\name{plotPriors} \alias{plotPriors} \title{Plots the density of the log values estimated for the mean rate in the prior data for the Negative Binomial approach to detecting differential expression} \description{ This function plots the density of the log values estimated for the mean rate in the data used to estimate a prior distribution for data under the assumption of a Negative Binomial distribution. This function is useful for looking for bimodality of the distributions, and thus determining whether we should try and identify data with no true expression. } \usage{ plotPriors(cD, group) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{cD}{\code{\link{countData}} object, for which priors have been estimated using the assumption of a Negative Binomial distribution (see \code{\link{getPriors.NB}}).} \item{group}{Which group should we plot the priors for? In general, should be the group that defines non-differentially expressed data.} } \details{ If the plot of the data appears bimodal, then it may be sensible to try and look for data with no true expression by using the option \code{nullPosts = TRUE} in \code{\link{getLikelihoods.NBboot}}. } \value{ Plotting function. } \author{Thomas J. Hardcastle} \seealso{\code{\link{getPriors.NB}}, \code{\link{getLikelihoods.NB}}} \examples{ # Create a {countData} object and estimate priors for the Poisson methods. data(simSeg) data(libsizes) replicates <- c(1,1,1,1,1,2,2,2,2,2) groups <- list(c(1,1,1,1,1,1,1,1,1,1), c(1,1,1,1,1,2,2,2,2,2)) CD <- new("countData", data = simSeg[,-1], replicates = replicates, seglens = simSeg[,1], libsizes = libsizes, groups = groups) CDP.NB <- getPriors.NB(CD, samplesize = 1000, estimation = "QL", cl = NULL) plotPriors(CDP.NB, group = 1) } \keyword{hplot}