4class{characterOrTransformation}"}, by class "singleParameterTransform", distance 4. } \section{Methods}{ No methods defined with class "exponential" in the signature. } \references{Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5 } \author{ Gopalakrishnan N, F.Hahne } \note{ The exponential transformation object can be evaluated using the eval method by passing the data frame as an argument.The transformed parameters are returned as a matrix with a single column} \seealso{ logarithm } \examples{ dat <- read.FCS(system.file("extdata","0877408774.B08", package="flowCore")) exp1<-exponential(parameters="FSC-H",a=1,b=37,transformationId="exp1") transOut<-eval(exp1)(exprs(dat)) } \keyword{classes}