\name{attract-package} \alias{attract-package} \alias{attract} \docType{package} \encoding{latin1} \title{ Methods to find the Gene Expression Modules that Represent the Drivers of Kauffman's Attractor Landscape } \description{ This package contains functions used to determine the gene expression modules that represent the drivers of Kauffman's attractor landscape. } \details{ \tabular{ll}{ Package: \tab attract\cr Type: \tab Package\cr Version: \tab 1.0\cr Date: \tab 2010-01-21\cr License: \tab \cr LazyLoad: \tab yes\cr } The method can be summarized in the following key steps: (1) Determine core KEGG pathways that discriminate the most strongly between celltypes or experimental groups of interest (see \code{findAttractors)}). (2) Find the different synexpression groups that are present within a core attractor pathway (see \code{findSynexprs}). (3) Find sets of genes that show highly similar profiles to the synexpression groups within an attractor pathway module (see \code{findCorrPartners}). (4) Test for functional enrichment for each of the synexpression groups to detect any potentially shared biological themes (see \code{calcFuncSynexprs}). } \author{ Jessica Mar } \references{ Kauffman S. 2004. A proposal for using the ensemble approach to understand genetic regulatory networks. J Theor Biol. 230:581. Mar JC, Wells CA, Quackenbush J. 2010. Identifying Gene Expression Modules that Represent the Drivers of Kauffman's Attractor Landscape. To Appear. Müller F et al. 2008. Regulatory networks define phenotypic classes of human stem cell lines. Nature. 455(7211): 401. Mar JC, Wells CA, Quackenbush J. 2010. Defining an Informativeness Metric for Clustering Gene Expression Data. To Appear. } \examples{ \dontrun{ data(subset.loring.eset) attractor.states <- findAttractors(subset.loring.eset, "celltype", nperm=10, annotation="illuminaHumanv1.db") remove.these.genes <- removeFlatGenes(subset.loring.eset, "celltype", contrasts=NULL, limma.cutoff=0.05) mapk.syn <- findSynexprs("04010", attractor.states, remove.these.genes) mapk.cor <- findCorrPartners(mapk.syn, subset.loring.eset, remove.these.genes) mapk.func <- calcFuncSynexprs(mapk.syn, attractor.states, "CC", annotation="illuminaHumanv1.db") } } \keyword{ package }