\name{findOutliers} \alias{findOutliers} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Identify outlier objects given a square distance matrix. } \description{ Outliers are defined as elements with edge length to the centermost element > cutoff. The distance threshold (cutoff) can be either specified, or calculated as a quantile of all pairwise distances in the matrix. } \usage{ findOutliers(mat, quant, cutoff) } \arguments{ \item{mat}{square matrix of distances} \item{quant}{given all pairwise distances x, calculate distance threshold as quantile(x, quant). Values closer to 0 are more stringent.} \item{cutoff}{an absolute cutoff overriding quant} } % \details{ % %% ~~ If necessary, more details than the description above ~~ % } \value{ Returns a boolean vector corresponding to margin of mat; outliers have a value of TRUE. } % \references{ % %% ~put references to the literature/web site here ~ % } \author{ Noah Hoffman } % \note{ % %% ~~further notes~~ % } %% ~Make other sections like Warning with \section{Warning }{....} ~ % \seealso{ % %% ~~objects to See Also as \code{\link{help}}, ~~~ % } \examples{ library(ape) data(seqs) data(seqdat) dmat <- ape::dist.dna(seqs[seqdat$tax_name == 'Enterococcus faecium',], pairwise.deletion=TRUE, as.matrix=TRUE, model='raw') summary(dmat[lower.tri(dmat)]) outliers <- findOutliers(dmat, cutoff=0.015) table(outliers) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{classif}