\name{clusterAlignment} \alias{clusterAlignment} \alias{clusterAlignment-show} \alias{clusterAlignment-class} \alias{clusterAlignment-plot} \alias{show,clusterAlignment-method} \alias{plot,clusterAlignment-method} \title{Data Structure for a collection of all pairwise alignments of GCMS runs} \description{Store the raw data and optionally, information regarding signal peaks for a number of GCMS runs} \usage{clusterAlignment(pD,runs=1:length(pD@rawdata),timedf=NULL,usePeaks=TRUE,verbose=TRUE,...)} \arguments{ \item{pD}{a \code{peaksDataset} object.} \item{runs}{vector of integers giving the samples to calculate set of pairwise alignments over.} \item{timedf}{list (length = the number of pairwise alignments) of matrices giving the expected time differences expected at each pair of peaks (used with \code{usePeaks}=\code{TRUE}, passed to \code{peaksAlignment}} \item{usePeaks}{logical, \code{TRUE} uses \code{peakdata} list, \code{FALSE} uses \code{rawdata} list for computing similarity.} \item{verbose}{logical, whether to print out info.} \item{...}{other arguments passed to \code{peaksAlignment}} } \details{ clusterAlignment computes the set of pairwise alignments. } \value{ \code{clusterAlignment} object } \author{Mark Robinson} \references{ Mark D Robinson (2008). Methods for the analysis of gas chromatography - mass spectrometry data \emph{PhD dissertation} University of Melbourne. } \seealso{ \code{\link{peaksDataset}}, \code{\link{peaksAlignment}} } \examples{ require(gcspikelite) # paths and files gcmsPath<-paste(.find.package("gcspikelite"),"data",sep="/") cdfFiles<-dir(gcmsPath,"CDF",full=TRUE) eluFiles<-dir(gcmsPath,"ELU",full=TRUE) # read data, peak detection results pd<-peaksDataset(cdfFiles[1:2],mz=seq(50,550),rtrange=c(7.5,8.5)) pd<-addAMDISPeaks(pd,eluFiles[1:2]) ca<-clusterAlignment(pd, gap = .5,D=.05,df=30) } \keyword{classes}