\name{expFarms} \alias{expFarms} \title{Factor Analysis for Robust Microarray Summarization} \description{ This function converts an instance of \code{\link[affy:AffyBatch-class]{AffyBatch}} into an instance of \code{\link[Biobase]{exprSet-class}} using a factor analysis model for which a Bayesian Maximum a Posteriori method optimizes the model parameters under the assumption of Gaussian measurement noise.} \usage{ expFarms(object, bgcorrect.method = "none", pmcorrect.method = "pmonly", normalize.method = "quantiles", weight, mu, weighted.mean, laplacian, robust, correction, centering, ...) } \arguments{ \item{object}{An instance of \code{\link[affy:AffyBatch-class]{AffyBatch}}.} \item{weight}{Hyperparameter value in the range of [0,1] which determines the influence of the prior. The default value is 0.5 } \item{bgcorrect.method}{the name of the background adjustment method} \item{pmcorrect.method}{the name of the PM adjustment method} \item{normalize.method}{the normalization method to use} \item{mu}{Hyper-parameter value which allows to quantify different aspects of potential prior knowledge. Values near zero assumes that most genes do not contain a signal, and introduces a bias for loading matrix elements near zero. Default value is 0} \item{weighted.mean}{Boolean flag, that indicates wether a weighted mean or a least square fit is used to summarize the loading matrix. The default value is set to TRUE .} \item{laplacian}{Boolean flag, indicates whether a Laplacian prior for the factor is employed or not. Default value is FALSE.} \item{robust}{Boolean flag, that ensures non-constant results. Default value is TRUE.} \item{correction}{Value that indicates whether the covariance matrix should be corrected for negative eigenvalues which might emerge from the non-negative correlation constraints or not. Default = O (means that no correction is done), 1 (minimal noise (0.0001) is added to the diagonal elements of the covariance matrix to force positive definiteness), 2 (Maximum Likelihood solution to compute the nearest positive definite matrix under the given non-negative correlation constraints of the covariance matrix)} \item{centering}{Indicates whether the data is "median" or "mean" centered. Default value is "median".} \item{...}{other arguments to be passed to \code{\link[affy]{expresso}}.} }\details{ This function is a wrapper for \code{\link[affy]{expresso}}.} \value{ \code{\link[Biobase]{exprSet-class}} } \seealso{ \code{\link[affy]{expresso}}, \code{\link{qFarms}}, \code{\link{lFarms}}.} \examples{ data(testAffyBatch) eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", normalize.method = "constant", weight=0.5, weighted.mean=TRUE) } \keyword{manip}