\name{impute.snps} \alias{impute.snps} \title{Impute snps} \description{ Given SNPs stored in an object of class \code{"chopsticks"} or \code{"X.snp.matrix"} and a set of imputation equations in as object of class \code{"snp.reg.imputation"}, this function calculates imputed values. } \usage{ impute.snps(rules, snps, subset=NULL) } \arguments{ \item{rules}{The imputation equations; an object of class \code{"snp.reg.imputation"}} \item{snps}{The object of class \code{"chopsticks"} or \code{"X.snp.matrix"} containing the observed SNPs} \item{subset}{A vector describing the subset of subjects to be used. If \code{NULL} (default), then use all subjects} } \value{ A matrix with imputed SNPs as columns. The imputed values are the estimated expected values of each SNP when coded 0, 1 or 2. } \references{ Chapman J.M., Cooper J.D., Todd J.A. and Clayton D.G. (2003) \emph{Human Heredity}, \bold{56}:18-31. } \author{David Clayton \email{david.clayton@cimr.cam.ac.uk}} \note{ Because the imputation is based on a linear model, the imputed value may lie outside the range 0 to 2. } \seealso{\code{\link{snp.imputation}}} \examples{ # Remove 5 SNPs from a datset and derive imputation rules for them library(chopsticks) data(for.exercise) sel <- c(20, 1000, 2000, 3000, 5000) to.impute <- snps.10[,sel] impute.from <- snps.10[,-sel] pos.to <- snp.support$position[sel] pos.fr <- snp.support$position[-sel] imp <- snp.imputation(impute.from, to.impute, pos.fr, pos.to) # Now calculate the imputed values imputed <- impute.snps(imp, impute.from) } \keyword{models} \keyword{regression}