\name{generateExprVal.method.farms} \alias{generateExprVal.method.farms} \title{Generate an expression value from the probes informations} \description{Generate an expression from the probe} \usage{ generateExprVal.method.farms(probes, weight, mu, cyc, tol, weighted.mean, robust, minNoise, correction, laplacian, centering, ...) } \arguments{ \item{probes}{a matrix of probe intesities with rows representing probes and columns representing samples. Usually \code{pm(probeset)} where \code{probeset} is a of class \code{\link[affy:ProbeSet-class]{ProbeSet}}} \item{weight}{Hyperparameter value in the range of [0,1] which determines the influence of the prior. The default value is 0.5 } \item{mu}{Hyperparameter value which allows to quantify different aspects of potential prior knowledge. A value near zero assumes that most genes do not contain a signal, and introduces a bias for loading matrix elements near zero. Default value is 0} \item{cyc}{Value which determinates the maximum numbers of EM-Steps. Default value is set to number of arrays/2} \item{tol}{Value which determinates the termination tolerance. Convergence threshold is set to 1E-05.} \item{weighted.mean}{Boolean flag, that indicates wether a weighted mean or a least square fit is used to summarize the loading matrix. The default value is set to TRUE .} \item{robust}{Boolean flag, that ensures non-constant results. Default value is TRUE.} \item{minNoise}{Value, minimal noise assumption. Default value is 0.0001.} \item{correction}{Value that indicates whether the covariance matrix should be corrected for negative eigenvalues which might emerge from the non-negative correlation constraints or not. Default = O (means that no correction is done), 1 (minimal noise (0.0001) is added to the diagonal elements of the covariance matrix to force positive definiteness), 2 (Maximum Likelihood solution to compute the nearest positive definite matrix under the given non-negative correlation constraints of the covariance matrix)} \item{laplacian}{Boolean flag, indicates whether a Laplacian prior for the factor is employed or not. Default value is FALSE.} \item{centering}{Indicates whether the data is "median" or "mean" centered. Default value is "median".} \item{...}{extra arguments to pass to the respective function} } \value{ A list containing entries: \item{exprs}{The expression values.} \item{se.exprs}{Estimate of the hidden variable.} } \seealso{ \code{\link[affy]{generateExprSet-methods}},\code{\link[affy]{generateExprVal.method.playerout}},\code{\link[affy]{li.wong}}, \code{\link[affy]{medianpolish}} } \examples{ library(affy) data(SpikeIn) ##SpikeIn is a ProbeSets probes <- pm(SpikeIn) exprs.farms <- generateExprVal.method.farms(probes)} \keyword{manip}